2016-2017年山东省聊城市临清市七年级上学期期中数学试卷带解析答案
- 格式:doc
- 大小:325.50 KB
- 文档页数:15
2016~2017学年度七年级上学期期中测试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.在-0.25、+2.3、0、23-这四个数中,最小的数是( ) A .-0.25B .+2.3C .0D .23-2.计算(-3)3的结果是( ) A .-9B .9C .-27D .273.x =-1是下列哪个方程的解( ) A .x -5=6B .6221=+x C .3x +1=4 D .4x +4=04.32-的相反数是( ) A .23-B .23 C .32 D .32-5.下列计算正确的是( ) A .-2(a +b )=-2a +b B .-2(a +b )=-2a -b C .-2(a +b )=-2a -2bD .-2(a +b )=-2a +2b6.下列说法中正确的是( )A .单项式532xy 的系数是3,次数是2B .单项式-15ab 的系数是15,次数是2C .21-xy 是二次单项式D .多项式4x 2-3的常数项是37.小新出生时父亲28岁,现在父亲的年龄是小新的3倍,现在小新的年龄是( )岁 A .14B .15C .16D .178.代数式y 2+2y +7的值是6,则4y 2+8y -5的值是( ) A .9B .-9C .18D .-189.下列说法中正确的是( ) A .任何数都不等于它的相反数 B .若|x |=2,那么x 一定是2C .有比-1大的负整数D .如果a >b >1,那么a 的倒数小于b 的倒数10.如果a +b +c =0,且|a |>|b |>|c |,则下列说法中可能成立的是( ) A .a 、b 为正数,c 为负数 B .a 、c 为正数,b 为负数 C .b 、c 为正数,a 为负数D .a 、c 为正数,b 为负数二、填空题(本大题共6个小题,每小题3分,共18分)12.我国邻水的面积约为370000 km 2,用科学记数法表示为__________km 2 13.若单项式3ab m 和-4a n b 是同类项,则m +n =__________14.学校里男生人数占学生总数的60%,女生人数是a ,学生总数是__________人15.一艘船从甲码头到乙码头顺流而行,用了3小时,从乙码头返回甲码头逆流而上,多用了1.5小时.已知水流的速度是4 km /h ,设船在静水中的平均速度为x km /h ,可列方程为____________16.在一次数学游戏中,老师在A 、B 、C 三个盘子里分别放了一些糖果,糖果数依次为a 0、b 0、c 0,记为G 0=(a 0,b 0,c 0).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个记为一次操作.若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果;若三个盘子中的糖果数相同,游戏结束,n 次操作后的糖果数记为G n =(a n ,b n ,c n ).小明发现:若G 0(4,8,18),则由此永远无法结束,那么G 2016=__________ 三、解答题(共8题,共52分)17.(本题12分)计算:(1) 16+(-25)+24+(-35) (2) )412()211()43(-÷-⨯-(3) 1283)3()5(23÷---⨯ (4) |-10|+|(-4)2-(1-32)×2|18.(本题4分)先化简,再求值:3x2-[7x-(4x-3)-2x2],其中x=519.(本题6分)解方程:(1) 3x+7=32-2x(2) 2-3(x+1)=1-2(1+0.5x)20.(本题8分)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元)表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?21.(本题5分)甲地的海拔高度是h m,乙地的海拔高度是甲地海拔高度的3倍多20 m,丙地的海拔高度比甲地的海拔高度低30 m,列式计算乙、丙两地的高度差22.(本题6分)四人做传数游戏,小郑任报一个数给小丁,小丁把这个数加1传给小红,小红再把所得的数乘以2后传给小童,小童把所听到的数减1报出答案(1) 如果小郑所报的数为x,请把小童最后所报的答案用代数式表示出来(2) 若小郑报的数为9,则小童的答案是多少?(3) 若小童报出的答案是15,则小郑传给小丁的数是多少?23.(本题6分)有理数a 、b 在数轴上的对应点位置如图所示(1) 用“<”连接0、-a 、-b 、-1(2) 化简:|a |-2|a +b -1|-31|b -a -1|(3) 若a 2c +c <0,且c +b >0,求cb ac b a c c c c +-+----+++||1|1|1|1|的值24.(本题8分)如图,在数轴上每相邻两点间的距离为一个单位长度,点A 、B 、C 、D 对应的数分别是a 、b 、c 、d ,且d -2a =14(1) 那么a =__________,b =__________(2) 点A 以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B 以4个单位/秒的速度也沿着数轴的正方向运动.当点A 到达D 点处立刻返回,与点B 在数轴的某点处相遇,求这个点对应的数(3) 如果A 、B 两点以(2)中的速度同时向数轴的负方向运动,点C 从图上的位置出发也向数轴的负方向运动,且始终保持AB =32AC .当点C 运动到-6时,点A 对应的数是多少?武珞路中学2016~2017学年度七年级上学期期中测试数学试卷参考答案一、选择题(共10小题,每小题3分,共30分)二、填空题(共6小题,每小题3分,共18分) 11.向西走了60 m 12.3.7×105 13.214. a 2515.3(x +4)=(3+1.5)(x -4) 16.(10,11,9)16.提示:G 1(5,9,16)、G 2(6,10,14)、G 3(7,11,12)、G 4(8,12,10)、G 5(9,10,11)、 G 6(10,11,9)、G 7(11,9,10)、G 8(9,10,11)、…… 从第5个开始每3个一循环 三、解答题(共8题,共72分) 17.解:(1) -20;(2) 21-;(3) 13;(4) 42 18.解:原式=5x 2-3x -3=107 19.解:(1) x =5;(2) x =0 20.解:设星期六盈亏数为x-27.8+(-70.3)+200+138.1+(-8)+x +188=458,解得x =38 答:星期六盈利了38元 21.解:(2h +50)m 22.解:(1) 2x +1(2) 当x =9时,2x +1=19 (3) 当2x +1=15时,x =7 23.解:(1) -1<-b <0<-a(2) 由图可知:a <0,a +b -1<0,b -a -1>0∴原式=-a -2(-a -b +1)-31(b -a -1)=353534-+b a(3) ∵a 2c +c <0 ∴c <0 ∵c +b >0∴原式=1-1-(-1)=1 24.解:(1) 由图可知:d =a +8∵d -2a =14∴a +8-2a =14,a =-6,b =a -2=-8 (2) 由(1)可知:a =-6,b =-8,c =-3,d =2点A 运动到D 点所花的时间为38设运动的时间为t则A 对应的数为2-3(t -38)=10-3tB 对应的数为:-8+4(t -1)=4t -12 当A 、B 两点相遇时,10-3t =4t -12,t =722 ∴4t -12=74 答:这个点对应的数为74 (3) 设运动的时间为tA 对应的数为:-6-3tB 对应的数为:-8-4t∴AB =|-6-3t -(-8-4t )|=|t +2|=t +2 ∵AB =32AC . ∴AC =23AB =323+t ∵C 对应的数为-6∴AC =|-6-(-6-3t )|=|3t |=323+t ① 当3233+=t t ,t =2 ② 当03233=++t t ,t =32-,不符合实际情况∴t =2∴-6-3t =-12答:点A 对应的数为-12初中数学试卷桑水出品。
2016-2017学年度第一学期期中考试初一数学一、选择题:(本大题共有10小题,每小题2分,共20分,把答案直接填涂在答题卷相对应的位置)1.-3的相反数为 ( )A .-13B .13C .3D .-3 2.下列各式中,与xy 2是同类项的是 ( ) A .-2xy 2B .2x 2yC .xyD .x 2y 2 3.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为 ( )A .11×106吨B .1.1×107吨C .11×107吨D .1.1×108吨4.下列判断错误的是 ( )A .多项式5x 2-2x +4是二次三项式B .单项式-a 2b 3c 4的系数是-1,次数是9C .式子m +5,ab ,-2,s v都是代数式 D .多项式与多项式的和一定是多项式 5.下列各数:|-3|,-0.5 ,-(-3.14), 0 ,24.5 ,-π,-227,-|-2|,-103其中负数有 ( ) A .3个 B .4个 C .5 个 D .6个6.下列各式中去括号正确的是 ( )A . a 2-4(-a +1)= a 2-4a ﹣4B . -(mn -1)+(m -n )=-mn -1+m -nC . 5x -(2x -1)-x 2= 5x -2x +1-x 2D . x 2-2(2x -y +2)= x 2-4x +y -27.某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -15)元出售,则下列说法中,能正确表达该商店促销方法的是 ( )A .原价降价15元后再打8折B .原价打8折后再降价15元C .原价降价15元后再打2折D .原价打2折后再降价15元8.x 表示一个两位数,y 也表示一个两位数,君君想用x ,y 组成一个四位数,且把x 放在y 的右边,则这个四位数用代数式表示为 ( )A .yxB .x +yC .100x +yD .100y +x 9.已知a +b =5,c -d =-2,则(b -c )-(-d -a )的值为 ( ) A .7 B .-7 C .3D .-3 10.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是 ( )A .84B .336C .510D .1326二、填空题:(本大题共10空,每空2分,共20分,把答案直接填在答题卷相对应的位置上)11.绝对值是5的数是 ; -23 的倒数是 .12. 已知x =3是方程2x +m -4=0的一个解,则m ﹣2 = .13.下列式子① x =5,② -52a 7,③ x +y 2,④ 7,⑤ m ,⑥ ab π,⑦ 3a +b ,⑧ 2c 中,是单项式的有 ;是整式的有 .(只填序号)14.若2a x b 2与-5a 3b y 的和为单项式,则y x =______.15.对于有理数a ,b ,定义a ⊙b =3a +2b ,则(x +y )⊙(x -y )化简后得_____ ___.16.已知a -b =4,则14(a -b )2-2(a -b )+2(a -b )2+12(a -b )= 17.甲、乙两人同时同地同向而行,甲每小时走a 千米,乙每小时走b 千米(a >b ).如果从出发到终点的距离为m 千米,那么甲比乙提前 小时到达终点.18.王老师在教学过程中善于把数学知识与实际生活联系在一起.在课堂上,他把全班同学分成五组,编号分别是A 、B 、C 、D 、E ,每组的人数分别是12、9、11、10、8.游戏规则:当他数完1后,人数最少的那一组学生不动,其他各组各出一个人去人数最少的那组;当他数完2后,此时人数最少的那一组学生不动,其他各组再各出一个人去人数最少的那组…如此进行下去,那么当王老师数完2 016后,A 、B 、C 、D 、E 五个组中的人数依次是 .三、解答题:(本大题共9小题,共60分,把解答过程写在答题卷相对应的区域)19.(本题满分12分,每小题3分)计算:①5111 -3417 +4417 -111 ②(112 -34 -16)×(-24)③-34 ―(1―0.5)÷13 ×[2+(-4)2] ④(13 -15 )×52÷|-13|+(0.25)2015×4201620.(本题满分6分,每小题3分)化简:①3x 2+2x -5x 2+3x ②(a 2+2ab +b 2)+2(a 2-ab -3b 2)21. (本题满分8分,每小题4分)解方程:① x +3=3x -1 ② x 3 - x -14=1.22.(本题满分6分)先化简,再求值:3x 2y -[2x 2y -(2xy -3x 2y )]+6xy 2,其中(x -3)2+|y +13|=0.23.(本题满分5分)已知A=2a2+3ab-2a-1,B=-a2+2ab-2.(1)求3A+6B;; (2)若3A+6B的值与a的取值无关,求b的值.24.(本题满分5分)有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c-b0,a+b0,a-c0.(2)化简:|c-b|+|a+b|-2|a-c|.25.(本题满分4分)如图所示:(1) 用含a,b的代数式表示阴影部分的面积;(2) 当a=8,b=3时,求阴影部分的面积(π取3.14).26.(本题满分8分)已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:__________;用含t的代数式表示点P和点C的距离:PC=_____________.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动运动的过程中有__________处相遇,相遇时t=_______________秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)27.(本题满分6分)民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为120元/千克,批发价各不相同.A家规定:当批发数量不超过100千克时,所购蟹均按零售价的92%优惠;当批发数量超过100千克但不超过200千克时,所购蟹均按零售价的90%优惠;当批发量超过200千克时,所购蟹均按零售价的88%优惠.B家的规定如下表:(1家批发需要__ __元,家批发需要元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要__ __元,在B家批发需要_ ___元(用含x的代数式表示);(3)现在他要批发180千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.初一数学期中试卷参考答案一、选择题:(每题2分,共20分)1. C2. A3. B4. D5.C6. C7. B8. D9. A 10. C二、填空题:(每空2分,共20分)11. ±5,-32 ;12.-4;13. ②④⑤⑥,②③④⑤⑥⑦; 14. 8 ;15. 5x +y ;16. 30 ;17. m b -m a;18. 11,8,10,9,12.三、解答题:(共60分)19. (每小题3分)① 6 ; ② 20 ; ③ -2734; ④ 14. 20. (每小题3分)① -2x 2+5x ; ② 3a 2-5b 221. (每小题4分)① x =2 ; ②x =922.化简得:-2x 2y +2xy +6xy 2 ------2分x =3,y =-13--------------------------4分 (代入计算得)=6 -----------------------6分23.(1)3A +6B =3(2a 2+3ab -2a -1)+6(-a 2+2ab -2)-------1分=6a 2+9ab -6a -3-6a 2+12ab -12=21 ab -6a -15 ----------------------------------3分(2)b =27----------------------------------5分 24.(1)>,<,< (每空1分)(2)a -2b -c (2分)25.(1)S =ab -12πb 2 (2分) (2)9.87 (2分)26.(1)-26+t ;36-t ; (每空1分)(2)①2处,24秒和30秒 (每空1分)②当16≤t ≤24时 PQ =﹣2t +48当24<t ≤28时 PQ =2t -48当28<t ≤30时 PQ = 120﹣4t当30<t ≤36时 PQ = 4t ﹣120 (每个1分)27.(1)8832; 8760 (每空1分)(2)108x ,90x +2400 (每空1分)(3)选择在B 家批发更优惠理由:A :108×180=19440B :90×180+2400=1860019440>18600∴选择在B 家批发更优惠. (2分)。
第1个图案 第2个图案 第3个图案2016~2017学年度第一学期期中考试七年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答案卡上将正确答案的代号涂黑.1.-4的相反数是 A .-4 B .41 C .41- D .4 2.气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃ 3.与a -(a -b +c )相等的式子是( ) A .a -b +c B .a +b -c C .b -c D .c -b 4.据科学家推测,地球的年龄大约是4 600 000 000年,这个数用科学记数法表示为 A .8106.4⨯ B .81046⨯ C .9106.4⨯ D .101046.0⨯ 5.下列计算正确的是A .mn n m 523=+B .134=-mn mnC .2222222n m n m =+D .n m n m n m 222235=- 6.下列说法正确的是A .单项式xy 4-的系数是4,次数是2B .单项式y x 221的系数是21,次数是2C .单项式y x 251-的系数是51-,次数是3 D .单项式32y x -的系数是5,次数是17.飞机的无风航速为a km/h ,风速为20 km/h .飞机顺风飞行4h 的行程比逆风飞行3h 的行程多A . )140(+a kmB .)40(+a kmC .)207(+a kmD .a 7km 8.一列关于x 的有规律的单项式:x ,23x ,35x ,47x ,59x ,611x ,…,按照上述规律,第2016个单项式是A .20162016xB .20154031xC .20164031xD .20164033x9.某校七年级1班有学生a 人,其中女生人数比男生人数的54少3人,则男生的人数为A .9124+aB .9155-aC .9155+aD .9124-a10.已知b a b a -=-且ab ≠0,下列结论正确的是A .b a +<0B .b a ->0C .2a ≥3b D .ba≥1二、填空题(共6小题,每小题3分,共18分) 11.如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作__________m . 12.按要求用四舍五入法取近似数1.8945≈__________.(精确到0. 01)13.数轴上表示与-2的点距离3个单位长度的点所表示的数是_________.14. 如图,用灰、白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖块数为_________.15.若2x+5y=3,则10y-(1-4x )的值是_________.16.把四个有理数1,2,3,-5平均分成两组,假设1,3分为一组,2,-5分为另一组,规定:.已知正有理数m ,n (m <n ),以及它们的相反数,则所有A 的和为__________(用含m ,n 的整式表示).三、解答题(共8小题,共72分) 17.(本题12分)计算: (1)()()()()75320+---++- (2)()⎪⎭⎫ ⎝⎛-+⨯-21413112(3)()()4285243÷--⨯-+ (4)()⎥⎥⎦⎤⎢⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷-32222332518.(本题6分)如图,请在数轴上表示出3-的相反数,21-的倒数,绝对值等于5的数,平方等于16的数.19.(本题6分)先化简,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22523451331y x y x x ,其中273-=x ,53=y .20.(本题8分)仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg 为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1(1)这10袋小麦总计超过或不足多少千克?(2)若每千克的小麦的售价为2.5元,估计这批小麦....总销售额是多少元?)5(231-+++=A21.(1(2)做大纸盒比做小纸盒多用料多少平方厘米? 22.(本题10分)一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果一次买200本以上(不含200本),售价是2元/本.(1)如果购买50本,需要__________元,购买140本,需要__________元,购买230本,需要__________元.(2)如果需要200本笔记本,怎么购买最省钱? (3)当小明花500元购买笔记本时,销售员找回小明82元,请问小明购买了多少本笔记本? 23.(本题10分)(1)2016年11月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右..相邻的三个数,设最小的数为x ,用含x 的式子表示这三个数的和为__________;如果任意圈出一竖列上下..相邻的三个数,设最小的数为y ,用含y 的式子表示这三个数的和为__________.(2)如图2,是2016年某月的月历,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为76,如果存在,请求出这四个数中的最小的数字,如果不存在,请说明理由.(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a 1,最后一行3个数的和为a 2,若︱a 1-a 2︱=3.请求出正方形框中位于最中心..的数字m 的值.图1 图224.(本题12分)任意一个正整数n 都可以分解为两个正整数的乘积:q p n ⨯=(p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,当p q -最小时,称q p ⨯是n 的最佳分解,并规定:()q pn F =.例如:3的最佳分解是3=1×3,()313=F ;20的最佳分解是20=4×5,()5420=F . (1)直接写出:()2F =__________; )9(F =__________;()12F =__________;(2)如果一个两位正整数t ,交换其个位上的数与十位上的数得到新的两位数记为t ',且18=-'t t .①求出正整数t 的值;②我们称数t 与t '互为一对“吉祥数”,直接写出所有“吉祥数t ”中()t F 的最大值; (3)在(2)条件下,在“吉祥数t ”的中间再插入另一个“吉祥数p ”组成一个四位数W ,再在“吉祥数t '”中间插入“吉祥数p '”(p 与p '互为一对“吉祥数”),又得到一个新的四位数N ,请用字母表示四位数W 、N,并求W -N的值.。
青岛版七年级数学上学期期中考试试卷一、选择题(每小题3分共36分)1.将下列图形绕直线l 旋转一周, 可以得到右图所示的立体图形的是( )2.如图所示,点A 、B 、C 在射线上AM 上,则图中有射线 条 ( )A 、1B 、2C 、3D 、4 3.下列说法正确的是( )A .如果AC=CB ,能说点C 是线段AB 的中点B .将一根细木条固定在墙上,至少需要两个钉子,其理论依据是:两点确定一条直线C .连结两点的直线的长度,叫做两点间的距离D .平面内3条直线至少有一个交点4.下列各对数:+(-3)与-3,-2和|-2|,-(-3)与+(-3),-(+3)与+(-3),-2和-12,2和-12中,互为相反数的有( ) A .2对B .3对C .4对D .5对5.下列计算中,错误的是( )。
A 、2636-=-B 、211()416-=C .3(4)64-=- D .0)1()1(1000100=-+-6.绝对值大于2且不大于5 的整数有()个 A 、3 B 、4 C 、6 D 、5 7.下列说法中正确的是( )A .a -一定是负数B .a 一定是负数C .a -一定不是负数D .2a -一定是负数 8. 蟑螂的生命里很旺盛,它繁衍后代的数量为这一代的数量的7倍,也就是说,如题号 1 2 3 4 5 6 7 8 9 10 11 12 答案A B C Ma10b果它的始祖(第一代)有7只,则下一代就会有49只,以此类推,蟑螂第10代的只数是( )A 712B 711C 710D 799.有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是( ) A .0ab> B . ab >0 C .a <b D .a >b 10.如果你要对“2009年菏泽市月降水量”制作一个统计图,为了收集数据,你应该( )A .询问父母B .查找资料C .测量实验D .等老师说11.为了表示一年中每月生产“中国移动3G”手机的部数增减变化的情况,比较适合制作( )A .折线统计图B .条形统计图C .扇形统计图D .以上都可以 12. 若x 的相反数是3,│y│=5,则x +y 的值为( )A .-8B .2C .8或-2D .-8或2 二、填空题(每小题3分共18分)13.绝对值大于1而小于4的整数的和是 ;积为 14.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“明”相对的面上的汉字是( )15.已知线段AB 的长度为16厘米,C 是线段AB 的中点,E 、F 分别是AC 、CB 的中点,则E 、F 两点间的距离为 .16.上海世博会主题馆屋面太阳能板面积达3万多平方米,年发电量可达2800000万度.这里的2800000万度用科学记数法表示为__________________度.17.在数轴上,与表示-3的点的距离为4的点所表示的数为 。
七年级上册数学期中考试卷及答案七年级上册数学期中考试卷及答案马上就到2017年七年级数学期中考试了,愿你用坚强的心,微笑的情开拓自己的精彩未来!以下是店铺为你整理的七年级上册数学期中考试卷,希望对大家有帮助!2017年七年级上册数学期中考试卷一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的平方根是( )A.4B.﹣4C.±4D.±22.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是( )A.(﹣4,5)B.(﹣4,﹣5)C.(﹣5,4)D.(﹣5,﹣4)3.下列命题中,真命题的个数是( )①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个4.用代入法解方程组时,代入正确的是( )A.x﹣2﹣x=4B.x﹣2﹣2x=4C.x﹣2+2x=4D.x﹣2+x=45.估计的值在哪两个整数之间( )A.75和77B.6和7C.7和8D.8和96.已知不等式组,其解集在数轴上表示正确的是( )A. B. C. D.7.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为( )A.20°B.80°C.160°D.20°或160°8.如,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD 的条件为( )A.①②③④B.①②④C.①③④D.①②③9.已知方程组和有相同的解,则a,b的值为( )A. B. C. D.10.某校书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如不完整的统计,已知甲类书有30本,则丙类书的本数是( )A.90B.144C.200D.8011.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为( )A.14B.13C.12D.1112.已知方程组:的解是:,则方程组:的解是( )A. B. C. D.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.已知点P(a+1,a﹣1)在第四象限,则a的取值范围是.14.在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、,无理数的个数是.15.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有人.16.已知是二元一次方程ax+by=2的一组解,则4﹣2a+b= .17.已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是.18.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是.19.如,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于.20.对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是.三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2) .22.计算(1)解方程组:(2)解不等式组: .23.已知:如,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为;B′的坐标为;C′的坐标为;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.24.①表示的是某综合商场今年1~5月的商品各月销售总额的情况,②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察①、②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将①中的统计补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.25.根据中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?26.在“老人节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加,旅行前,旅行社承诺每车保证有且只有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为350元每辆,乙种客车租金为280元每辆,旅行社按照哪种方案租车最省钱?此时租金是多少?27.已知:如,直线a∥b,直线c与直线a、b分别相交于C、D 两点,直线d与直线a、b分别相交于A、B两点.(1)如1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为;(3)如3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为.2017年七年级上册数学期中考试卷答案与解析一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的平方根是( )A.4B.﹣4C.±4D.±2【考点】平方根.【分析】根据平方根定义求出即可.【解答】解:16的平方根是±4,故选C.2.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是( )A.(﹣4,5)B.(﹣4,﹣5)C.(﹣5,4)D.(﹣5,﹣4)【考点】点的坐标.【分析】根据P到x轴的距离可得P的纵坐标的绝对值,根据P 到y轴的距离可得P的横坐标的绝对值,根据第二象限的点的符号特点可得点P的坐标.【解答】解:∵点P到x轴的距离是4,到y轴的距离是5,∴P的纵坐标的绝对值为4,横坐标的绝对值为5,∵点P在第二象限内,∴横坐标的符号为负,纵坐标的符号为正,∴P的坐标为(﹣5,4).故选C.3.下列命题中,真命题的个数是( )①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①同位角相等,是假命题;②a,b,c是三条直线,若a⊥b,b⊥c,则a∥c,是假命题.③a,b,c是三条直线,若a∥b,b∥c,则a∥c,是真命题;④过直线外一点有且只有一条直线与已知直线平行,是假命题,故选A4.用代入法解方程组时,代入正确的是( )A.x﹣2﹣x=4B.x﹣2﹣2x=4C.x﹣2+2x=4D.x﹣2+x=4【考点】解二元一次方程组.【分析】将①代入②整理即可得出答案.【解答】解:,把①代入②得,x﹣2(1﹣x)=4,去括号得,x﹣2+2x=4.故选C.5.估计的值在哪两个整数之间( )A.75和77B.6和7C.7和8D.8和9【考点】估算无理数的大小.【分析】先对进行估算,再确定是在哪两个相邻的整数之间.【解答】解:∵ < < ,∴8<<9,∴ 在两个相邻整数8和9之间.故选:D.6.已知不等式组,其解集在数轴上表示正确的是( )A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:∵解不等式①得:x>3,解不等式②得:x≥﹣1,∴不等式组的解集为:x>3,在数轴上表示不等式组的解集为:故选:B.7.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为( )A.20°B.80°C.160°D.20°或160°【考点】平行线的性质.【分析】首先根据题意画出形,由∠A的两边与∠B的两边互相平行,根据平行线的性质,即可求得∠B的度数.【解答】解:如1:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠B=∠1,∵∠A=20°,∴∠B=∠A=20°;如2:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠1+∠B=180°,∴∠B=180°﹣∠A=160°.故选D.8.如,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD 的条件为( )A.①②③④B.①②④C.①③④D.①②③【考点】平行线的判定.【分析】根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.9.已知方程组和有相同的解,则a,b的值为( )A. B. C. D.【考点】二元一次方程组的解.【分析】因为方程组和有相同的解,所以把5x+y=3和x﹣2y=5联立解之求出x、y,再代入其他两个方程即可得到关于a、b的方程组,解方程组即可求解.【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选D.10.某校书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如不完整的统计,已知甲类书有30本,则丙类书的本数是( )A.90B.144C.200D.80【考点】扇形统计.【分析】根据甲类书籍有30本,占总数的15%即可求得总书籍数,丙类所占的比例是1﹣15%﹣45%,所占的比例乘以总数即可求得丙类书的本数.【解答】解:总数是:30÷15%=200(本),丙类书的本数是:200×(1﹣15%﹣45%)=200×40%=80(本)故选D.11.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为( )A.14B.13C.12D.11【考点】一元一次不等式的应用.【分析】本题可设钢笔数为x,则笔记本有30﹣x件,根据小明用100元钱购得笔记本和钢笔共30件,就是已知不等关系:买笔记本用的钱数+买钢笔用的'钱数≤100元.根据这个不等关系就可以得到一个不等式.求出钢笔数的范围.【解答】解:设钢笔数为x,则笔记本有30﹣x件,则有:2(30﹣x)+5x≤10060﹣2x+5x≤100即3x≤40x≤13 因此小明最多能买13只钢笔.故选B.12.已知方程组:的解是:,则方程组:的解是( )A. B. C. D.【考点】二元一次方程组的解.【分析】在此题中,两个方程组除未知数不同外其余都相同,所以可用换元法进行解答.【解答】解:在方程组中,设x+2=a,y﹣1=b,则变形为方程组,由题知,所以x+2=8.3,y﹣1=1.2,即 .故选C.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.已知点P(a+1,a﹣1)在第四象限,则a的取值范围是﹣1【考点】点的坐标;解一元一次不等式组.【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(a+1,a﹣1)在第四象限,∴ ,由①得:a>﹣1,由②得:a<1,所以,a的取值范围是﹣1故答案为:﹣114.在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、,无理数的个数是 3 .【考点】无理数.【分析】无理数就是无限不循环小数,依据定义即可作出判断.【解答】解:在3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、中,0.2060060006(相邻的两个6之间依次多一个0)、3.1415、0、、是有理数,﹣π、、这3个数是无理数,故答案为3.15.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有114000 人.【考点】用样本估计总体.【分析】根据题意计算出身体素质达标的人数所占百分比,然后再计算出该市12万名七年级学生身体素质达标的人数.【解答】解:120000× =114000,故答案为:114000.16.已知是二元一次方程ax+by=2的一组解,则4﹣2a+b= 2 .【考点】二元一次方程的解.【分析】将方程的解代入方程可得到关于a、b的方程,最后应用整体代入法求解即可.【解答】解:将代入ax+by=2得:2a﹣b=2.原式4﹣(2a﹣b)=4﹣2=2.故答案为:2.17.已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是(6,6)或(3,﹣3) .【考点】点的坐标.【分析】分点的横坐标与纵坐标相等和互为相反数两种情况讨论求解.【解答】解:∵点P(a+2,3a﹣6)到两坐标轴的距离相等,∴a+2=3a﹣6或a+2+3a﹣6=0,解得a=4或a=1,当a=4时,a+2=4+2=6,此时,点P(6,6),当a=1时,a+2=3,此时,点P(3,﹣3),综上所述,点P(6,6)或(3,﹣3).故答案为:(6,6)或(3,﹣3).18.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是6≤a<9.【考点】一元一次不等式的整数解.【分析】解不等式得x≤ ,由于只有两个正整数解,即1,2,故可判断的取值范围,求出a的取值范围.【解答】解:原不等式解得x≤ ,∵解集中只有两个正整数解,则这两个正整数解是1,2,∴2≤<3,解得6≤a<9.故答案为:6≤a<9.19.如,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于10 .【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.20.对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是﹣7 .【考点】解二元一次方程组;有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题意得:,①+②得:a=﹣1,b=1,则原式=2a﹣5b=﹣2﹣5=﹣7.故答案为:﹣7三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2) .【考点】实数的运算.【分析】(1)原式利用二次根式性质,乘方的意义,以及立方根定义计算即可得到结果;(2)原式利用二次根式乘法法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=4﹣1﹣3=0;(2)原式=2+2 ﹣2+ =3 .22.计算(1)解方程组:(2)解不等式组: .【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)先把①变形为x﹣y=5的形式,再用代入消元法求解即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)解方程组:由①得,x﹣y=5③,把③代入②得,20﹣y=5,解得,y=15.把y=11代入③得,x=20,所以方程组的解为: ;(2) ,由①得,x≥ ,由②得,x> ,故方程组的解为:x≥ .23.已知:如,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为(0,4) ;B′的坐标为(﹣1,1) ;C′的坐标为(3,1) ;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.【考点】作-平移变换.【分析】(1)根据形平移的性质画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)根据同底等高的三角形面积相等即可得出结论.【解答】解:(1)略;(2)由可知,A′(0,4);B′(﹣1,1);C′(3,1);故答案为:(0,4);(﹣1,1);(3,1);(3)设P(0,y),∵△BCP与△ABC同底等高,∴|y+2|=3,即y+2=3或y+2=﹣3,解得y1=1,y2=﹣5,∴P(0,1)或(0,﹣5).24.①表示的是某综合商场今年1~5月的商品各月销售总额的情况,②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察①、②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将①中的统计补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.【考点】条形统计;折线统计.【分析】(1)根据①可得,1235月份的销售总额,再用总的销售总额减去这四个月的即可;(2)由可知用第5月的销售总额乘以16%即可;(3)分别计算出4月和5月的销售额,比较一下即可得出答案.【解答】解:(1)410﹣=410﹣335=75;如:(2)商场服装部5月份的销售额是80万元×16%=12.8万元;(3)4月和5月的销售额分别是75万元和80万元,服装销售额各占当月的17%和16%,则为75×17%=12.75万元,80×16%=12.8万元,故小刚的说法是错误的.25.根据中给出的信息,解答下列问题:(1)放入一个小球水面升高 2 cm,放入一个大球水面升高 3 cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?【考点】二元一次方程组的应用;一元一次方程的应用.【分析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据象提供的数据建立方程求解即可;(2)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.【解答】解:(1)设一个小球使水面升高x厘米,由意,得3x=32﹣26,解得x=2;设一个大球使水面升高y厘米,由意,得2y=32﹣26,解得:y=3.所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)设应放入大球m个,小球n个.由题意,得解得:,答:如果要使水面上升到50cm,应放入大球4个,小球6个.26.在“老人节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加,旅行前,旅行社承诺每车保证有且只有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为350元每辆,乙种客车租金为280元每辆,旅行社按照哪种方案租车最省钱?此时租金是多少?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)设租甲种客车x辆,则租乙种客车(7﹣x)辆,依题意关系式为:40x+30(7﹣x)≥253+7,(2)分别算出各个方案的租金,比较即可.【解答】解:(1)设租甲种客车x辆,则租乙种客车(7﹣x)辆,依题意,得40x+30(7﹣x)≥253+7,解得x≥5,又x≤7,即5≤x≤7,x=5,6,7,有三种租车方案:租甲种客车5辆,则租乙种客车2辆,租甲种客车6辆,则租乙种客车1辆,租甲种客车7辆,则租乙种客车0辆;(2)∵5×350+2×280=2310元,6×350+1×280=2380元,7×350=2450元,∴租甲种客车5辆;租乙种客车2辆,所需付费最少为2310(元).27.已知:如,直线a∥b,直线c与直线a、b分别相交于C、D 两点,直线d与直线a、b分别相交于A、B两点.(1)如1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠1=∠2+∠3;(3)如3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠2=∠1+∠3.【考点】平行线的性质.【分析】(1)过点P作a的平行线,根据平行线的性质进行解题;(2)过点P作b的平行线PE,由平行线的性质可得出a∥b∥PE,由此即可得出结论;(3)设直线AC与DP交于点F,由三角形外角的性质可得出∠1+∠3=∠PFA,再由平行线的性质即可得出结论.【解答】解:(1)如1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2;(2)如2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠3+∠EPD,即∠1=∠2+∠3.故答案为:∠1=∠2+∠3;(3)如3,设直线AC与DP交于点F,∵∠PFA是△PCF的外角,∴∠PFA=∠1+∠3,∵a∥b,∴∠2=∠PFA,即∠2=∠1+∠3.故答案为:∠2=∠1+∠3.【七年级上册数学期中考试卷及答案】。
2016-2017学年中学七年级(上)期中数学试卷两套汇编二附答案解析2016-2017学年七年级(上)期中数学试卷一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1094.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y26.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣97.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=38.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有个,互为相反数的是.10.用四舍五入的方法将3.495精确到十分位是,精确到0.01是.11.规定二阶行列式=ad﹣bc,依据此法则计算=.12.单项式﹣的系数是,次数是.13.在数轴上与﹣3的距离等于5的点表示的数是.14.若x2+x﹣1=0,则4x2+4x﹣6的值为.15.已知+=0,则的值为.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=;b=;c=.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,﹣a+c0(2)化简:|b﹣c|+|﹣a|.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?参考答案与试题解析一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.【考点】相反数.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.故选:B.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.【考点】绝对值.【分析】根据绝对值的意义进行化简.【解答】解:因为|﹣|=故选D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将194亿用科学记数法表示为:1.94×1010.故选:A.4.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:原式=(﹣5+4)ab=﹣ab,故选:D.5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y2【考点】整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(x2﹣3y2)+(x2+2y2)=x2﹣3y2+x2+2y2=2x2﹣y2.故选B6.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣9【考点】非负数的性质:绝对值.【分析】根据非负数的性质,几个非负数的和等于0,则每个数等于0,据此即可求得a和b的值,从而求解.【解答】解:根据题意得:a+3=0,b﹣2=0,解得:a=﹣3,b=2.则ab=(﹣3)2=9.故选C.7.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=3【考点】同类项.【分析】根据同类项的概念可得方程:a+1=2,b=3,解方程求得a,b的值.【解答】解:∵单项式﹣x n+1y3与y b x2是同类项,∴a+1=2,解得a=1,b=3.故选:B.8.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231【考点】代数式求值.【分析】观察图示我们可以得出关系式为:,因此将x的值代入就可以计算出结果.如果计算的结果<等于100则需要把结果再次代入关系式求值,直到算出的值>100为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:由于,∵6<100∴应该按照计算程序继续计算,∵21<100∴应该按照计算程序继续计算,∴输出结果为231.故选D.二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有1个,互为相反数的是(﹣4)2与﹣42.【考点】正数和负数.【分析】先化简题目中的数据即可解答本题.【解答】解:∵(﹣4)2=16,﹣42=﹣16,(﹣3)2=9,﹣(﹣3)=3,故答案为:1,(﹣4)2与﹣42.10.用四舍五入的方法将3.495精确到十分位是 3.5,精确到0.01是 3.50.【考点】近似数和有效数字.【分析】根据“求一个小数的近似数,要看精确到哪一位,就从它的下一位运用“四舍五入”取得近似值”进行解答即可.【解答】解:用四舍五入的方法将3.495精确到十分位是3.5,精确到0.01是3.50;故答案为:3.5,3.50.11.规定二阶行列式=ad﹣bc,依据此法则计算=11.【考点】有理数的混合运算.【分析】原式利用已知的新定义化简即可得到结果.【解答】解:根据题意得:2×4﹣1×(﹣3)=8+3=11,故答案为:1112.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:﹣的系数是﹣,次数是3.故答案是:﹣;3.13.在数轴上与﹣3的距离等于5的点表示的数是﹣8或2.【考点】数轴.【分析】设该点表示的数为x,根据绝对值的意义可列出方程|x+3|=5,求出x 即可.【解答】解:设该点表示的数为x,∴|x+3|=5,∴x+3=±5,x=﹣8或2;故答案为:﹣8或214.若x2+x﹣1=0,则4x2+4x﹣6的值为﹣2.【考点】代数式求值.【分析】将所求代数式进行适当的变形后,将x2+x﹣1=0整体代入即可求出答案.【解答】解:∵x2+x=1,∴原式=4(x2+x)﹣6=4﹣6=﹣2故答案为:﹣215.已知+=0,则的值为﹣1.【考点】绝对值.【分析】先判断出a、b异号,再根据绝对值的性质解答即可.【解答】解:∵ +=0,∴a、b异号,∴ab<0,∴==﹣1.故答案为:﹣1.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.【考点】有理数的混合运算.【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣+﹣)×(﹣12)=×12﹣×12+×12=2﹣9+5=﹣2;(2)﹣22+3×(﹣1)2016﹣|﹣4|×5=﹣4+3×1﹣4×5=﹣4+3﹣20=﹣21.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.【考点】整式的加减—化简求值.【分析】(1)首先去括号,合并同类项,进行化简后,再代入x的值即可求值;(2)首先去括号,合并同类项,进行化简后,再代入a、b的值即可求值.【解答】解:(1)原式=3x2﹣6x﹣3﹣12x+8+2x﹣2,=3x2﹣16x+3,当x=﹣3时,原式=3×(﹣3)2﹣16×(﹣3)+3=27+48+3=78;(2)原式=4a2b+6ab2﹣3a2b+3﹣2ab2﹣2,=a2b+4ab2+1,当a=﹣1,b=时,原式=1×+4×(﹣1)×+1=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.【考点】代数式求值;列代数式.【分析】先用含x的式子表示出第二组,第三组的植树棵树,然后求得各组的和,最后将x=130代入求解即可.【解答】解:第一组植树x棵,第二组植的树(2x+8)棵,第三组植的树(x﹣2)棵.三个组共植树的棵树=x+2x+8+x﹣2=4x+6.当x=130时,4x+6=4×130+6=526.所以三个小组共植树526棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?【考点】整式的加减—化简求值.【分析】先对原代数式化简,结果中不含x项,故计算结果与x的取值无关,故甲同学把x=错看成x=﹣,但计算结果仍正确.【解答】解:原式=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,∵结果中不含x项,∴与x的取值无关.∴甲同学把x=错看成x=﹣,但计算结果仍正确.20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=1;b=﹣1;c=0.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.【考点】有理数的加法;绝对值.【分析】(1)根据最小的正整数是1,最大的负整数是﹣1,0的绝对值最小确定a、b、c的值;(2)由绝对值的意义,求出x、y,再由ay<0,确定y的值.代入代数式求出a+b+x+y的值.【解答】解:∵a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,∴a=1,b=﹣1,c=0;故答案为1,﹣1,0.(2)因为a=1,由于ay<0,所以y<0.因为|x|=3,|y|=4,所以x=±3,y=﹣4.当a=1,b=﹣1,x=3,y=﹣4时a+b+x+y=1+(﹣1)+3+(﹣4)=﹣1;当a=1,b=﹣1,x=﹣3,y=﹣4时a+b+x+y=1+(﹣1)+(﹣3)+(﹣4)=﹣7.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?【考点】有理数的加法;正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:(1)将行驶记录所有的数据相加,得结果为﹣3,∵约定向东为正方向,∴B地在A地的西边,它们相距3千米.(2)汽车行驶每千米耗油x升,设该天共耗油y升,则y=(13+14+11+10+8+9+12+8)x=85x升.∴该天共耗油85x升.22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,﹣a+c>0(2)化简:|b﹣c|+|﹣a|.【考点】数轴;绝对值.【分析】根据数轴确定出a、b、c的正负情况以及绝对值的大小,然后解答即可.【解答】解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,(1)b﹣c<0,a+b<0,﹣a+c>0;(2)|b﹣c|+|﹣a|=c﹣b﹣a.故答案为:<,<,>.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?【考点】规律型:图形的变化类.【分析】(1)观察图形得到第①号图中的火柴棒根数为3根;第②号图中的火柴棒根数为(3+2)根;第③号图中的火柴棒根数为(3+2×2)根;…;(2)由此可推出第n号图中的火柴棒根数=3+2×(n﹣1)=(2n+1)根;(3)由(2)得到2n+1=2011,然后解方程即可.【解答】解:(1)结合图形,发现:后边每多一个三角形,则需要多2根火柴.搭1个这样的三角形要用3+2×0=3根火柴棒;搭2个这样的三角形要用3+213=5根火柴棒;搭3个这样的三角形要用3+2×2=7根火柴棒;则搭4个这样的三角形要用3+2×3=9根火柴棒;(2)根据(1)中的规律,得搭n个这样的三角形要用3+2(n﹣1)=2n+1根火柴棒.(3)2n+1=2015,n=1007,照这样2015根火柴棒可以摆1007个三角形.故答案为5,7,9;2016-2017学年七年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.83.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=45.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×1047.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=98.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和010.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.311.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为.14.按所列数的规律填上适当的数:3,5,7,9,,.15.比较大小:﹣(﹣)﹣|﹣3|;﹣0.1﹣0.001.(用“>”或“<”号)16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=.17.光的速度大约是300000000米每秒,用科学记数法可记作米每秒.18.单项式﹣的系数是,次数是.三、计算(每小题6分,共12分)19.20.﹣22+|5﹣8|+24÷(﹣3)×.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?参考答案与试题解析一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数【考点】正数和负数.【分析】根据各个选项中的说法可以判断其是否正确,从而可以解答本题.【解答】解:+(﹣2)=﹣2,故选项A错误;﹣(﹣2)=2,故选项B错误;上升5米,再下降3米,实际上升2米,故选项C正确;一个数不是正数,就是负数或零,故选项D错误;故选C.2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.8【考点】数轴.【分析】直接根据数轴上两点间的距离公式解答即可.【解答】解:∵数轴上点A表示﹣4,点B表示2,∴AB=|﹣4﹣2|=6.故选C.3.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|【考点】相反数.【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:A、﹣(﹣2)+2=4,故本选项错误;B、+(﹣3)﹣(+3)=﹣6,故本选项错误;C、﹣2=﹣,故本选项错误;D、﹣(﹣5)﹣|﹣5|=0,故本选项正确.故选D.4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=4【考点】绝对值.【分析】利用绝对值的性质解答即可.【解答】解:A.|﹣4|=4,所以此选项等号成立;B.﹣|4|=﹣4,﹣|﹣4|=﹣4,所以此选项等号成立;C.|﹣4|=4,|4|=4,所以此选项等号成立;D.﹣|﹣4|=﹣4≠4,所以此选项等号不成立,故选D.5.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出大于﹣小于的所有整数有多少个即可.【解答】解:大于﹣小于的所有整数有:﹣3,﹣2,﹣1,0,1,2,3,共7个,故选:B.6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×104【考点】科学记数法与有效数字.【分析】根据科学计数法和有效数字以及精确度进行选择即可.【解答】解:A、近似数1.8与1.80表示的意义不一样,故原来的说法正确;B、5.0万精确到千位,故原来的说法不正确;C、0.200精确到0.001,故原来的说法正确;D、0.345×105用科学记数法表示为3.45×104,故原来的说法正确;故选B.7.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=9【考点】有理数的乘方;有理数的加法;有理数的减法.【分析】分别根据有理数的加法、减法及乘方的运算法则计算出各选项的值.【解答】解:A、﹣12﹣8=﹣20,故本选项错误;B、﹣5+4=﹣1,故本选项错误;C、符合有理数的减法法则,故本选项正确;D、﹣32=﹣9,故本选项错误.故选B.8.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.【考点】非负数的性质:偶次方;非负数的性质:绝对值;代数式求值;解二元一次方程组.【分析】由于平方与绝对值都具有非负性,根据两个非负数的和为零,其中每一个加数都必为零,可列出二元一次方程组,解出a、b的值,再将它们代入a b中求解即可.【解答】解:由题意,得,解得.∴a b=()3=.故选D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【考点】有理数的乘方;倒数.【分析】分别计算出四个选项中有理数的平方及其倒数,找出相同的数即可.【解答】解:A、∵12=1,1的倒数是1,故本选项符合题意;B、∵(﹣1)2=1,1的倒数是﹣1,故本选项不符合题意;C、∵(±1)2=1,±1的倒数是±1,故本选项不符合题意;D、∵(±1)2=1,02=0;±1的倒数是±1,0没有倒数,故本选项不符合题意.故选A.10.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.3【考点】整式.【分析】根据整式的定义分析判断各个式子,从而得到正确选项.【解答】解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选:C.11.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次【考点】单项式.【分析】单项式的系数是指单项式中的数字因数,单项式的次数是指单项式所含字母的指数的和,根据定义即可判断各项.【解答】解:A、﹣x的次数是1,故本选项错误;B、﹣πx的系数是﹣π,故本选项错误;C、﹣5是0次单项式,故本选项错误;D、﹣5a2b的次数是2+1=3,故本选项正确;故选D.12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a【考点】列代数式.【分析】根据一个三位数=百位上的数×100+十位上的数×10+个位上的数求解即可.【解答】解:∵一个三位数,个位数是a,十位数是b,百位数是c,∴这个三位数是100c+10b+a.故选D二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为﹣20.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:用+10表示得10分,那么扣20分用负数表示,那么扣20分表示为﹣20.故答案为:﹣20.14.按所列数的规律填上适当的数:3,5,7,9,11,13.【考点】有理数.【分析】先观察总结规律,再利用规律代入求解.【解答】解:本题所给的数都从小到大排列的奇数(2n+1),故应填11,13.15.比较大小:﹣(﹣)>﹣|﹣3|;﹣0.1<﹣0.001.(用“>”或“<”号)【考点】有理数大小比较.【分析】先去括号及绝对值符号,再比较大小即可.【解答】解:∵﹣(﹣)=>0,﹣|﹣3|=﹣3<0,∴﹣(﹣)>﹣|﹣3|;∵|﹣0.1|=0.1,|﹣0.001|=0.001,0.1>0.001,∴﹣0.1<﹣0.001.故答案为:>,<.16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=﹣2.【考点】代数式求值.【分析】由题意可知:x+y=0,mn=1,然后代入代数式即可求出答案.【解答】解:由题意可知:x+y=0,mn=1,∴原式=(1﹣3)+0=﹣2,故答案为:﹣217.光的速度大约是300000000米每秒,用科学记数法可记作3×108米每秒.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:300000000=3×108.故答案为:3.×108.18.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣的系数是﹣,次数是2+1=3.故答案为:﹣;3.三、计算(每小题6分,共12分)19.【考点】有理数的混合运算.【分析】对有理数式将转化为,将去括号,约分化简.【解答】解:,=,=﹣6﹣20,=﹣26.20.﹣22+|5﹣8|+24÷(﹣3)×.【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3﹣=﹣.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)【考点】有理数的混合运算.【分析】原式逆用乘法分配律计算即可得到结果.【解答】解:原式=12.5×(3.7﹣2.3+6.6)=12.5×8=100.22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.【考点】代数式求值.【分析】首先将原式分解因式得出原式=(2x﹣y)2,再将已知代入求出即可.【解答】解:原式=(2x﹣y)2,∵x=3,y=﹣2,∴2x﹣y=8.∴原式=(2x﹣y)2=64.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:﹣2<﹣1.5<0<1<3<4.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.【考点】列代数式;代数式求值.【分析】(1)甲方案的收费:月租+0.2×时间;乙方案收费:0.3×通话时间;(2)把10小时=600分钟代入(1)中的代数式计算即可.【解答】解:(1)甲方案:9+0.2x,乙方案:0.3x;(2)10小时=600分钟,甲方案收费:9+0.2×600=129(元),乙方案收费:0.3×600=180(元),∵129<180,∴甲方案合算.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?【考点】列代数式.【分析】(1)根据题意可以列出用电小于100度和大于100度时的代数式;(2)根据第一问中列出的代数式可以求得问题的答案【解答】解:(1)∵某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元,∴当a<100时,8月份应交的电费为:0.5a元;当b>100时,9月份应交的电费为:100×0.5+(b﹣100)×(0.5+0.1)=50+0.6b﹣60=(0.6b﹣10)元.(2)∵用户2008年10月份用电113度,113>100,∴0.6b﹣10=0.6×113﹣10=67.8﹣10=57.8(元).即该用户2008年10月份用电113度,则他应交电费57.8元.26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,可得答案.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2)第一次17千米,第二次15+(﹣9)=6,第三次6+7=13,第四次13+(﹣15)=﹣2,第五次﹣2+(﹣3)=﹣5,第六次﹣5+11=6,第七次6+(﹣6)=0,第八次0+(﹣8)=﹣8,第九次﹣8+5=﹣3,第十次﹣3+16=13,答:最远距出发点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16)×0.5=97×0.5=48.5(升),答:这次养护共耗油48.5升.。
七年级上册数学其中考试卷(人教版)(试卷共4页,考试时间为90分钟,满分120分)题号 一二三总分2122232425262728得分一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中) 题号 123456789101112答案1.2-等于( )A .-2B .12-C .2D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( ) A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与15.下列各组单项式中,为同类项的是( ) A .a 3与a 2B .12a 2与2a 2C .2xy 与2xD .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( ) A .69° B .111° C .141° D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A B C D 6 2 224 20 4 884 446 m10 ……AB C第8题图 北O AB第8题图A .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] . 22.(本小题满分6分)一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21. 24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…… (1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值. 26.(本小题满分8分)如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE . 求:∠COE 的度数. 27.(本小题满分8分)共43元共94元 CB E D如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB 、CD 的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了. ②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为 元. 2012~2013学年度第一学期七年级期末考试数学试题参考答案及评分说明说明: 1.各校在阅卷过程中,如还有其它正确解法,可参照评分标准按步骤酌情给分. 2.坚持每题评阅到底的原则,当学生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分. 一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B . 二、填空题(每题3分,共24分) 13.31-;14.21-;15.2;16.58°28′;17.×106;18.9;19.2;20.8. 三、解答题(共60分)21.解:原式= -1-14×(2-9) ………………………………………………………3分 =-1+ 47…………………………………………………………………………5分=43……………………………………………………………………………6分22.解:设这个角的度数为x . ……………………………………………………………1分由题意得:30)90(21=--x x ο ………………………………………………3分 解得:x =80 …………………………………………………………………5分 答:这个角的度数是80° ……………………………………………………………6分 23.解:原式 =1212212+--+-x x x ………………………………………………3分 =12--x ………………………………………………………………4分AE DBFC把x =21代入原式: 原式=12--x =1)21(2--……………………………………………………………5分=45- ……………………………………………………………………………7分24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . ………………………………………………………4分8x =3. …………………………………………………………6分83=x . …………………………………………………………7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ……………………………1分(2)第二次移动后这个点在数轴上表示的数是4; ……………………………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………………………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………………………5分 (5)54. ………………………………………………………………………7分 26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°, ………………………………………………………2分 ∵∠BOD =∠COD -∠BOC =90°-45°=45°, ………………………………4分 ∠BOD =3∠DOE∴∠DOE =15, ……………………………………………………………………7分 ∴∠COE =∠COD -∠DOE =90°-15°=75° …………………………………8分 27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . …………………………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE =12AB =,CF =12CD =2x cm . ……………………………………………3分 ∴EF =AC -AE -CF =. ………………………………………………………4分∵EF =10cm ,∴=10,解得:x =4. ………………………………………………………………6分∴AB =12cm ,CD =16cm . ……………………………………………………………8分 28.解:(1)设钢笔的单价为x 元,则毛笔的单价为(x +4)元. ………………………1分由题意得:30x +45(x +4)=1755 ……………………………………………3分解得:x =21则x +4=25. ……………………………………………………………………4分 答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分 (2)设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105-y )支. …6分 根据题意,得21y +25(105-y )=2447.………………………………………………7分 解之得:y = (不符合题意) . ……………………………………………………8分所以王老师肯定搞错了. ……………………………………………………………9分 (3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z 支,签字笔的单价为a 元 则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8. 当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。
2016-2017学年山东省聊城市临清市七年级(上)期中数学试卷一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对2.(3分)今年3月5日,李克强总理在《政府工作报告》中指出,到2020年,我国经济总量将超过90万亿元,90万亿元用科学记数法表示为()A.9×1011元B.90×1010元C.9×1012元D.9×1013元3.(3分)下列说法错误的是()A.直线l经过点AB.直线a,b相交于点AC.点C在线段AB上D.射线CD与线段AB有公共点4.(3分)下列各组数中,相等的是()A.(﹣2)2与﹣24B.﹣25与(﹣2)5C.(﹣1)3与(﹣1)4D.43与34 5.(3分)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC6.(3分)下列各数﹣3,0,(﹣)2,,2007,+1.99,﹣(﹣8),|﹣|中,正分数有()A.3个 B.4个 C.5个 D.6个7.(3分)在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a+b>0 B.a﹣b<0 C.ab<0 D.|a|>|b|8.(3分)如图所示:C、D是线段AB上两点,若AB=10cm,BC=7cm,C为AD 中点,则BD=()A.3.5cm B.6cm C.4cm D.3cm9.(3分)已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.210.(3分)如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6 B.﹣6 C.D.11.(3分)2条直线最多有1个交点,3条直线最多有3个交点,4条直线最多有6个交点,…由此猜想,8条直线最多有()个交点.A.32 B.16 C.28 D.4012.(3分)下列说法中,正确的个数有()①﹣a一定是负数;②|﹣a|一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;⑥如果两个数的和为零,那么这两个数一定是一正一负.A.1个 B.2个 C.3个 D.4个二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果)13.(3分)莹莹同学的座右铭是“态度决定一切”,她将这几个字写在一个正方体纸盒的各个面上,其表面展开图如图,那么在该正方体中,与“一”字相对的面上的字是.14.(3分)比﹣3大而比2小的所有整数的和为.15.(3分)已知线段AB和CD,如果将CD移动到AB的位置,使点C与点A重合,CD与AB叠合,如果点D在AB的延长线上,那么AB CD.(填“>”、“<”或“=”)16.(3分)计算|3.14﹣π|﹣π的结果是.17.(3分)按如图所示的程序进行计算,如果第一次输入的数是30,而结果不大于100,就把结果作为输入的数再进行第二次运算,直到符合要求为止.输出的结果为.三、解答题(本大题共8小题,共69分,解答要写出必要的文字说明,证明过程或演算步骤)18.(12分)计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣0.5﹣(﹣3)+2.75﹣7;(3)(+﹣)×(﹣36);(4)﹣14﹣(﹣5)×+(﹣2)3÷|﹣32+1|19.(8分)如图,在同一平面内有四个点A、B、C、D①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.20.(6分)把下列各数在数轴上表示出来,并用“<”将它们连接起来.3,﹣1.5,0,2.5,﹣3.21.(5分)|a|=4,|b|=5,ab<0,求a+b的值.22.(8分)比较下列各组数的大小.(1)与;(2),,,0.23.(8分)有理数a、b互为相反数,c、d互为倒数,数e在数轴上所表示的点到原点的距离是3,求a+b﹣﹣e的值.24.(10分)某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,成绩记录如下:+10,﹣2,+15,+8,﹣13,﹣7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测小组成员中得分最高与最低相差多少分?25.(12分)如图,已知线段AB上有两点C、D,且AC=BD,M,N分别是线段AC,AD的中点,若AB=acm,AC=BD=bcm,且a、b满足(a﹣10)2+|﹣4|=0.(1)求a、b的值;(2)求线段MN的长度.2016-2017学年山东省聊城市临清市七年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对【解答】解:笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为点动成线.故选:A.2.(3分)今年3月5日,李克强总理在《政府工作报告》中指出,到2020年,我国经济总量将超过90万亿元,90万亿元用科学记数法表示为()A.9×1011元B.90×1010元C.9×1012元D.9×1013元【解答】解:90万亿=90000000000000=9×1013,故选:D.3.(3分)下列说法错误的是()A.直线l经过点AB.直线a,b相交于点AC.点C在线段AB上D.射线CD与线段AB有公共点【解答】解:A、由图可得,点A在直线l上,故直线l经过点A;B、由图可得,点A为直线a,b的公共点,故直线a,b相交于点A;C、由图可得,点C在线段AB的上方,故点A不在线段AB上,即C选项错误;D、由图可得,射线CD与线段AB有交点,故射线CD与线段AB有公共点.故选:C.4.(3分)下列各组数中,相等的是()A.(﹣2)2与﹣24B.﹣25与(﹣2)5C.(﹣1)3与(﹣1)4D.43与34【解答】解:A、(﹣2)2=4,﹣24=﹣16,不相等;B、﹣25=(﹣2)5=﹣32,相等;C、(﹣1)3=﹣1,(﹣1)4=1,不相等;D、43=64,34=81,不相等,故选:B.5.(3分)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC【解答】解:A、根据线段的延长线的概念,则BA=BC﹣AC,故错误;B、根据线段的和的计算,正确;C、根据两点之间,线段最短,显然正确;D、根据两点之间,线段最短,显然正确.故选:A.6.(3分)下列各数﹣3,0,(﹣)2,,2007,+1.99,﹣(﹣8),|﹣|中,正分数有()A.3个 B.4个 C.5个 D.6个【解答】解:(﹣)2=,|﹣|=;所以正分数有:(﹣)2,,+1.99,|﹣|,共4个.故选:B.7.(3分)在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a+b>0 B.a﹣b<0 C.ab<0 D.|a|>|b|【解答】解:由图可知,b<0<a,且|b|>|a|.A、b+a<0,此选项错误;B、a﹣b>0,此选项错误;C、ab<0,此选项正确;D、|b|>|a|,此选项错误.故选:C.8.(3分)如图所示:C、D是线段AB上两点,若AB=10cm,BC=7cm,C为AD 中点,则BD=()A.3.5cm B.6cm C.4cm D.3cm【解答】解:∵AB=10cm,BC=7cm∴AC=3cm又∵C为AD中点∴AD=6cm∴BD=10﹣6=4cm.故选:C.9.(3分)已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.2【解答】解:由题意知:a=1,b=﹣1,c=0;所以a+b+|c|=1﹣1+0=0.故选:B.10.(3分)如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6 B.﹣6 C.D.【解答】解:2⊗(﹣3)==6.故选:A.11.(3分)2条直线最多有1个交点,3条直线最多有3个交点,4条直线最多有6个交点,…由此猜想,8条直线最多有()个交点.A.32 B.16 C.28 D.40【解答】解:令n条直线最多交点个数为M:两条相交直线最多有1个交点,即n=2,M=1,三条直线最多有3个交点,即n=3,M=3,四条直线最多有6个交点点,即n=4,M=6,五条直线最多有10个交点,即n=5,M=10,…则n条直线最多交点个数M=1+2+3+4+…+(n﹣1)=,当n=8时,=28,故选:C.12.(3分)下列说法中,正确的个数有()①﹣a一定是负数;②|﹣a|一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;⑥如果两个数的和为零,那么这两个数一定是一正一负.A.1个 B.2个 C.3个 D.4个【解答】解:∵如果α为负数时,则﹣α为正数,∴﹣α一定是负数是错的.∵当a=0时,|﹣a|=0,∴|﹣a|一定是正数是错的.∵倒数等于它本身的数只有±1,∴③对.∵绝对值都等于它本身的数是非负数,不只是1,∴绝对值等于它本身的数是1的说法是错误的.两个负有理数的和小于其中每一个加数,∴⑤错误.如果两个数的和为零,那么这两个数可能为0,∴⑥错误.所以正确的说法共有1个.故选:A.二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果)13.(3分)莹莹同学的座右铭是“态度决定一切”,她将这几个字写在一个正方体纸盒的各个面上,其表面展开图如图,那么在该正方体中,与“一”字相对的面上的字是度.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“态”与“定”是相对面,“度”与“一”是相对面,“决”与“切”是相对面.故答案为:度.14.(3分)比﹣3大而比2小的所有整数的和为﹣3.【解答】解:比﹣3大而比2小的所有整数有﹣3,﹣2,﹣1,0,1,2,﹣3+(﹣2)+(﹣1)+0+1+2=﹣3,故答案为:﹣3.15.(3分)已知线段AB和CD,如果将CD移动到AB的位置,使点C与点A重合,CD与AB叠合,如果点D在AB的延长线上,那么AB<CD.(填“>”、“<”或“=”)【解答】解:如图所示,AB<CD,故答案为:<.16.(3分)计算|3.14﹣π|﹣π的结果是﹣3.14.【解答】解:|3.14﹣π|﹣π=π﹣3.14﹣π=﹣3.14.故答案为:﹣3.14.17.(3分)按如图所示的程序进行计算,如果第一次输入的数是30,而结果不大于100,就把结果作为输入的数再进行第二次运算,直到符合要求为止.输出的结果为120.【解答】解:把x=30代入得:30×|﹣|÷[﹣(﹣)2]=15÷(﹣)=﹣60<100,把x=﹣60代入得:(﹣60)×÷(﹣)=﹣30×(﹣4)=120>100,则输出结果为120,故答案为:120三、解答题(本大题共8小题,共69分,解答要写出必要的文字说明,证明过程或演算步骤)18.(12分)计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣0.5﹣(﹣3)+2.75﹣7;(3)(+﹣)×(﹣36);(4)﹣14﹣(﹣5)×+(﹣2)3÷|﹣32+1|【解答】解:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9)=﹣3﹣4﹣11+9=﹣18+9=﹣9;(2)=(﹣0.5﹣7)+(3.25+2.75)=﹣8+6=﹣2;(3)=﹣×36﹣×36+×36=﹣18﹣30+21=﹣27;(4)=﹣1+2﹣8÷|﹣9+1|=﹣1+2﹣8÷8=﹣1+2﹣1=0.19.(8分)如图,在同一平面内有四个点A、B、C、D①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.【解答】解:如图所示.20.(6分)把下列各数在数轴上表示出来,并用“<”将它们连接起来.3,﹣1.5,0,2.5,﹣3.【解答】解:把各数表示在数轴上,如图所示:则用“<”将它们连接起来为:﹣3<﹣1.5<0<2.5<3.21.(5分)|a|=4,|b|=5,ab<0,求a+b的值.【解答】解:∵|a|=4,|b|=5,ab<0,∴a=4,b=﹣5;a=﹣4,b=5,则a+b=﹣1或1.22.(8分)比较下列各组数的大小.(1)与;(2),,,0.【解答】解:(1)∵|﹣|==,|﹣|==,∴﹣<﹣;(2)∵﹣|﹣|=﹣,而|﹣|==,|﹣|==,∴﹣<﹣,∴,,,0的大小关系为:﹣<﹣|﹣|<0<.23.(8分)有理数a、b互为相反数,c、d互为倒数,数e在数轴上所表示的点到原点的距离是3,求a+b﹣﹣e的值.【解答】解:根据题意得:a+b=0,cd=1,e=±3.当e=3时,原式=0﹣1﹣3=﹣4;当e=﹣3时,原式=0﹣1+3=2.24.(10分)某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,成绩记录如下:+10,﹣2,+15,+8,﹣13,﹣7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测小组成员中得分最高与最低相差多少分?【解答】解:(1)根据题意得:80+15=95(分),则成绩最好为95分;(2)根据题意得:10﹣2+15+8﹣13﹣7=11(分),则超过11分;(3)根据题意得:最高分为80+15=95(分),最低分为80﹣13=67(分),则最高分与最低分相差为95﹣67=28(分).25.(12分)如图,已知线段AB上有两点C、D,且AC=BD,M,N分别是线段AC,AD的中点,若AB=acm,AC=BD=bcm,且a、b满足(a﹣10)2+|﹣4|=0.(1)求a、b的值;(2)求线段MN的长度.【解答】解:(1)∵(a﹣10)2+|﹣4|=0.∴a﹣10=0,﹣4=0,∴a=10,b=8.(2)∵BD=AC=8cm,∴AD=AB﹣BD=2cm.又∵M、N分别是线段AC、AD的中点,∴AM=4cm,AN=1cm,∴MN=AM﹣AN=3cm.。
2016-2017学年山东省聊城市临清市七年级(上)期中数学试卷一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对2.(3分)今年3月5日,李克强总理在《政府工作报告》中指出,到2020年,我国经济总量将超过90万亿元,90万亿元用科学记数法表示为()A.9×1011元B.90×1010元C.9×1012元D.9×1013元3.(3分)下列说法错误的是()A.直线l经过点AB.直线a,b相交于点AC.点C在线段AB上D.射线CD与线段AB有公共点4.(3分)下列各组数中,相等的是()A.(﹣2)2与﹣24B.﹣25与(﹣2)5C.(﹣1)3与(﹣1)4D.43与34 5.(3分)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC6.(3分)下列各数﹣3,0,(﹣)2,,2007,+1.99,﹣(﹣8),|﹣|中,正分数有()A.3个 B.4个 C.5个 D.6个7.(3分)在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a+b>0 B.a﹣b<0 C.ab<0 D.|a|>|b|8.(3分)如图所示:C、D是线段AB上两点,若AB=10cm,BC=7cm,C为AD 中点,则BD=()A.3.5cm B.6cm C.4cm D.3cm9.(3分)已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.210.(3分)如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6 B.﹣6 C.D.11.(3分)2条直线最多有1个交点,3条直线最多有3个交点,4条直线最多有6个交点,…由此猜想,8条直线最多有()个交点.A.32 B.16 C.28 D.4012.(3分)下列说法中,正确的个数有()①﹣a一定是负数;②|﹣a|一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;⑥如果两个数的和为零,那么这两个数一定是一正一负.A.1个 B.2个 C.3个 D.4个二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果)13.(3分)莹莹同学的座右铭是“态度决定一切”,她将这几个字写在一个正方体纸盒的各个面上,其表面展开图如图,那么在该正方体中,与“一”字相对的面上的字是.14.(3分)比﹣3大而比2小的所有整数的和为.15.(3分)已知线段AB和CD,如果将CD移动到AB的位置,使点C与点A重合,CD与AB叠合,如果点D在AB的延长线上,那么AB CD.(填“>”、“<”或“=”)16.(3分)计算|3.14﹣π|﹣π的结果是.17.(3分)按如图所示的程序进行计算,如果第一次输入的数是30,而结果不大于100,就把结果作为输入的数再进行第二次运算,直到符合要求为止.输出的结果为.三、解答题(本大题共8小题,共69分,解答要写出必要的文字说明,证明过程或演算步骤)18.(12分)计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣0.5﹣(﹣3)+2.75﹣7;(3)(+﹣)×(﹣36);(4)﹣14﹣(﹣5)×+(﹣2)3÷|﹣32+1|19.(8分)如图,在同一平面内有四个点A、B、C、D①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.20.(6分)把下列各数在数轴上表示出来,并用“<”将它们连接起来.3,﹣1.5,0,2.5,﹣3.21.(5分)|a|=4,|b|=5,ab<0,求a+b的值.22.(8分)比较下列各组数的大小.(1)与;(2),,,0.23.(8分)有理数a、b互为相反数,c、d互为倒数,数e在数轴上所表示的点到原点的距离是3,求a+b﹣﹣e的值.24.(10分)某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,成绩记录如下:+10,﹣2,+15,+8,﹣13,﹣7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测小组成员中得分最高与最低相差多少分?25.(12分)如图,已知线段AB上有两点C、D,且AC=BD,M,N分别是线段AC,AD的中点,若AB=acm,AC=BD=bcm,且a、b满足(a﹣10)2+|﹣4|=0.(1)求a、b的值;(2)求线段MN的长度.2016-2017学年山东省聊城市临清市七年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对【解答】解:笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为点动成线.故选:A.2.(3分)今年3月5日,李克强总理在《政府工作报告》中指出,到2020年,我国经济总量将超过90万亿元,90万亿元用科学记数法表示为()A.9×1011元B.90×1010元C.9×1012元D.9×1013元【解答】解:90万亿=90000000000000=9×1013,故选:D.3.(3分)下列说法错误的是()A.直线l经过点AB.直线a,b相交于点AC.点C在线段AB上D.射线CD与线段AB有公共点【解答】解:A、由图可得,点A在直线l上,故直线l经过点A;B、由图可得,点A为直线a,b的公共点,故直线a,b相交于点A;C、由图可得,点C在线段AB的上方,故点A不在线段AB上,即C选项错误;D、由图可得,射线CD与线段AB有交点,故射线CD与线段AB有公共点.故选:C.4.(3分)下列各组数中,相等的是()A.(﹣2)2与﹣24B.﹣25与(﹣2)5C.(﹣1)3与(﹣1)4D.43与34【解答】解:A、(﹣2)2=4,﹣24=﹣16,不相等;B、﹣25=(﹣2)5=﹣32,相等;C、(﹣1)3=﹣1,(﹣1)4=1,不相等;D、43=64,34=81,不相等,故选:B.5.(3分)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC【解答】解:A、根据线段的延长线的概念,则BA=BC﹣AC,故错误;B、根据线段的和的计算,正确;C、根据两点之间,线段最短,显然正确;D、根据两点之间,线段最短,显然正确.故选:A.6.(3分)下列各数﹣3,0,(﹣)2,,2007,+1.99,﹣(﹣8),|﹣|中,正分数有()A.3个 B.4个 C.5个 D.6个【解答】解:(﹣)2=,|﹣|=;所以正分数有:(﹣)2,,+1.99,|﹣|,共4个.故选:B.7.(3分)在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a+b>0 B.a﹣b<0 C.ab<0 D.|a|>|b|【解答】解:由图可知,b<0<a,且|b|>|a|.A、b+a<0,此选项错误;B、a﹣b>0,此选项错误;C、ab<0,此选项正确;D、|b|>|a|,此选项错误.故选:C.8.(3分)如图所示:C、D是线段AB上两点,若AB=10cm,BC=7cm,C为AD 中点,则BD=()A.3.5cm B.6cm C.4cm D.3cm【解答】解:∵AB=10cm,BC=7cm∴AC=3cm又∵C为AD中点∴AD=6cm∴BD=10﹣6=4cm.故选:C.9.(3分)已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.2【解答】解:由题意知:a=1,b=﹣1,c=0;所以a+b+|c|=1﹣1+0=0.故选:B.10.(3分)如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6 B.﹣6 C.D.【解答】解:2⊗(﹣3)==6.故选:A.11.(3分)2条直线最多有1个交点,3条直线最多有3个交点,4条直线最多有6个交点,…由此猜想,8条直线最多有()个交点.A.32 B.16 C.28 D.40【解答】解:令n条直线最多交点个数为M:两条相交直线最多有1个交点,即n=2,M=1,三条直线最多有3个交点,即n=3,M=3,四条直线最多有6个交点点,即n=4,M=6,五条直线最多有10个交点,即n=5,M=10,…则n条直线最多交点个数M=1+2+3+4+…+(n﹣1)=,当n=8时,=28,故选:C.12.(3分)下列说法中,正确的个数有()①﹣a一定是负数;②|﹣a|一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;⑥如果两个数的和为零,那么这两个数一定是一正一负.A.1个 B.2个 C.3个 D.4个【解答】解:∵如果α为负数时,则﹣α为正数,∴﹣α一定是负数是错的.∵当a=0时,|﹣a|=0,∴|﹣a|一定是正数是错的.∵倒数等于它本身的数只有±1,∴③对.∵绝对值都等于它本身的数是非负数,不只是1,∴绝对值等于它本身的数是1的说法是错误的.两个负有理数的和小于其中每一个加数,∴⑤错误.如果两个数的和为零,那么这两个数可能为0,∴⑥错误.所以正确的说法共有1个.故选:A.二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果)13.(3分)莹莹同学的座右铭是“态度决定一切”,她将这几个字写在一个正方体纸盒的各个面上,其表面展开图如图,那么在该正方体中,与“一”字相对的面上的字是度.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“态”与“定”是相对面,“度”与“一”是相对面,“决”与“切”是相对面.故答案为:度.14.(3分)比﹣3大而比2小的所有整数的和为﹣3.【解答】解:比﹣3大而比2小的所有整数有﹣3,﹣2,﹣1,0,1,2,﹣3+(﹣2)+(﹣1)+0+1+2=﹣3,故答案为:﹣3.15.(3分)已知线段AB和CD,如果将CD移动到AB的位置,使点C与点A重合,CD与AB叠合,如果点D在AB的延长线上,那么AB<CD.(填“>”、“<”或“=”)【解答】解:如图所示,AB<CD,故答案为:<.16.(3分)计算|3.14﹣π|﹣π的结果是﹣3.14.【解答】解:|3.14﹣π|﹣π=π﹣3.14﹣π=﹣3.14.故答案为:﹣3.14.17.(3分)按如图所示的程序进行计算,如果第一次输入的数是30,而结果不大于100,就把结果作为输入的数再进行第二次运算,直到符合要求为止.输出的结果为120.【解答】解:把x=30代入得:30×|﹣|÷[﹣(﹣)2]=15÷(﹣)=﹣60<100,把x=﹣60代入得:(﹣60)×÷(﹣)=﹣30×(﹣4)=120>100,则输出结果为120,故答案为:120三、解答题(本大题共8小题,共69分,解答要写出必要的文字说明,证明过程或演算步骤)18.(12分)计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣0.5﹣(﹣3)+2.75﹣7;(3)(+﹣)×(﹣36);(4)﹣14﹣(﹣5)×+(﹣2)3÷|﹣32+1|【解答】解:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9)=﹣3﹣4﹣11+9=﹣18+9=﹣9;(2)=(﹣0.5﹣7)+(3.25+2.75)=﹣8+6=﹣2;(3)=﹣×36﹣×36+×36=﹣18﹣30+21=﹣27;(4)=﹣1+2﹣8÷|﹣9+1|=﹣1+2﹣8÷8=﹣1+2﹣1=0.19.(8分)如图,在同一平面内有四个点A、B、C、D①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.【解答】解:如图所示.20.(6分)把下列各数在数轴上表示出来,并用“<”将它们连接起来.3,﹣1.5,0,2.5,﹣3.【解答】解:把各数表示在数轴上,如图所示:则用“<”将它们连接起来为:﹣3<﹣1.5<0<2.5<3.21.(5分)|a|=4,|b|=5,ab<0,求a+b的值.【解答】解:∵|a|=4,|b|=5,ab<0,∴a=4,b=﹣5;a=﹣4,b=5,则a+b=﹣1或1.22.(8分)比较下列各组数的大小.(1)与;(2),,,0.【解答】解:(1)∵|﹣|==,|﹣|==,∴﹣<﹣;(2)∵﹣|﹣|=﹣,而|﹣|==,|﹣|==,∴﹣<﹣,∴,,,0的大小关系为:﹣<﹣|﹣|<0<.23.(8分)有理数a、b互为相反数,c、d互为倒数,数e在数轴上所表示的点到原点的距离是3,求a+b﹣﹣e的值.【解答】解:根据题意得:a+b=0,cd=1,e=±3.当e=3时,原式=0﹣1﹣3=﹣4;当e=﹣3时,原式=0﹣1+3=2.24.(10分)某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,成绩记录如下:+10,﹣2,+15,+8,﹣13,﹣7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测小组成员中得分最高与最低相差多少分?【解答】解:(1)根据题意得:80+15=95(分),则成绩最好为95分;(2)根据题意得:10﹣2+15+8﹣13﹣7=11(分),则超过11分;(3)根据题意得:最高分为80+15=95(分),最低分为80﹣13=67(分),则最高分与最低分相差为95﹣67=28(分).25.(12分)如图,已知线段AB上有两点C、D,且AC=BD,M,N分别是线段AC,AD的中点,若AB=acm,AC=BD=bcm,且a、b满足(a﹣10)2+|﹣4|=0.(1)求a、b的值;(2)求线段MN的长度.【解答】解:(1)∵(a﹣10)2+|﹣4|=0.∴a﹣10=0,﹣4=0,∴a=10,b=8.(2)∵BD=AC=8cm,∴AD=AB﹣BD=2cm.又∵M、N分别是线段AC、AD的中点,∴AM=4cm,AN=1cm,∴MN=AM﹣AN=3cm.。