加法原理和乘法原理 ppt课件
- 格式:ppt
- 大小:309.50 KB
- 文档页数:3
乘法原理和加法原理加法原理:完成一件工作有几种不同的方法,每种方法又有很多种不同的方法,而且这些方法彼此互斥,那么完成这件方法的总数就是等于各类完成这件工作的综合。
这类方法称为加法原理,也叫分类计数原理。
乘法原理:如果完成一件工作需要很多步骤,每个步骤又有很多种方法,那么完成这件工作的方法就是把每一步骤中的不同方法乘起来,这类方法称为乘法原理,也叫分步计数原理。
例题:例1. 小军、小兰和小红三个小朋友排成一排照相,有多少种不同的排法, 例2. 书架上有5本不同的科技书,6本不同的故事书,8本不同的英语书。
如果从中各取一本科技书、一本故事书、一本英语书,那么共有多少种取法,例3.一个盒子里装有5个小球,另一个盒子里装有9个小球,所有的这些小球的颜色各不相同。
(1)从两个盒子任取一个球,有多少种不同的取法,(2)从两个盒子里各取一个球,有多少种不同的取法,例4.四个数字3、5、6、8可以组成多个没有重复数字的四位数,例5.用四种不同的颜色给下面的图形涂色,使相邻的长方形颜色不相同,有多少种不同的涂法,BACD当堂练:1. 五一前夕,学校举行亲子活动,玲玲有红、白、黄、花四件上衣和蓝、黄、青共三种颜色的裙子,找出来搭配着穿,一共有多少种不同的搭配方法,2.甲、乙、丙三个组,甲组6人,乙组5人,丙组4人,如果从三组中选出一个代表,有多少种不同的选法,3.有7、3、6三个数字卡片,能组成几个不同的三位数,课堂作业:1. 春节期间,有四个小朋友,如果他们互相寄一张贺卡,一共寄了多少张,2. 有8,0,2,4,6五个数字可以组成几个不同的五位数,3. 一个袋子里装有6个白色乒乓球,另一个袋子里装有8个黄色乒乓球。
(1).从两个袋子里任取一个乒乓球,共有多少种不同取法?(2).从两个袋子里各取一个乒乓球,有多少种不同取法,4. 南京到上海的动车组特快列车,中途只停靠常州、无锡、苏州三个火车站,共要准备多少种不同的车票,有多少种不同的票价,(考虑往返)5.在A、B、C、D四个长方形区域中涂上红、黄、蓝、黑这四种颜色,使任何相邻两个长方形颜色不同,一共有多少种不同的涂法,ABC D6.有6个不同的文具盒,4支不同的铅笔,4支不同的钢笔,2把不同的尺子。
加法原理和乘法原理1、加法原理:做一件事情分几类,每一类方法数之和就是完成这件事情的总方法数。
2、乘法原理:做一件事情分几步,每一步方法数之积就是完成这件事情的总方法数。
P29作业1、分四步组成四位数第一步:写好千位上的数,有3种选择(0不能作千位数)(所以一定要先考虑千位)第二步:写好百位上的数,有3种选择第三步:写好十位上的数,有2种选择第四步:写好个位上的数,有1种选择所以共有3×3×2×1=18个2、分三步组成三位数第一步:写好百位上的数,有4种选择(哪一位先考虑都行)第二步:写好十位上的数,有3种选择第三步:写好个位上的数,有2种选择所以共有4×3×2=24个3、分三步组成三位数第一步:写好个位上的数,有2种选择(个位一定是2或4)(所以一定要先考虑个位)第二步:写好十位上的数,有3种选择第三步:写好百位上的数,有2种选择所以共有2×3×2=12个4、分三步完成借书的事情第一步:第一个人来借书有7种选择第二步:第二个人来借书有6种选择第三步:第三个人来借书有5种选择所以共有7×6×5=210种5、分五步组成五位数第一步:写好万位上的数,有5种选择(哪一位先考虑都行)第二步:写好千位上的数,有4种选择第三步:写好百位上的数,有3种选择第四步:写好十位上的数,有2种选择第五步:写好个位上的数,有1种选择所以共有5×4×3×2×1=120个6、分三步完成种菜的任务第一步:第一块田里种菜有4种选择第二步:第一块田里种菜有3种选择第三步:第一块田里种菜有2种选择所以共有4×3×2=24种7、分类完成选书的事情第一类:选语文、数学(这一类在分2步完成,第一步选语文有3种选择,第二步选数学有4种选择,所以一共有3×4=12种)第二类:选数学、外语(同理,有4×5=20种)第三类:选外语、语文(同理,有3×5=15种)一共有12+20+15=47种(分类的要相加)综合列式:3×4+4×5+3×5=47种8、为叙述方便,设五个人为ABCDE,不能坐两端的是A。
第1讲排列组合(加法与乘法原理)1、加法原理:完成一件工作共有N类方法.在第一类方法中有m1种不同地方法,在第二类方法中有m2种不同地方法,……,在第N类方法中有mn种不同地方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法.运用加法原理计数,关键在于合理分类,不重不漏.要求每一类中地每一种方法都可以独立地完成此任务;两类不同办法中地具体方法,互不相同(即分类不重);完成此任务地任何一种方法,都属于某一类(即分类不漏).合理分类也是运用加法原理解决问题地难点,不同地问题,分类地标准往往不同,需要积累一定地解题经验.2、乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m 1×m2×…×mn种方法.运用乘法原理计数,关键在于合理分步.完成这件工作地N个步骤,各个步骤之间是相互联系地,任何一步地一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取地方法不同,则对应地完成此工作地方法也不同.运用两个原理解决地都是比较复杂地计数问题,在解题时要细心、耐心、有条理地分析问题.计数时要注意区分是分类问题还是分步问题,正确运用两个原理.灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂地计数问题.例1:(1)教室图书角放有4种不同地故事书,有7种不同地漫画书,从中取一本,共有多少种不同地取法?(2)教室图书角放有4种不同地故事书,有7种不同地漫画书,从中各取一本,共有多少种不同地取法?练习:(1)由镇往县城有3条路,由县城往长青山旅游区有4条路,由镇区经县城去长青山有几种不同地走法?(2)某人到食堂去买饭菜,食堂里有4种荤菜,3种蔬菜,2种汤.他要各买一样,共有多少种不同地买法?例2:用1角、2角和5角地三种人民币(每种地张数没有限制)组成1元钱,有多少种方法?练习:现有一架天平和1g,3g,9g,27g地砝码各一个,能称出多少种不同地重量?例3:各数位地数字之和是24地三位数共有多少个?练习:在所有四位数中,各位上地数之和等于34地数有种.例4:(1)用1 、2、 3、 4 四个数字,可以组成个不同地四位数;(2)用1、 9 、9 、5 四个数字,可以组成个不同地四位数.练习:(1)用1、2、3、4、5、6六个数字,可以组成多少个不同地四位数?(2)用1、2、3、4、5、6六个数字,可以组成多少个不同地四位偶数?(3)用0、1、2、3、4、5六个数字,可以组成多少个不同地四位数?(4)用0、1、2、3、4、5六个数字,可以组成多少个不同地四位偶数?例5:一本书有235页,打印页码共用了多少个数字码?其中有多少个数字“1”?练习:一本书打印页码共用了6889个数字码,这本书有多少页?例6:下图中有7个点和10条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同地走法?练习:(1)如图所示,从甲地到乙地,最近地道路有几条?(2)如果沿图中地线段,以最短地路程,从A点出发到B点,共有多少种不同地走法?巩固练习:1、学生饭堂有主食3种,副食有6种.从主食或副食中挑一种配成盒饭,可以配成()种.2:学生饭堂有主食3种,副食有6种.从主、副食中各挑一种配成盒饭,可以配成()种.3:小明有7种红色画纸,4种蓝色画纸,3种黄色画纸,如果每种颜色取一张,有()种取法.4:小明有7种红色画纸,4种蓝色画纸,3种黄色画纸,如果要取一张画纸,有()种取法.5.从1写到100,一共用了个“5”这个数字.6:小红有不同地上衣4件,下装5种,鞋子3双,问小红能有()种不同地穿着方法?7.数字和是4地三位数有个.8:小芳要买数学、语文、外语地参考书各一本,他看见书架上数学书有3种,语文书有2种,外语书有2种可供选择,她有()种不同地选择方法?9.用一个5分币、四个2分币,八个1分币买一张蛇年8分邮票,共有种付币方式.10.“IMO”是国际数学奥林匹克地缩写,把这三个字母写成三种不同颜色,现有五种不同颜色地笔,按上述要求能写出种不同颜色搭配地“IMO”.11:公园里有小红旗4款,小白旗5款,小蓝旗6款,如果三种颜色地小旗各取一款,有()不同地取法.12.电影院有六个门,其中A、B、C、D门只供退场时作出口,甲、乙门作为入口也作为出口.共有种不同地进出路线.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。
加法原理、乘法原理基础知识:1.加法原理:如果完成一件事情可以分成几类方法,每一类又包含若干种不同方法,那么将所有类中的方法数累加就是完成这件事的所有方法数.加法原理的关键在于分类,类与类之间用加法.2.乘法原理:如果完成一件事情可以分成几个步骤,每一步又包含若干种不同方法,那么将所有步骤中的方法数连乘就是完成这件事的所有方法数.乘法原理的关键在于分步,步与步之间用乘法.3.分类原则:分类要做到“不重不漏”.任意两类之间不可以重复,这叫做不重;把所有的类别累加在一起就得到整体,这叫做不漏.4.分步原则:分步要做到“前不影响后”.无论前面步骤采取哪种方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.例1.从1开始依次写下去一直到999,得到一个多位数1234567891011121314…997998999,请问:(1)这个多位数一共有多少位?(2)第999位数字是多少?(3)在这个多位数中,数字9一共出现了多少次?(4)数字0一共出现了多少次?问题(1)这个多位数一共有多少位?[答疑编号5721040101]1【答案】(1)2889;(2)9;(3)300;(4)189【解答】分析1:999个自然数构成一个多位数,可以利用加法原理分类的思想求这个多位数的位数.将这999个自然数分成3类:第1类是1位数;第2类是2位数;第3类是3位数.分别计算每一类自然数占了多少位,再求和就可以得出多位数的位数了.详解1:按照自然数的位数去分类.构成这个多位数的自然数中1位数有9个,占了9位;2位数有90个,占了2×90=180位;3位数有900个,占了3×900=2700位;所以这个多位数总共有9+180+2700=2889位.问题(2)第999位数字是多少?详解2:1位数和2位数一共占了189位,999位数数字还需要3位数占据999-189=810位.由810÷3=270…0可知第999位数字是第270个3位数的最后1位.第270个3位数是369,所以第999位数字是9.问题(3)在这个多位数中,数字9一共出现了多少次?分析3:前面2问分类的方法是按照自然数的位数去分类,1位数,2位数,3位数各自分为一类.但按照这种分类的思路来解第3问就不是很方便了:1位数含有1个9,2位数含有19个9,但是考虑3位数含有多少个9还是比较复杂.通过这种分类的思路去分析问题并没有使问题变得简单.可以考虑按照分段的方法去分类,第1类1—99;第2类100—199;第3类200—299;……;第10类900—999.分别计算每一类中包含了多少个9,然后再加和就可以了.注意利用每一类的相似性,比如第1类到第9类每一类所包含9的个数应该一样多,当然第10类900—999中9的个数2比前9类要多100个.再考虑一种分类的方法,按照9出现的位置去分类.首先考虑9在百位出现了多少次;再考虑9在十位出现了多少次;最后考虑9在个位出现了多少次.详解3:按照分段的方法去分类.实际这种分类方法也是按照百位数的不同去分类,在每一类中百位数是相同的(1—99可以看成百位数为0).考虑第1类1—99中包含了多少个9,个位包含9的有:9,19,29,39,49,59,69,79,89,99一共10个;十位包含9的有:90,91,92,93,94,95,96,97,98,99也是10个.这样在1—99中9在个位和十位各出现了10次,一共是20次.同理,第2类100—199;第3类200—299;……;第9类800—899;每一类中也都包含20个9.第10类900—999中9的个数比前9类要多100个,应该是120个.所以原来的多位数中总共有20×9+120=300个9.其实更快的方法是按9出现的位置去数,应用乘法原理.问题(4)数字0一共出现了多少次?详解4:按照0出现在个位、十位去分类当0出现在十位时,百位可以为1~9,个位可以为0~9,根据乘法原理,共有9×10=90次;同理,当0出现在个位时,共有9×10+9=99次,所以原来的多位数中0出现了99+90=189次.例2.允许数字重复,那么用数字0、1、3、5、7、9最多可以组成多少个不同的三位数?3[答疑编号5721040102]【解答】百位有5种选择,十位和个位都有6种选择.根据乘法原理,一共可以组成5×6×6=180个三位数.变化:如果不允许数字重复呢?其中被5整除的无重复数字的三位数又有多少个呢?例3.在所有的三位数中,至少出现一个2的偶数有________个.[答疑编号5721040103]【解答】①个位是2的有9×10=90个;②十位是2但个位不是2的偶数有9×4=36个;③百位是2但十位和个位都不是2的偶数有9×4=36个,所以一共有90+36+36=162个符合条件的三位数.例4.用1、2、3、4、5这5个数字组成四位数,至多允许有1个数字重复两次.例如1234、1233和2454是满足条件的,而1212、3335和4444就是不满足条件的.那么,所有这样的四位数共有________个.[答疑编号5721040104]【解答】方法1:分类讨论.如果包含4个互不相同的数字,一共有5×4×3×2=120个;如果包含3个互不相同的数字,我们可以先从5个数45字中选出3个数字,然后再从挑出的3个数字中选1个可以重复,最后把这3个数字带上1个重复的数字共4个数字排成1行.根据乘法原理,就有个,所以一共有120+360=480个四位数.方法2:排除法.所有可能的四位数有5×5×5×5=625个;只包含1个数字的有5个,包含2个数字的有5×4×(2×2×2-1)=140个.那么包含3个或4个不同数字的四位数有625-5-140=480个.例5.书架上有1本英语书,9本不同的语文书,9本不同的数学书和7本不同的历史书.现在要从中取出3本书,而且不能有两本是同一科的.那一共有多少种取法?[答疑编号5721040105]【答案】774【解答】因为一共要4种书中选3种,所以要分4种情况讨论:如果拿的是英语、语文和数学书,根据乘法原理一共有1×9×9种方法;如果拿的是英语、语文和历史书,一共有1×9×7种拿法,同理另外两种情况分别有1×9×7种和9×9×7种拿法.最后我们根据加法原理,一共有1×9×9+1×9×7+1×9×7+9×9×7=1×9×16+10×9×7=144+630=774种拿法.例1.用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)银行存折的四位密码;(2)四位数;(3)四位奇数.[答疑编号5721040201]【解答】(1)完成“组成无重复数字的四位密码”这件事,可以分四个步骤:第一步:选取左边第一个位置上的数字,有5种选取方法;第二步:选取左边第二个位置上的数字,有4种选取方法;第三步:选取左边第三个位置上的数字,有3种选取方法;第四步:选取左边第四个位置上的数字,有2种选取方法;由乘法原理,可组成不同的四位密码共有N=5×4×3×2=120(个).(2)完成“组成无重复数字的四位数”这件事,可以分四个步骤:第一步:从1,2,3,4中选取一个数字作千位数字,有4种选取方法;第二步:从1,2,3,4中余下的三个数字和0中选取一个数字作百位数字,有4种选取方法;第三步:从余下的三个数字中选取一个数字作十位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作个位数字,有2种选取方法;由乘法原理,可组成不同的四位数共有N=4×4×3×2=96(个).(3)完成“组成无重复数字的四位奇数”这件事,可以分四个步骤:6第一步:从1,3中选取一个数字作个位数字,有2种选取方法;第二步:从1,3中余下的一个数字和2,4中选取一个数字作千位数字,有3种选取方法;第三步:从余下的三个数字中选取一个数字作百位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作十位数字,有2种选取方法;由乘法原理,可组成不同的四位奇数共有N=2×3×3×2=36(个).例2.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?[答疑编号5721040202]【解答】取a+b与取b+a是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,由乘法原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据加法原理共有45+45=90种不同取法.例3.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案有多少种?[答疑编号5721040203]【解答】5名志愿者分配到3个不同的奥运场馆,可以分成3,1,71和2,2,1两类,第一类:分成3,1,1,完成此件事可以分成3步,第1步:3个馆选一个馆去3个人,共有3种选法,第2步:5个人中选3个人,共有种选法,第3步:剩下的2个人分别去两个馆,所以当分配成3,1,1时,根据乘法原理,共有3×10×2=60(种);第二类:分成2,2,1,完成此件事可以分成3步,第1步:5个人中选出一个人,共有5种选法,第2步:3个馆中选出一个馆,共有3种选法,第3步:剩下的4个人中选2个人去剩下两个馆中的一个,最后一个人去另外一个馆,共有(种),所以当分配成2,2,1时,根据乘法原理,共有5×3×6=90(种);所以根据加法原理,不同的分配方案共有60+90=150(种).例4.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数有多少个?[答疑编号5721040204]【解答】可分三步来做这件事:第一步:先将3、5放到六个数位中的两个,共有2种排法;第二步:再将4、6插空放入剩下四个数位中的两个,共有2×2=4种排法;8第三步:将1、2放到3、5、4、6形成的空位中,共有5种排法.根据乘法原理:共有2×4×5=40(种).例5.在一个3行4列的方格表内放入4枚相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?在一个3行4列的方格表内放入4枚互不相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?[答疑编号5721040205]【解答】「问题1」4枚棋子放入4列,每一列有且仅有1枚棋子,因此总共分4个步骤考虑.第1步考虑第1列的棋子放在什么位置;第2步考虑第2列的棋子放在什么位置;第3步考虑第3列的棋子放在什么位置;第4步考虑第4列的棋子放在什么位置.每一步都有3种选择方法,所以方法数一共有3×3×3×3=81种.「问题2」假设4枚互不相同的棋子为A,B,C,D.将按照下面的4个步骤进行考虑,先放棋子A,12个格子可以随便选择,一共有12种方法.第2步放棋子B,A那一列的3个格子不能选择,其它的格子都可以放B,所以一共有9种方法.第3步放棋子C,A、B那两列一共6个格子不能选,所以一共有6种方法.第4步放棋子D,A、B、C三列一共9个格子不能选,还剩3个格子,所以一共有3种方法.利用乘法原理,放入4个不同棋子的方法数一共有12×9×6×3=1944种方法.9另外一种解法.「问题2」4个棋子要占4个方格,先选出放棋子的4个方格.实际上挑出4个方格的方法数和第1问是完全相同的,总共有3×3×3×3=81种选择方法.选好方格后再将棋子排列进去,第1列的方格可以选择A,B,C,D中的任何一个棋子,所以有4种方法;第2列的方格还剩下三个棋子可供选择,所以有3种方法;第3列的方格还剩下两个棋子可供选择,有2种方法;第4列的方格只有1种方法.所以选好4个方格后排列棋子的方法数一共是4×3×2×1=24种.选4个方格有81种方法,选好4个方格后放棋子一共有24种方法,所以将表格中放入4个互不相同的棋子的总方法数是81×24=1944种.例6. 如图,把图中的8个部分用红、黄、绿、蓝4种不同的颜色着色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.那么,这幅图共有多少种不同的着色方法?[答疑编号5721040206]【解答】按照A,B,D,E,C,G,F,H的步骤进行染色.对A进行染色的时候没有任何的限制,总共有4种染色的方法;对B 进行染色的时候由于不能和A同色,所以有3种染色的方法;对D进行染10色的时候由于不能和A,B同色,所以只剩2种染色的方法;对E进行染色时不能和B,D同色,所以有2种染色的方法;对C进行染色时不能和B,E 同色,所以有2种染色方法;对G进行染色时不能和D,E同色,所以有2种染色的方法;对F进行染色时不能和D,G同色,所以有2种染色的方法;对H进行染色时不能和E,G同色,所以有2种染色的方法.综合上面的八个步骤,利用乘法原理,共有4×3×2×2×2×2×2×2=768种着色的方法.「评议」本题染色的步骤还有很多种,大家考虑一下按照A,B,C,D,E,F,G,H的步骤进行染色是否可以?可能有同学发现按照A,B,C,D,E,F,G,H的步骤进行染色会算出另外一个答案4×3×3×2×1×3×1×2=432.当然,正确答案只能有一个,那么这种分步方法到底错在哪里呢?这里要提到利用乘法原理一条重要的原则:“前不影响后”.无论前面步骤采取哪种染色方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.而按照A,B,C,D,E,F,G,H的步骤来染色就违反了这个原则.请看下面图中的例子:在上面的例子中,左图前4步采取的染色方法是红、黄、绿、蓝,第5步对E进行染色时只有1种方法;右图前4步采取的染色方法是红、黄、绿、绿,这样第5步对E进行染色时有2种方法.于是第5个步骤对E进行11染色无法确定到底有几种染色的方法,前4步不同的染色方案影响到了第5步的方法数,既然不能确定是1种还是2种,乘法原理自然也就无法应用了.例7.如果一个数与11作竖式乘法的过程中不需要进位,那么就称这个数是“好数”.例如,11、131和142就都是“好数”,而65、78和75都不是“好数”.那么小于300的三位数中共有________个“好数”.[答疑编号5721040207]【解答】首先看首位数字是1的“好数”,其十位数字不能是9.在十位数字是8的“好数”中,只有180和181;在十位数字是7的“好数”中,只有170,171和172这3个……在十位数字是0的“好数”中,有100,101……109这10个.因此首位数字是1的“好数”有2+3+……+10=54个.同样方法,可以求出首位数字是2的“好数”有3+4+……+10=54个.因此,小于300的“好数”有54+52=106个.12。