光合作用的发现过程汇总
- 格式:ppt
- 大小:4.24 MB
- 文档页数:31
光合作用的5个实验步骤
光合作用是植物、藻类和某些细菌利用光能将二氧化碳和水转化为有机物的过程,同时释放出氧气。
下面是五个关于光合作用的实验步骤:
1. 实验目的:探究植物进行光合作用的条件。
2. 实验原理:光合作用需要光、水、二氧化碳等条件。
3. 实验材料:盆栽植物、水、二氧化碳气体、透明塑料袋、不透明塑料袋、黑纸片等。
4. 实验步骤:
- 将盆栽植物放入透明塑料袋中,扎紧袋口。
- 在袋子里放一些水和二氧化碳气体。
- 将袋子放在阳光充足的地方。
- 观察一段时间后,用不透明塑料袋将盆栽植物罩住,并在袋子上放一张黑纸片。
5. 实验结果:经过一段时间的观察,会发现植物在没有光照的情况下无法进行光合作用,因此叶片会发黄。
而在有光照的情况下,植物能够进行光合作用,并且叶片会变得翠绿。
这些实验步骤可以帮助我们更好地了解植物进行光合作用所需的条件,并加深我们对这一过程的理解。
光合作用发现史1、早在两千多年前,古希腊著名哲学家亚里士多德认为,植物是由“土壤汁”构成的。
这一观点一直沿用到18世纪中期。
17 世纪上半叶,比利时学者海尔蒙特所做的柳树试验,使他自然而然地相信:柳树生长所需要的物质,来自于浇灌的水。
这个结论首次提出了水参与植物有机物制造,但没有考虑到空气对植物体物质形成的作用。
2、我国明代学者宋应星、英国植物学家斯蒂芬.黑尔斯也曾指出:植物在生长时主要用空气当养分。
但他们并未用实验证明这一判断。
3、1771年,英国科学家普利斯特利通过实验证实,植物可以更新因蜡烛燃烧或小白鼠呼吸而变得污浊的空气。
由于普里斯特利所做的这个出色的实验,人们把1771 年定为发现光合作用的年代。
但是,他并没有发现光在植物更新空气中的作用,而是将空气的更新归因于植物的生长。
当时有人重复他的实验,却得到完全相反的结论。
因此这个实验引起人们的关注。
4、1779年,荷兰科学家英格豪斯做了500多次植物更新空气的实验,得出结论:绿色植物只有在光下才能更新空气。
直到1785年,人们才明确绿叶在光下放出的气体是氧气,吸收的是二氧化碳。
5、1782年,瑞士牧师吉恩.谢尼伯证实了英格豪斯的发现,并指出植物“净化”空气的活性,除光合作用外,还取决于“所固定的空气”。
6、1804年,瑞士学者索热尔研究植物光合作用过程中,二氧化碳吸收量、有机物生成量、氧气释放量之间的数量关系。
他发现,植物制造的有机物质总量和氧气释放量,远远超过二氧化碳吸收量。
根据实验中除植物、空气和水以外,没有其他物质,他断定光合作用除吸收二氧化碳外,二氧化碳水也是光合作用的反应物。
7、1817年,法国的两位植物学家,佩利蒂欧和卡文陶从叶片中分离出叶绿素。
后来有人证明叶绿素对于光能的吸收、传递和转化起着极为重要的作用。
8、1845年,德国科学家梅耶根据能量转化与守恒定律明确指出,植物在进行光合作用时,把光能转换成化学能储存起来。
当时人们用下式表示光合作用:绿色植物CO2 + H2O + 光——→O2 + 有机物质+ 能量9、1864 年,法国植物生理学家鲍辛高特根据阿伏伽德罗定律,精密地测定多种陆生植物,发现它们在进行光合作用时,放出的氧气和吸收的二氧化碳体积的比值接近1。
光合作用三个过程光合作用是植物生长过程中的重要环节,通过将光能转化为化学能,使植物能够制造出所需的有机物质。
光合作用主要由三个过程组成:光能捕获、光反应和暗反应。
下面将分别介绍这三个过程的作用和机制。
一、光能捕获光能捕获是指植物叶绿素分子吸收太阳光中的能量,并将其转化为电子激发态。
在植物体内,叶绿素分子位于叶绿体中,其结构包括一个长链烷基和一个带有镁离子的卟啉环。
当太阳光照射到叶绿体中时,叶绿素分子吸收其中的红、蓝、紫波长段的光线,而反射或透过其中的黄、绿波长段。
吸收到的光子会使叶绿素分子中一个电子从低能级跃迁至高能级,形成电荷分离状态。
这个过程称为电荷分离或激发态形成。
随后,这些电子被传递到反应中心(即PSⅠ和PSⅡ),参与到下一步光反应中。
二、光反应光反应是指利用光能将水分子分解成氧气和氢离子,同时产生ATP和NADPH的过程。
在植物体内,光反应主要发生在叶绿体内的PSⅠ和PSⅡ中。
PSⅡ是一种复杂的蛋白质-叶绿素复合物,其中含有多种色素分子和电子接受者。
当电荷分离状态的电子进入PSⅡ时,会被传递到色素分子中,并最终被传递到电子接受者中。
这个过程会释放出能量,用于将水分子分解成氧气和氢离子。
同时,这个过程还会产生一些高能化合物(如ATP),用于后续暗反应中的有机物质合成。
随后,电荷转移链将从PSⅡ传递来的电子转移到PSⅠ中。
在这个过程中,还会产生一些高能化合物(如NADPH),也用于后续暗反应中的有机物质合成。
三、暗反应暗反应是指利用ATP和NADPH等高能化合物将CO2还原为有机物质的过程。
这个过程主要发生在植物体内的叶绿体基质中。
暗反应分为三个阶段:碳固定、还原和再生。
在碳固定阶段,CO2被加入到一种含有5个碳原子的分子中,形成一个6碳的化合物。
这个化合物随后被分解成两个3碳的化合物,称为3-磷酸甘油(PGA)。
在还原阶段,ATP和NADPH提供能量将PGA还原成更高级别的有机物质。
在再生阶段,一些3碳的化合物被重新组合成含有5个碳原子的分子,并用于下一轮的CO2固定。
光合作用基本过程发现史话生物的生长等生命活动需要将外界的物质同化为自身的组成部分,而生物的一切生命活动又都需要消耗能量。
动物和人类都必需从食物获取物质和能量,而食物包括植物和动物两大类,其中植物是最根本的食物来源。
此外,植物也是动物和人类呼吸所需氧气的制造者。
然而,植物自身生长发育所需的物质和能量源于何处呢?这个问题曾经长期困扰人类。
直到约四百年前(十七世纪初) ,人类才开始逐渐揭开植物据以生长发育的物质和能量的生成和转化过程的秘密,这就是光合作用的发现。
那么,光合作用的基本过程是如何被发现的呢?1.光合作用基本过程的发现历程陆生植物生长在土壤中,人们很自然地想到它们生长所需要的物质和能量都来自于土壤,就连亚里士多德也是这样认为的。
这一观念后来被比利时化学家海尔蒙特(Jan Baptistavan Helmont,1579~1644) 打破。
他在17 世纪初做了一个著名的实验: 在一个装有90kg土壤的花盆里栽种一株 2.27kg 的柳树苗,并用有孔的铁质盖板封住土壤表面(这可以减少花盆中物质的散失以及盆外物质的进入),定期给柳树苗浇雨水;5年后将柳树连根称重,发现柳树的质量变成76.6kg,同时称量土壤的质量,发现土壤质量只是减少了56.7g。
海尔蒙特据此得出结论: 植物是由水而非土壤获得其生长的物质。
海尔蒙特并没有做对照实验,而且对于减少56.7g 土壤这一现象也没有做出解释。
英国化学家波义耳( R.Boyle,1627~1691) 用一种生长得更快的植物西葫芦( Vegetable marrow) 做了类似的实验,得出了类似的结果,不过,波义耳认为植物体增加的质量主要来自于空气中的粒子。
大约在1670 年,意大利生物学家马尔比基( Marcello Malpighi,1628~1694) 指出,构成植物体的主要成分是通过叶片合成的。
他认为植物体内存在由根部输送到叶部的水分的向上运动,以及由叶部输送到其他部位的营养物质的向下运动。
光合作用发现历程
1.1771年,英国科学家普利斯特利通过实验发现植物可以“净化”空气。
2.1864年,德国科学家萨克斯把绿叶放在暗处理的绿色叶片一半暴光,另
一半遮光,然后用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色,证明绿色叶片在光合作用中产生了淀粉。
3.1880年,德国科学家恩吉尔曼用水绵进行光合作用的实验,证明叶绿体
是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。
4.20世纪30年代,美国科学家鲁宾和卡门采用同位素标记法研究了光合作
用,证明光合作用释放的氧全部来自来水。
光合作用全过程详细光合作用是植物和一些藻类、蓝藻细菌等光合生物所进行的一种生物化学过程。
它利用阳光能和水、二氧化碳等无机物质,合成有机物(如葡萄糖)和释放出氧气的过程。
光合作用主要分为光能吸收与利用、光化学反应及暗反应三个阶段。
下面将详细介绍光合作用全过程:一、光能吸收与利用:植物体内的叶绿素是光合作用的重要色素,它们能够吸收光线并将其转化为化学能。
叶绿素主要存在于叶绿体中,叶绿体在叶片细胞内大量存在。
当阳光照射到植物叶片上时,叶绿体中的叶绿素吸收光子,激发叶绿素上的电子。
二、光化学反应:光化学反应发生在叶绿体的光合色素复合物中。
激发的叶绿素通过电子传递链将高能电子从一个分子转移到另一个分子。
在电子传递的过程中,光能被转化为能量梯度,从而将电子和质子分离开来。
光化学反应主要包括两个关键过程:光系统二和光系统一1.光系统二:光系统二位于叶绿体的基质侧膜上,它的主要作用是吸收光子并产生高能电子。
当光线照射到光系统二时,叶绿素P680(其中"P"表示叶绿素,"680"表示吸收光线的波长为680纳米)激发并释放高能电子。
这个激发的电子经过电子传递链的传递,最后到达光系统一2.光系统一:光系统一位于叶绿体膜上,它接收来自光系统二的高能电子,再次激发电子。
这个激发的电子通过另一个电子传递链的传递,最后与通过其他反应产生的质子和电子结合。
三、暗反应:暗反应是光合作用的最后一个阶段,也称为Calvin循环。
在这个过程中,使用从光化学反应中产生的能量和质子,将二氧化碳和水转化为葡萄糖、三磷酸腺苷(ATP)和还原型辅酶NADPH。
这个过程发生在植物体内的叶绿体基质中。
暗反应有三个主要步骤:固定、还原和再生。
1.固定:这一步中,二氧化碳与通过膜的间隙作为中间产物转入叶绿素的反应中,生成一个稳定的化合物。
这个化合物称为3-磷酸甘油醛,它进一步被转化为其他有机物质。
2.还原:在还原步骤中,通过光合作用生成的电子和质子被用于将3-磷酸甘油醛还原为葡萄糖。
光合作用的发现历程光合作用是指植物利用光能将二氧化碳和水转化成为有机化合物和氧气的生物化学过程。
光合作用的发现历程始于17世纪初,经历了一系列研究,最终在20世纪初被完全阐明。
下面将详细介绍光合作用的发现历程。
早在公元木纹时期,人们就观察到植物在阳光照射下会生长,并且得到实验证明光是植物生长所必需的。
然而,直到17世纪初,光合作用的本质还不为人们所知。
1648年,荷兰科学家Jan Baptist van Helmont进行了一项著名的实验,他将一棵柳树幼苗种在一固定重量的土壤中,仅给予水作为营养源。
五年后,他惊讶地发现柳树幼苗的体重增加了164磅,而土壤的重量仅增加了2磅。
这个实验被认为是光合作用观念的先驱,但当时并没有对这一观念展开深入的研究。
1779年,Jan Ingenhousz发表了一篇名为《植物生命的新发现》的论文。
他通过实验证明了在阳光下,植物具有释放氧气的能力。
他发现在光照条件下,植物能够释放氧气,而在无光照条件下则反而释放二氧化碳。
他得出的结论是植物只有在光照条件下才能进行光合作用,并产生氧气。
十九世纪初,法国生物学家Joseph Priestley和瑞士化学家Jean Senebier进一步研究了植物对氧气和二氧化碳的利用。
他们发现植物对光的反应是一种顺序性的反应,即先吸收二氧化碳,然后释放氧气。
这一观察为后来的研究奠定了基础。
到了十九世纪末和二十世纪初,德国生物学家和植物生理学家在光合作用的研究中取得了重大突破。
1883年,薄叶片(F.F.Félix Dujardin研究的一种叶状藻类)被发现可以根据光线的强度来改变它的生长方向。
1905年,德国生物学家Einstein首次提出光合作用与光的物理性质之间的关系。
他认为光合作用是通过光子能量的吸收和转换来实现的。
并通过实验证明了光是光合作用所必需的能量源。
1905年,德国生物学家Wilhelm Pfeffer提出了关于光合作用的另一个重要名词,“光合反应”的概念。