教案19描述性统计分析
- 格式:docx
- 大小:19.76 KB
- 文档页数:2
关于描述性统计分析作者:记忆de&#…文章来源:csdn blog 点击数:156 更新时间:2007-2-12在数据分析的时候,一般首先要对数据进行描述性统计分析(Descriptive Anal ysis),以发现其内在的规律,再选择进一步分析的方法。
描述性统计分析要对调查总体所有变量的有关数据做统计性描述,主要包括数据的频数分析、数据的集中趋势分析、数据离散程度分析、数据的分布、以及一些基本的统计图形。
(1)数据的频数分析:在数据的预处理部分,我们曾经提到利用频数分析和交叉频数分析来检验异常值。
此外,频数分析也可以发现一些统计规律。
比如说,收入低的被调查者用户满意度比收入高的被调查者高,或者女性的用户满意度比男性低等。
不过这些规律只是表面的特征,在后面的分析中还要经过检验。
(2)数据的集中趋势分析:数据的集中趋势分析是用来反映数据的一般水平,常用的指标有平均值、中位数和众数等。
各指标的具体意义如下:平均值:是衡量数据的中心位置的重要指标,反映了一些数据必然性的特点,包括算术平均值、加权算术平均值、调和平均值和几何平均值。
中位数:是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数。
众数:是指在数据中发生频率最高的数据值。
如果各个数据之间的差异程度较小,用平均值就有较好的代表性;而如果数据之间的差异程度较大,特别是有个别的极端值的情况,用中位数或众数有较好的代表性。
(3)数据的离散程度分析:数据的离散程度分析主要是用来反映数据之间的差异程度,常用的指标有方差和标准差。
方差是标准差的平方,根据不同的数据类型有不同的计算方法。
(4)数据的分布:在统计分析中,通常要假设样本的分布属于正态分布,因此需要用偏度和峰度两个指标来检查样本是否符合正态分布。
偏度衡量的是样本分布的偏斜方向和程度;而峰度衡量的是样本分布曲线的尖峰程度。
一般情况下,如果样本的偏度接近于0,而峰度接近于3,就可以判断总体的分布接近于正态分布。
一、什么是描述统计分析(Descriptive Analysis)概念:使用几个关键数据来描述整体的情况描述性数据分析属于比较初级的数据分析,常见的分析方法包括对比分析法、平均分析法、交叉分析法等。
描述性统计分析要对调查总体所有变量的有关数据做统计性描述,主要包括数据的频数分析、数据的集中趋势分析、数据离散程度分析、数据的分布、以及一些基本的统计图形。
Excel里的分析工具库里的数据分析可以实现描述性统计分析的功能。
描述性统计分析即是对数据源最初的认知,包括数据的集中趋势、分散程度以及频数分布等,了解了这些后才能去做进一步的分析。
二、常用指标均值、中位数、众数体现了数据的集中趋势。
极差、方差、标准差体现了数据的离散程度。
偏度、峰度体现了数据的分布形状。
1、均值。
均值容易受极值的影响,当数据集中出现极值时,所得到的的均值结果将会出现较大的偏差。
2、中位数:数据按照从小到大的顺序排列时,最中间的数据即为中位数。
当数据个数为奇数时,中位数即最中间的数,如果有N个数,则中间数的位置为(N+1)/2;当数据个数为偶数时,中位数为中间两个数的平均值,中间位置的算法是(N+1)/2。
中位数不受极值影响,因此对极值缺乏敏感性。
3、众数:数据中出现次数最多的数字,即频数最大的数值。
众数可能不止一个,众数不能能用于数值型数据,还可用于非数值型数据,不受极值影响。
4、极差:=最大值-最小值,是描述数据分散程度的量,极差描述了数据的范围,但无法描述其分布状态。
且对异常值敏感,异常值的出现使得数据集的极差有很强的误导性。
5、四分位数:数据从小到大排列并分成四等份,处于三个分割点位置的数值,即为四分位数,四分位数分为上四分位数(数据从小到大排列排在第75%的数字,即最大的四分位数)、下四分位数(数据从小到大排列排在第25%位置的数字,即最小的四分位数)、中间的四分位数即为中位数。
四分位数可以很容易地识别异常值。
箱线图就是根据四分位数做的图。
统计学中的描述性统计分析方法统计学是一门研究数据收集、整理、分析和解读的学科,它可以帮助我们更好地理解和解释数据。
描述性统计是统计学中的一个重要分支,旨在总结和揭示数据的基本特征。
在本文中,我们将介绍统计学中常用的描述性统计分析方法。
一、数据收集与整理描述性统计分析的第一步是数据收集,通过合适的调查问卷、实验或观察,我们可以获取所需的数据。
在数据收集完成后,我们需要对数据进行整理和准备,以便后续的分析。
二、测量指标在描述性统计中,我们常用各种测量指标来描绘数据的中心趋势、离散程度以及数据之间的关联性。
1. 中心趋势测量中心趋势测量用来反映数据集中的一个“典型值”。
(1)平均数(Mean):平均数是数据集中所有观测值的总和除以观测值的数量。
它可以用来衡量数据的总体情况。
(2)中位数(Median):中位数是将数据集按大小顺序排列后的中间值。
它可以忽略异常值的影响,更好地反映数据的中心位置。
(3)众数(Mode):众数是数据集中出现频率最高的值。
它在描述分类数据时特别有用。
2. 离散程度测量离散程度测量用来反映数据集的分散程度。
(1)标准差(Standard Deviation):标准差是数据集各个观测值与平均数之间的偏离度的平均值。
它反映了数据的总体分散程度。
(2)方差(Variance):方差是各个观测值与平均数之间偏离度的平方的平均值。
它是标准差的平方。
(3)极差(Range):极差是数据集中最大值与最小值之间的差值。
它可以用来衡量数据的全局范围。
三、数据可视化数据可视化是描述性统计分析中非常重要的一部分。
通过图表和图形的方式展示数据,可以使数据的特征更加直观地呈现出来。
1. 条形图(Bar Chart):条形图用于对比不同类别或组之间的数据差异。
2. 折线图(Line Chart):折线图可以展示变量随时间的变化趋势。
3. 饼图(Pie Chart):饼图适用于展示分类数据的比例关系。
4. 散点图(Scatterplot):散点图可以直观地显示两个变量之间的关系。
《统计学》案例——描述性分析大学毕业生的表现1、问题的提出某大学是一所综合性大学,有三个附属学院,分别是商贸学院、生物学院和医学院。
近期高校管理层为了了解社会对本校学生的满意程度,以此促进本校教学改革,其中进行了一项对本校的毕业生调查,随机抽取了48名毕业生组成样本,要求他们所在的工作单位对其工作表现、专业水平和外语水平三个方面的表现进行评分,评分由0到10,分值越大表明满意程度越高。
2、数据的收集表:48名毕业生工作表现、专业水平和外语水平评分资料表表:三个学院的48名毕业生的工作表现、专业水平和外语水平评分汇总表校管理层希望在调查分析报告中阐述以下几个问题:(1)用人单位对该校毕业生哪个方面最为满意? 哪个方面最不满意?应在哪些方面做出教学改革?(2)用人单位对该校毕业生哪个方面的满意程度差别最大?什么原因产生?(3)社会对三个学院的毕业生的满意程度是否一致?能否提出提高社会对该校毕业生的满意程度的建议?2、方法的确定将数据输入计算机,我们用Excel中的数据分析功能实现对数据的描述。
输出结果如下图表。
表:48名毕业生的评分统计汇总表表7 三个学院的48名毕业生的评分统计汇总表图24、结果分析从图可看出,随机抽取48名毕业生是由附属商贸学院、生物学院和医学院毕业生组成,各学院毕业生人数分别是17人、17人和14人,分别占样本的35.4%、35.4%和29.2%,可见各学院抽取毕业生人数大致相同,样本具有一定代表性。
从表可看出:①用人单位对某大学毕业生的工作表现评估分最高,而外语水平评估分最低。
工作表现平均评估分为8.04分,外语水平平均评估分为5.08分,两者平均评估分相差2.96分,由此可见用人单位最满意该校毕业生的工作表现,最不满意毕业生的外语水平,这反映出某大学注意培养学生社会实践能力,也反映出毕业生适应能力较强。
从用人单位对毕业生外语水平评分普遍偏低看,反映出该校的外语教学方面存在严重问题,今后需要在外语教学方面加大力度全面改革。
第六章 描述性统计分析-- Descriptive Statistics 菜单详解6.1 Frequencies 过程 6.1.1 界面说明 6.1.2 分析实例 6.1.3 结果解释 6.2 Descriptives 过程 6.2.1 界面说明 6.2.2 结果解释 6.3 Explore 过程 6.3.1 界面说明 6.3.2 结果解释6.4 Crosstabs 过程 6.4.1 界面说明 6.4.2 分析实例 6.4.3 结果解释描述性统计分析是统计分析的第一步,做好这第一步是下面进行正确统计推断的先决条件。
先决条件。
SPSS SPSS 的许多模块均可完成描述性分析,但专门为该目的而设计的几个模块则集中在Descriptive Statistics 菜单中,最常用的是列在最前面的四个过程:Frequencies 过程的特色是产生频数表;Descriptives 过程则进行一般性的统计描述;性的统计描述;Explore Explore 过程用于对数据概况不清时的探索性分析;过程用于对数据概况不清时的探索性分析;Crosstabs Crosstabs过程则完成计数资料和等级资料的统计描述和一般的统计检验,我们常用的X 2检验也在其中完成。
检验也在其中完成。
§6.1 Frequencies 过程频数分布表是描述性统计中最常用的方法之一,频数分布表是描述性统计中最常用的方法之一,Frequencies Frequencies 过程就是专门为产生频数表而设计的。
它不仅可以产生详细的频数表,它不仅可以产生详细的频数表,还可以按要求给出某百分位还可以按要求给出某百分位点的数值,以及常用的条图,圆图等统计图。
点的数值,以及常用的条图,圆图等统计图。
和国内常用的频数表不同,几乎所有统计软件给出的均是详细频数表,即并不按某种要求确定组段数和组距,而是按照数值精确列表。
如果想用Frequencies 过程得到我们所熟悉的频数表,请先用第二章学过的Recode 过程产生一个新变量来代表所需的各组段。
描述性统计分析结果举例解读描述性统计分析(DescriptiveStatistics)是统计学中最常用的研究方法之一,也是研究工作中最容易实施的研究方法。
描述性统计分析能够帮助研究者了解一个研究群体人口结构特征、行为特征以及结果特征等内容,以便更好地指导实践并采取有效的行动,以提升整个研究的质量。
本文通过描述性统计分析的例子,来进行解读,以期对描述性统计分析有更深入的认识。
一、定义描述性统计分析(Descriptive Statistics)指的是一种把一组数据的摘要用一种形式表示出来的统计方法,它可以帮助人们了解一组数据的状况。
描述性统计分析可以把一些复杂的数据转换成简单易懂的形式来表示,让我们可以快速掌握一组数据的特征和趋势,比如最大值、最小值、中位数、均值、众数、众数频数等。
二、描述性统计分析结果解读1、求出数据组的最大值、最小值、均值最大值、最小值可以反映数据组中数据点的范围,而均值反映了数据组中大部分数据点的分布情况。
如果我们发现均值大于最大值或小于最小值,则可以考虑数据组中存在异常值,从而对数据进行更详细地分析。
2、求出数据组的众数和众数频数众数(Mode)是指一组数据中出现次数最多的值,而众数频数(Mode Frequency)是指某个众数出现的次数。
出现次数最多的众数可以反映数据点的普遍情况,而众数频数可以反映出现次数最多的众数出现的程度。
3、求出数据组的中位数中位数(Median)是指一组数据中点两边的数据点刚好相等的数据点,其用于表示数据分布的中间状态,中位数的值代表的是这一组数据的中心值。
如果数据分布有较大的偏差,则中位数能够更好地表征数据的分布趋势。
三、结论描述性统计分析能够帮助我们有效的描述一组数据的特征。
它可以快速给出该组数据的最大值、最小值、均值、众数、众数频数和中位数等摘要信息。
这些信息能够帮助我们更好地分析和理解数据,从而有效地指导实践并采取有效的行动。
统计学教案统计数据的描述与分析主题:统计学教案——统计数据的描述与分析引言:统计学是一门研究如何收集、分析和解释数据的学科。
在现代社会中,统计学在各个领域都起着重要作用,帮助我们了解和解释各种现象。
本教案将介绍统计学中数据的描述和分析方法,以及如何运用这些方法进行实际问题的解决。
一、数据的描述在统计学中,我们经常需要描述数据的特征,以便更好地理解和分析数据。
以下是几种常用的描述统计量:1. 平均数:平均数是数据的总和除以观测次数的结果。
它是最直观也是最常用的描述统计量。
2. 中位数:中位数是将数据按照大小顺序排列后,位于中间位置的数值。
3. 众数:众数是数据中出现次数最多的数值。
4. 极差:极差是数据最大值与最小值之间的差异。
5. 方差:方差表示数据的离散程度,是各个观测值与平均数之差的平方的平均值。
6. 标准差:标准差是方差的平方根,用于度量数据分布的广度。
二、数据的分析数据分析是统计学的核心内容,通过分析数据可以得出结论和推断。
以下是几种常用的数据分析方法:1. 频率分析:频率分析是按照某个变量的取值进行分类,然后统计每个分类的频数。
2. 相关分析:相关分析用于判断两个变量之间的关系和相关性。
常用的相关分析方法有皮尔逊相关系数和斯皮尔曼相关系数。
3. 回归分析:回归分析用于研究一个或多个自变量对因变量的影响程度和方向。
4. 置信区间:置信区间是用来估计未知参数真值区间的统计量。
通过计算得出的置信区间可以帮助我们对未知参数进行推断。
小结:统计学作为一门重要的学科,提供了丰富的工具和方法来描述和分析数据。
数据的描述能够帮助我们理解数据的特征,数据的分析则能够帮助我们得出结论和推断。
通过学习统计学,我们可以更好地应用这些知识解决实际问题,提高数据分析的准确性和效率。
参考文献:1. 劳伦斯·S.沃尔斯(2013),《统计学导论》。
2. 陈忠进,王洪敏(2017),《应用统计学》。
注:本教案属于纯粹的学术内容,与任何政治、色情等不相关。
描述性统计分析方法描述性统计分析是指对收集到的样本数据进行整理、分析和总结的过程。
它旨在通过使用统计指标和图表来描述数据的特征和分布,以便更好地理解数据,发现其中的规律和趋势。
在进行描述性统计分析时,常用的方法包括中心趋势测度、离散程度测度、分布形态描述和相关性分析等。
一、中心趋势测度中心趋势测度是用来表示数据集中趋向于某个中心的位置。
常用的中心趋势测度包括均值、中位数和众数等。
1. 均值:均值是以所有数据的数值和除以数据个数的统计量,用来表示平均水平。
均值对异常值敏感,容易受到极端值的影响。
2. 中位数:中位数是将数据按照顺序排列后,位于中间位置的数值。
中位数不会受到极端值的影响,更能反映数据的普遍情况。
3. 众数:众数是一组数据中出现频率最高的数值,可用于描述具有离散分布的数据。
二、离散程度测度离散程度测度是用来表示数据集合中数据分散程度的方法。
常用的离散程度测度有范围、方差和标准差等。
1. 范围:范围是最大值和最小值的差值,可用来衡量数据的整体变化幅度。
范围对异常值敏感,易受到极端值的影响。
2. 方差:方差是各数据与均值差的平方和的平均数,用来描述数据的平均离散程度。
方差较大时,表示数据的离散程度较高。
3. 标准差:标准差是方差的平方根,用于度量数据相对于均值的离散程度。
标准差较大时,表明数据分散程度大。
三、分布形态描述分布形态描述是对数据分布形态特征进行描述的方法。
常用的分布形态描述包括偏度和峰度等。
1. 偏度:偏度描述了数据分布曲线相对于均值偏离的大小和方向。
偏度为正表示数据分布朝右偏,为负表示数据分布朝左偏,为0表示数据均匀分布。
2. 峰度:峰度描述了数据分布曲线的陡峭程度,反映了数据分布的尖峰与平顶程度。
峰度大于0表示数据分布曲线相对于正态分布更陡峭,小于0表示数据分布曲线相对于正态分布更平顶。
四、相关性分析相关性分析用来研究两个变量之间的相关关系。
常用的相关性分析方法有协方差和相关系数。
描述性统计分析描述性统计分析是一种通过对数据进行收集、整理、汇总、展示和解释,来揭示数据特征、分布和趋势的方法。
它是统计学中最基础的分析方法之一,广泛应用于各个领域的数据研究与决策中。
本文将简要介绍描述性统计分析的基本概念、常用方法和应用场景。
一、描述性统计分析的基本概念描述性统计分析是通过对数据的常见统计指标进行计算和分析,来描述数据的集中趋势、离散程度和分布情况。
常见的统计指标包括:均值、中位数、众数、极差、标准差、方差等。
这些指标可以帮助我们更好地理解和概括数据的特征,从而进行合理的数据解读和决策。
二、描述性统计分析的常用方法1. 数据收集:首先需要确定所需数据的来源和采集方法,可以通过问卷调查、实地观察、抽样调查等方式来收集相关数据。
2. 数据整理和清洗:对收集到的数据进行整理和清洗,包括缺失值的处理、异常值的剔除,确保数据的准确和完整。
3. 数据汇总和展示:将数据进行汇总,并通过图表等形式进行可视化展示,以便更直观地观察数据的特征和趋势。
4. 统计指标计算:通过计算均值、中位数、众数、标准差等统计指标,揭示数据的集中趋势和离散程度。
5. 数据解释和分析:根据计算得到的统计指标,对数据的特征和分布进行解释和分析,从中提取有价值的信息。
三、描述性统计分析的应用场景1. 社会科学研究:在社会学、心理学、教育学等领域的研究中,描述性统计分析可以用来描绘人群的特征和行为规律,为研究提供数据支持。
2. 经济与金融分析:在经济学和金融学研究中,通过对经济指标和市场数据进行描述性统计分析,可以了解经济形势和市场趋势,从而指导决策。
3. 市场调研与营销:在市场调研和营销策划中,通过对受众、消费者数据进行描述性统计分析,可以更好地了解目标市场和消费群体的需求和偏好。
4. 医学与健康研究:在医学和健康研究中,通过对患者数据和健康指标进行描述性统计分析,可以了解疾病的发病率、死亡率等情况,为医疗决策提供依据。
描述性统计分析怎么写描述性统计分析是指通过定量和定性的方式对数据进行整理、总结和展示,以揭示数据的特征和规律。
它是统计学中最基础的分析方法之一,可以帮助我们了解数据的分布、趋势和变异情况。
本文将介绍描述性统计分析的基本步骤和具体方法。
1. 数据的整理和准备在进行描述性统计分析前,我们需要对数据进行整理和准备。
首先,将数据导入到统计软件或编程环境中,确保数据的格式正确并且没有缺失值。
其次,对数据的变量进行归类、命名和编码,以方便后续分析。
另外,还可以进行数据的筛选和清洗,去除异常值和不合理的数据。
2. 描述性统计指标的计算描述性统计分析的核心是计算各种统计指标,用以描述和概括数据的特征。
常见的描述性统计指标包括:•中心性指标:用于反映数据的集中趋势,包括均值、中位数和众数。
均值是所有观测值的平均数,中位数是将数据排序后位于中间位置的值,众数是出现频率最高的值。
•离散程度指标:用于描述数据的离散程度,包括方差、标准差和极差。
方差是观测值与均值之间的偏离程度的平方的平均值,标准差是方差的平方根,极差是最大观测值与最小观测值之间的差。
•偏度和峰度指标:用于描述数据的分布形态。
偏度度量了数据分布的不对称性,正偏表示分布右偏,负偏表示分布左偏;峰度度量了数据分布的尖锐程度,正峰表示分布尖锐,负峰表示分布平缓。
3. 描述性统计图的绘制除了计算各种统计指标外,描绘描述性统计图也是一种直观展示数据特征的方法。
常见的描述性统计图包括直方图、箱线图和散点图。
•直方图:用于展示数据的分布情况。
将数据按照一定的区间划分,统计每个区间内的观测值个数或占比,并绘制在纵轴上,从而呈现数据的分布情况。
•箱线图:用于展示数据的中位数、四分位数以及异常值等信息。
图中的箱体表示了数据的四分位数范围,箱体内部的线表示中位数,箱体外部的点表示异常值。
•散点图:用于展示两个变量之间的关系。
将两个变量的取值作为坐标轴,绘制出所有观测值的散点,可以通过观察散点的分布来了解两个变量之间的相关性。
描述性统计分析统计学是一门关注收集、整理、分析和解释数据的学科。
在进行数据分析时,描述性统计是一个重要的环节。
描述性统计分析旨在通过对数据的整理和总结,揭示数据的基本特征和规律,帮助我们更好地理解和解释数据。
一、数据收集与整理描述性统计分析的第一步是数据的收集与整理。
数据可以从多种渠道获得,比如调查问卷、观测记录、实验数据等。
对于收集到的数据,需要进行数据清洗和整理,确保数据的准确性和可靠性。
清洗和整理数据的过程包括剔除异常值、处理缺失值、标准化数据等。
二、数据集中趋势的测量数据集中趋势是指描述数据集中心位置的统计量,常用的统计量有均值、中位数和众数。
1. 均值(mean)是数据集中所有数值的平均值,用于描述数据的总体水平。
2. 中位数(median)是将数据集按大小排序后处于中间位置的数值,用于描述数据的中间位置。
3. 众数(mode)是数据集中出现频次最高的数值,用于描述数据的集中趋势。
通过计算均值、中位数和众数,我们可以得到数据的集中趋势,进一步了解数据的整体分布情况。
三、数据的变异程度测量数据的变异程度是指数据分布的离散程度。
常用的统计量有范围、方差和标准差。
1. 范围(range)是描述数据集最大值和最小值之间差异的统计量,用于度量数据的极值情况。
2. 方差(variance)是描述数据与均值之间差异的统计量,用于度量数据的分散程度。
3. 标准差(standard deviation)是方差的算术平方根,用于度量数据的离散程度。
通过计算范围、方差和标准差,我们可以了解数据的变异程度,从而判断数据的稳定性和可靠性。
四、数据的分布特征描述数据的分布特征描述主要包括对称性、峰度和偏度等。
1. 对称性是指数据分布在均值两侧是否对称,常用的描述指标是偏离标准差。
2. 峰度是描述数据分布的峰态的指标,代表数据分布的尖锐程度。
3. 偏度是描述数据分布的不对称性的指标,代表数据分布的偏斜程度。
通过分析数据的对称性、峰度和偏度,我们可以了解数据分布的形态特征,进一步推断数据的性质和规律。
课时:1课时教学目标:1. 让学生了解描述性分析的基本概念、方法和步骤。
2. 培养学生运用描述性分析解决实际问题的能力。
3. 培养学生团队合作、沟通和表达的能力。
教学重点:1. 描述性分析的基本概念和方法。
2. 描述性分析步骤的应用。
教学难点:1. 描述性分析在解决问题中的应用。
2. 学生在团队合作中的沟通与表达。
教学准备:1. 教师准备:相关教学课件、案例、数据等。
2. 学生准备:分组,每组准备一份案例或数据。
教学过程:一、导入1. 教师简要介绍描述性分析的概念、方法和步骤。
2. 学生分享对描述性分析的理解。
二、基本概念和方法1. 教师讲解描述性分析的基本概念,如:频数分布、集中趋势、离散程度等。
2. 教师举例说明描述性分析方法,如:计算平均数、中位数、众数、标准差等。
三、案例分析1. 学生分组,每组选择一个案例或数据。
2. 学生根据案例或数据,运用描述性分析方法进行分析。
3. 学生汇报分析结果,教师点评。
四、分组讨论1. 学生分组讨论,探讨如何运用描述性分析解决实际问题。
2. 每组派代表分享讨论成果,教师点评。
五、总结与反思1. 教师总结描述性分析的基本概念、方法和步骤。
2. 学生分享学习心得,教师点评。
教学评价:1. 学生对描述性分析的基本概念、方法和步骤的掌握程度。
2. 学生运用描述性分析解决实际问题的能力。
3. 学生在团队合作中的沟通与表达能力。
教学延伸:1. 鼓励学生在课后查阅相关资料,深入了解描述性分析的应用。
2. 组织学生参加描述性分析相关的实践活动,提高实际操作能力。
教学反思:本节课通过讲解描述性分析的基本概念、方法和步骤,让学生了解描述性分析在解决问题中的应用。
在教学过程中,注重培养学生的团队合作、沟通和表达能力。
在今后的教学中,我将进一步优化教学方法和手段,提高学生的实际操作能力。
描述性统计分析统计学是研究现象的数量关系及其变异程度,以便加以利用,这种方法广泛应用于社会学、心理学、医学、环境科学等诸多领域。
其中,描述性统计分析是一个重要的分析工具,它是指对数据进行整理、概括和分析以便更好地理解数据的分布、形态和特征的方法。
下面,我们将对描述性统计分析做一介绍。
一、描述性统计分析的概念描述性统计分析是指通过图表和数字,对数据进行总结、描述、概括和分析的方法。
在描述性统计分析中,我们对数据进行可视化处理,将数据用图表的形式呈现,可以更直观地理解数据的分布、形态和特征。
同时,在描述性统计分析中,我们还可以计算出各种统计指标,如平均数、中位数、众数、方差、标准差等,以便更深入地分析数据的特征和分布情况。
二、描述性统计分析的过程在进行描述性统计分析时,一般分为以下几个步骤:1、整理数据首先,我们需要整理数据,将数据分类、排序、分组等,以便更好地进行统计和分析。
2、计算频数和频率计算频数和频率可以帮助我们了解数据的分布情况,对数据进行表格或图表化处理也可以更加直观地看出数据的分布情况。
3、计算中心趋势计算中心趋势是指通过数据的平均数、中位数、众数等指标来衡量数据中心的集中程度,这可以帮助我们了解数据的集中趋势和整体情况。
4、计算离散程度计算离散程度是指通过数据的范围、方差、标准差等指标来测量数据的分散程度,这可以帮助我们了解数据的分散程度和变异情况。
5、绘制图表数据可视化处理是描述性统计分析的重要组成部分,通过绘制直方图、折线图、散点图等图表,可以更加直观地了解数据的分布情况。
三、描述性统计分析的应用描述性统计分析在各行各业中都有着广泛的应用。
在企业中,描述性统计分析可以帮助企业了解市场的需求和客户的反馈,从而更好地制定营销策略和产品决策。
在金融领域,描述性统计分析可以帮助银行和保险公司进行风险评估,更好地控制风险。
在医学领域,描述性统计分析可以帮助医生了解疾病的发病情况和流行病学特征,从而更好地制定治疗方案和预防措施。
描述性统计分析范文描述性统计分析指的是对数据进行统计和分析的过程,目的是从数据中获取有关变量的相关信息,例如中心趋势、离散程度和分布形状等。
它可以帮助我们了解数据的基本特征,为后续分析和决策提供依据。
描述性统计分析主要包括测量数据集的中心趋势、测量数据集的离散程度、测量数据集的分布形状等内容。
首先,测量数据集的中心趋势是描述数据集集中程度的一种方式。
常见的测量数据集中心趋势的统计量包括平均数、中位数和众数等。
平均数是将所有数据求和后再除以数据的个数得到的结果,它可以准确地反映数据的集中情况。
中位数是将数据按照大小排列后位于中间的数值,它能够有效地抵抗极端值的影响。
众数是数据中出现次数最多的数值,它可以描述数据的分布特征。
其次,测量数据集的离散程度是描述数据分散程度的一种方式。
常见的测量数据集离散程度的统计量包括方差、标准差和范围等。
方差是各数据与平均数的差的平方和的平均值,它可以反映数据的离散程度。
标准差是方差的平方根,它具有和数据单位相同的度量单位,可以直观地评估数据的离散程度。
范围是数据最大值和最小值的差,它描述了数据的取值范围。
此外,还可以通过测量数据集的分布形状来描述数据的分布特征。
常见的测量数据集分布形状的统计量包括偏度和峰度等。
偏度用于描述数据分布的对称性,其值大于零表示数据分布偏右,小于零表示数据分布偏左,等于零表示数据分布对称。
峰度用于描述数据分布的尖锐程度,其值大于零表示数据分布尖锐,小于零表示数据分布平坦,等于零表示数据分布正常。
在进行描述性统计分析时,一般会使用图表和统计指标相结合的方式来呈现数据的基本特征。
常见的图表包括柱状图、折线图、饼图、箱线图和散点图等,它们可以直观地展示数据的分布情况和变化趋势。
统计指标则提供了对数据进行定量分析的基础,可以从多个角度对数据进行全面的描述。
总而言之,描述性统计分析是对数据进行统计和分析的过程,通过测量数据集的中心趋势、离散程度和分布形状等统计指标,可以全面地描述和分析数据的基本特征。
描述性统计分析报告
描述性统计分析报告是通过对数据进行统计和分析,对数据的基本特征进行描述和总
结的报告。
它通常包括以下内容:
1. 数据概述:对数据的整体情况进行概述,包括数据的来源、样本数量、期间、覆盖
范围等。
2. 数据质量检查:对数据的质量进行检查,包括检查缺失值、异常值、重复值等问题,并进行相应的处理。
3. 变量描述性统计分析:对各个变量的基本统计量进行描述,包括平均值、中位数、
最大值、最小值、标准差等。
还可以通过绘制频率分布表、直方图、箱线图等图表来
展现变量的分布情况。
4. 变量之间的关系分析:对不同变量之间的相关性进行分析,可以使用相关系数、散
点图、热力图等方法来呈现变量之间的关系。
5. 假设检验:对一些特定的假设进行检验,比如两个样本是否具有显著差异、变量之
间是否存在相关性等。
6. 结论和建议:根据对数据的描述性统计分析结果,进行总结和建议,提出对问题或
现象的解释和改进措施。
描述性统计分析报告旨在提供对数据的基本特征的全面总结和了解,为进一步分析和
决策提供参考依据。
一、教学目标1. 让学生了解描述性分析的基本概念、方法和步骤。
2. 培养学生运用描述性分析解决实际问题的能力。
3. 培养学生的团队合作精神和沟通能力。
二、教学重点与难点1. 教学重点:描述性分析的概念、方法和步骤。
2. 教学难点:如何运用描述性分析解决实际问题。
三、教学过程1. 导入新课(1)提出问题:什么是描述性分析?它在实际生活中有哪些应用?(2)引导学生思考,引入新课。
2. 讲解新课(1)描述性分析的概念:描述性分析是一种对现象、数据或事件进行描述和总结的方法,旨在揭示现象的特征、规律和趋势。
(2)描述性分析的方法:主要包括统计描述、图表描述、文字描述等。
(3)描述性分析的步骤:观察、收集数据、整理数据、分析数据、得出结论。
3. 案例分析(1)展示实际案例,如市场调查、产品销售分析等。
(2)引导学生分析案例,总结描述性分析在解决实际问题中的应用。
4. 实践环节(1)分组讨论:每组选取一个实际案例,运用描述性分析方法进行解决。
(2)各小组展示分析结果,分享心得体会。
5. 总结与反思(1)教师总结本节课的主要内容,强调描述性分析的应用价值。
(2)引导学生反思:在运用描述性分析时,需要注意哪些问题?四、教学评价1. 课堂表现:关注学生的参与度、积极性、合作精神等。
2. 案例分析:评价学生对描述性分析方法的掌握程度和实际应用能力。
3. 实践环节:关注学生的动手能力、分析问题的能力及团队合作精神。
五、教学资源1. 教材:相关章节内容。
2. 多媒体课件:展示案例、分析步骤等。
3. 实际案例:供学生分析、讨论。
六、教学反思1. 教师在讲解过程中,注意与学生互动,引导学生思考。
2. 鼓励学生积极参与实践环节,提高实际应用能力。
3. 关注学生的个体差异,给予个性化指导。
4. 不断优化教学方法,提高教学效果。
主讲人:刘莎莎 第三讲 描述性统计分析一、 序列窗口下的描述性统计分析知识点 1:如何以建立组对象的方式将数据导入到 Eviews 中去(第二种导入数 据的方式) 。
知识点 2:如何在序列窗口下实现简单描述性统计量和直方图,将直方图和正态 分布曲线叠加在一起,从而更直观地观察数据的分布特征。
(如何将 EViews 图形 复制粘贴到 word 中) 知识点 3:如何在序列窗口下实现描述性统计量的假设检验 知识点 4:如何实现将单序列按某一变量分类后再进行描述性统计分析(本案例 的分类变量是该天是星期几) 知识点 5:如何实现将单序列按某一变量分类后再进行假设检验 知识点 6:如何画上证综指日对数收益率的 QQ 图 知识点 7:如何估计数据的经验分布函数的参数 案例数据说明:2003 年 1 月 6 日-2009 年 6 月 26 日上证综指日对数收益率。
二、序列组窗口下的描述性统计分析知识点 1:如何通过打开 excel 文件的方式将数据导入到 Eviews 中去。
(第三种 导入数据的方式) 。
知识点 2:如何实现多变量的描述性统计量 知识点 3:如何实现多变量描述性统计量的假设检验 案例数据说明:国家统计调查队分别在两个地区调查了 10 个家庭的收入 知识点 4:如何计算当前序列组的相关系数矩阵,协方差矩阵主讲人:刘莎莎案例数据说明:1983-2000 年我国粮食生产与相关投入的数据,变量包括粮食产 量(单位:万吨)、农业化肥施用量(单位:万千克)、粮食播种面积(单位: 公顷)附注:描述性统计量的计算公式标准差(Std.Dev.)的计算公式是:s=2 ( y − y ) ∑ t t =1TT −1其中,yt 是观测值, y 是样本平均数。
偏度(Skewness)的计算公式是:1 T yt − y 3 S = ∑( ) T t =1 s其中,yt 是观测值, y 是样本平均数,s 是样本标准差,T 是样本容量。