第5章热分析-2 DSC
- 格式:ppt
- 大小:3.41 MB
- 文档页数:2
化学化工学院材料化学专业实验报告实验实验名称:聚合物的热分析------差示扫描量热法(DSC)年级:2011级材料化学日期:2013-10-17 姓名:学号:同组人:一、预习部分1、差热分析差热分析(Differential Thermal Analysis—DTA)法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。
该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。
广泛应用于无机、有机、特别是高分子聚合物、玻璃钢等领域。
差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。
峰的最高温度、形状、面积和峰值大小都会发生一定变化。
其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。
虽然过去许多人在利用DTA进行量热定量研究方面做过许多努力,但均需借助复杂的热传导模型进行繁杂的计算,而且由于引入的假设条件往往与实际存在差别而使得精度不高,差示扫描热法(简称DSC)就是为克服DTA在定量测量方面的不足而发展起来的一种新技术。
20世纪60年代,差示扫描量热法(Differential Scanning Calorimetry,DSC)被提出,其特点是使用温度范围比较宽,分辨能力和灵敏度高,根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。
差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。
差示扫描量热法有补偿式和热流式两种。
在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。
曲线的纵轴为单位时间所加热量,横轴为温度或时间。
曲线的面积正比于热焓的变化。
DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好。
热分析技术简介——DSC摘要:差示扫描量热分析仪因其使用方便,精确度高等特点,多年来备受青睐。
本文介绍了差示扫描量热法(DSC)的发展历史、现状及工作原理,并且简要地介绍了DSC在天然气水合物、食品高聚物测定和水分含量测定、油脂加工过程及产品、沥青性能研究及改性沥青的性能评定中的应用。
关键词:DSC 技术发展现状应用一、差示扫描量热法( DSC ) 简史18世纪出现了温度计和温标。
19世纪,热力学原理阐明了温度与热量即热焓之间的区别后,热量可被测量。
1887年,L e Chatel ier进行了被认为的首次真正的热分析实验:将一个热电偶放入黏土样品并在炉中升温,用镜式电流计在感光板上记录升温曲线。
1899年,Robert s Austen将两个不同的热电偶相反连接显著提高了这种测量的灵敏度,可测量样品与惰性参比物之间的温差。
1915年,Honda首次提出连续测量试样质量变化的热重分析。
1955年,Boersm a设想在坩埚外放置热敏电阻,发明现今的D SC。
1964年,Watson等首次发表了功率补偿DSC的新技术。
差示扫描量热法是六十年代以后研制出的一种热分析方法。
它被定义为:在温度程序控制下,测量试量相对于参比物的热流速随温度变化的一种技术,简称DSC(Differ entia l Scanni ng Calovi metry)。
根据测量方法的不同,又分为两种类型:功率补偿型D SC和热流型DSC。
其主要特点是使用的温度范围比较宽、分辨能力高和灵敏度高。
由于它们能定量地测定各种热力学参数(如热焓、熵和比热等)和动力学参数,所以在应用科学和理论研究中获得广泛的应用。
二、差示扫描量热法的现状2.1差示扫描量热法(DSC)的原理差示扫描量热法(DSC)装置是准确测量转变温度,转变焓的一种精密仪器,它的主要原理是:将试样和参比物置于相同热条件下,在程序升降温过程中,始终保持样品和参比物的温度相同。
dsc热分析实验报告一、实验目的DSC(差示扫描量热法)是一种常用的热分析技术,本次实验的主要目的是通过 DSC 热分析方法研究样品在加热或冷却过程中的热性能变化,包括但不限于相变温度、热焓、比热容等参数的测定,为材料的研发、质量控制以及工艺优化提供重要的参考依据。
二、实验原理DSC 测量的是样品与参比物之间的热流差随温度或时间的变化关系。
当样品发生物理或化学变化(如相变、分解、氧化等)时,会吸收或释放热量,导致样品与参比物之间产生温度差,通过热传感器检测到这种温差,并转化为热流信号记录下来。
三、实验仪器与材料1、仪器:仪器型号差示扫描量热仪2、材料:样品名称,纯度具体纯度四、实验步骤1、样品制备将待测样品研磨成细小粉末,以确保样品受热均匀。
准确称取一定质量的样品(通常在 5 10mg 之间),放入特制的铝坩埚中。
2、仪器调试打开 DSC 仪器,设置实验参数,如升温速率(通常为 10 20℃/min)、温度范围(根据样品性质和实验目的确定)、气氛(如氮气、空气等)。
进行空白实验,即使用空坩埚作为样品和参比物,以扣除仪器的基线漂移和热阻等因素的影响。
3、实验测量将装有样品的坩埚和作为参比物的空坩埚分别放入仪器的样品池和参比池中。
启动实验程序,仪器按照设定的参数进行升温或降温,并实时记录热流信号。
4、数据处理实验结束后,导出实验数据,并使用相应的软件进行处理和分析。
确定样品的相变温度、热焓等关键参数,绘制 DSC 曲线。
五、实验结果与分析(一)DSC 曲线分析得到的 DSC 曲线如下图所示:此处插入 DSC 曲线图片从曲线中可以清晰地看到以下几个特征:1、在温度为具体温度 1时,出现了一个明显的吸热峰,对应着样品的相变类型 1过程,通过计算得到该相变的热焓为具体热焓值 1。
2、在温度升高到具体温度 2时,又出现了一个放热峰,这可能是由于样品发生了化学反应或相变类型 2,其热焓值为具体热焓值 2。
(二)相变温度的确定通过对 DSC 曲线的分析,采用切线法确定相变的起始温度和峰值温度。
2. DSC(Differential Scanning Calorimeter)
2.1 Tg of Rubber
在DSC中,重点介绍如何测定橡胶的玻璃化转变温度。
如果在高聚物的混合物中,各个组分的高温分解温度相近,那么用TGA进行分析时,就只能得到总的聚合物的含量而不能将各个组分区分开了。
但是,借助DSC,就可以根据它们玻璃化转变的不同而对各组分加以区分。
玻璃化转变温度Tg表征了聚合物的类型,而玻璃化转变台阶的高度△Cp则反映了聚合物的含量。
大部分非晶型高聚物有着各自不同的Tg,所以可以通过DSC测定高聚物的Tg来对其进行定性分析。
部分常用橡胶的Tg值如表所示:
*这里需要说明的是由于不同的生产过程,相同橡胶的结构会存在一定差异,故而不同文献给出的测定高聚物的Tg也会存在一定的差异。
用DSC 法可测定高聚物交联,氧化,环化等反应活化能,它是利用不同升温速率下测到的反应峰温,按照一定关系式得到的反应活化能(KJ/mol・K);这就是上面提到的利用DSC对化学反应速度进行测试的原理。
2.2 Calibration Standards
2.3 测试橡胶样品时仪器设置条件:
A. Equilibrate at -140.00℃
B. Ramp 10.00℃/min to 60℃
C. Pan type:Aluminum
D. Mass flow control settings:Helium;20ml/min
2.4 其它测试时仪器设置条件:
Purity Measument/Melting Point/Wax定量分析时依据材料的特征峰温度而对仪器条件进行不同的设置,一般设置为30-10-20/50ml/min。