(完整)人工智能复习总结讲解,推荐文档
- 格式:doc
- 大小:2.19 MB
- 文档页数:29
可编辑修改精选全文完整版《人工智能导论》期末复习一、题型:填空题、简答题、计算题、论述题二、复习重点:第一章:1.什么是人工智能?人工智能的三种观点分别是什么?2.实现人工智能的技术路线是哪四种?3.人工智能要研究的三个主要问题是什么?4.人工智能有哪些主要研究领域?第二章:1.什么是知识?何谓知识表示?2.用谓词逻辑表示法表示猴子摘香蕉问题。
3.产生式系统推理机的推理形式有哪三种?4.产生式系统一般由哪三个基本部分组成?5.用语义网络表示:“苹果树枝繁叶茂,上结了很多苹果,有大的,也有小的,有红的,也有绿的” 。
6.用与 / 或树方法表示三阶Hanoi 塔问题。
第三章:1.推理的含义是什么?2.应用归结原理求解下列问题:任何兄弟都有同一个父亲, John 和Peter 是兄弟,且 John 的父亲是 David ,问 Peter 的父亲是谁?第四章:1.可信度方法:例 4.1 ,例 4.22.主观 Bayes 方法:例 4.8 ,例 4.93.证据理论中描述证据和结论的不确定性采用哪两个函数度量?第五章:1.什么叫搜索?搜索的两层含义是什么?2.用全局最佳优先搜索方法求解以下八数码问题。
3.用代价树的深度优先搜索求解下面的推销员旅行问题。
第六章:1.什么是机器学习?机器学习研究的目标是什么?研究机器学习的意义何在?2.机器学习有哪些主要学习策略?3.机器学习系统的基本模型包含哪四个基本环节?4.实例学习的含义是什么?它包含哪两个空间模型?对规则空间进行搜索的方法有几种?第七章:1.什么是自然语言理解?自然语言理解过程有哪些层次?各层次的功能如何?2.对汉语语料库加工的方法是什么?汉语自动分词的方法有哪些?其难点何在?第八章:1.什么是专家系统?它有哪些基本特点?一般专家系统由哪些基本部分构成?2.知识获取的主要任务是什么?3.有哪几类专家系统开发工具?各有什么特点?第九章:1.解答 B-P 学习算法的流程图,并说明其优缺点。
《人工智能导论》期末复习知识点
人工智能导论知识点总结
一、定义:
人工智能(Artificial Intelligence,AI)是指研究如何实现机器的智能,即使用计算机来模拟或提高人类的智能表现和能力。
基于此,人工智能的主要任务是解决一些超出传统计算能力的问题,其中包括学习、推理和解决一些挑战。
二、技术:
人工智能技术可分为三个主要技术领域:
1、机器学习:机器学习是一种研究机器如何学习,并从这些学习中学习及其反馈环境的解决实际问题的学科。
包括规则学习、支持向量机以及深度学习。
2、自然语言处理:自然语言处理是指人工智能技术在处理人类自然语言的理解和翻译方面的应用研究。
它将注重语言应用的学习、理解、表达和使用,以及语言识别、概念识别和分析。
3、计算机视觉:计算机视觉是指使用计算机的视觉系统来处理可视化的图像、图片、视频信息,以及关于图像的相关内容的研究。
它是一种智能系统,包括图像处理、识别和分析等功能。
三、应用:
人工智能在各行各业都有广泛的应用,有助于改善工作效率,提高工作质量,提升企业竞争力,节省成本。
1、机器人:工业机器人、服务机器人等用于工厂生产线和服务行业,可以大大提高工作效率。
人工智能第一章1、什么是人工智能?从学科角度来看:人工智能是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模仿和执行人脑的某些智能功能,并开发相关理论和技术。
从能力角度来看:人工智能是智能机器所执行的通常与人类智能有关的功能,如判断、推理、证明、识别、感知、理解、设计、思考、规划、学习和问题求解等思维活动。
2、物理符号系统的六种基本功能信息处理系统又叫符号操作系统(Symbol Operation System)或物理符号系统(Physical Symbol System)。
一个完善的符号系统应具有下列6种基本功能:(1)输入符号(input);(2)输出符号(output);(3)存储符号(store);(4)复制符号(copy);(5)建立符号结构:通过找出各符号间的关系,在符号系统中形成符号结构;(6)条件性迁移(conditional transfer):根据已有符号,继续完成活动过程。
人和计算机具备这6种功能。
3、知识表示(Knowledge Representation)主要方法有:状态空间法、问题归约法、谓词逻辑法、语义网络法、框架表示法、本体表示法、过程表示法、神经网络表示法等。
第二章1、谓词逻辑。
2、设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。
该船的负载能力为两人。
在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。
他们怎样才能用这条船安全地把所有人都渡过河去?答:设X:传教士人数,Y:野人人数;设D(X,Y) 为运输过程,当X,Y为正时,表示去程;当X,Y为负时,表示返程。
另外还必须满足:,(X为0时除外)第三章1、1)宽度优先搜索定义: 以接近起始节点的程度逐层扩展节点的搜索方法。
特点:一种高代价搜索,但若有解存在,则必能找到它。
2)深度优先搜索定义:首先扩展最新产生的(即最深的)节点。
与宽度优先搜索算法最根本的不同在于:将扩展的后继节点放在OPEN表的前端。
实用文档人工智能第一章1 、智能( intelligence)人的智能是他们理解和学习事物的能力,或者说,智能是思考和理解能力而不是本能做事能力。
2 、人工智能(学科)人工智能研究者们认为:人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。
3 、人工智能(能力)人工智能(能力)是智能机器所执行的通常与人类智能有关的智能行为,这些智能行为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、行动和问题求解等活动。
4 、人工智能:就是用人工的方法在机器上实现的智能,或者说,是人们使用机器模拟人类的智能。
5、人工智能的主要学派:符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
代表人物有纽厄尔、肖、西蒙和尼尔逊等。
连接主义:又称仿生学派或生理学派,其原理主要为神经网络及神经网络间的连接机制与学习算法。
行为主义:又称进化主义或控制论学派,其原理为控制论及感知—动作模式控制系统。
6 、人类认知活动具有不同的层次,它可以与计算机的层次相比较,见图思维策略计算机程序计算机语言初级信息处理生理过程计算机硬件人类计算机图:人类认知活动与计算机的比认知活动的最高层级是思维策略,中间一层是初级信息处理,最低层级是生理过程,即中枢神经系统、神经元和大脑的活动,与此相对应的是计算机程序、语言和硬件。
研究认知过程的主要任务是探求高层次思维决策与初级信息处理的关系,并用计算机程序来模拟人的思维策略水平,而用计算机语言模拟人的初级信息处理过程。
7 、人工智能研究目标为:1、更好的理解人类智能,通过编写程序来模仿和检验的关人类智能的理论。
2、创造有用和程序,该程序能够执行一般需要人类专家才能实现的任务。
一般来说,人工智能的研究目标又可分为近期研究目标和远期研究目标两种。
人工智能重点知识总结
人工智能(Artificial Intelligence,简称AI)是一种模拟人类智
能的技术,包括机器研究、自然语言处理、计算机视觉等领域。
下
面是人工智能的重点知识总结:
1. 机器研究
机器研究是人工智能的重要分支,通过让计算机从数据中研究
和改进,来实现自主完成任务。
常见的机器研究算法包括决策树、
支持向量机、神经网络等。
机器研究在图像识别、语音识别、推荐
系统等领域有广泛应用。
2. 自然语言处理
自然语言处理是研究计算机与人类自然语言之间的交互的领域。
它包括文本分类、机器翻译、情感分析等任务。
自然语言处理的技
术可以帮助计算机理解和处理人类语言,从而实现智能的对话和交流。
3. 计算机视觉
计算机视觉是研究如何使计算机理解和解释图像和视频的领域。
它包括图像分类、目标检测、图像生成等任务。
计算机视觉的应用
非常广泛,包括人脸识别、车牌识别、图像搜索等。
4. 深度研究
深度研究是一种机器研究的方法,通过构建具有多个隐层的神
经网络,使计算机可以从大量数据中研究特征和模式。
深度研究在
人脸识别、语音识别等领域取得了重大突破,被广泛应用于各个行业。
5. 强化研究
强化研究是一种通过试错和反馈机制来训练智能体的研究方法。
智能体通过与环境交互,根据奖励信号来调整自己的行为。
强化研
究在游戏、机器人等领域有重要应用。
以上是人工智能的重点知识总结,希望对您有所帮助。
人工智能重点总结(正式版).pdf 人工智能重点总结一、人工智能概述人工智能(ArtificialIntelligence,AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,旨在生产出一种能以人类智能相似的方式做出反应的智能机器。
人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理、专家系统等。
二、人工智能发展历程人工智能的发展经历了多个阶段。
最初,人工智能的概念和理论开始萌芽,并在20世纪50年代达成了初步的共识。
从20世纪60年代开始,人工智能进入了第一个繁荣期,但这个阶段的人工智能技术还比较初级。
在20世纪70年代,人工智能遭遇了瓶颈期,因为当时的计算机技术和算法无法满足人工智能的发展需求。
直到20世纪80年代,随着计算机技术的进步和神经网络的提出,人工智能再次迎来了发展高峰。
进入21世纪,随着大数据和云计算技术的发展,人工智能得到了更广泛的应用和发展。
三、人工智能的技术和应用人工智能的技术包括机器学习、深度学习、自然语言处理、计算机视觉等。
机器学习是一种通过让机器从数据中学习规律和模式,从而完成特定任务的方法。
深度学习是机器学习的一种,通过构建深度神经网络来实现。
自然语言处理是一种将自然语言转化为计算机语言的方法,使得计算机能够理解和处理自然语言。
计算机视觉是一种通过图像和视频等视觉信息进行识别和分析的技术。
人工智能的应用非常广泛,包括机器人、智能家居、自动驾驶、医疗保健、金融等。
人工智能在机器人领域的应用可以实现自主行动和智能交互。
在智能家居领域,人工智能可以提高家居设备的智能化程度,提高生活质量和节约能源。
在自动驾驶领域,人工智能可以实现车辆的自主驾驶和安全驾驶。
在医疗保健领域,人工智能可以帮助医生进行疾病诊断和治疗计划的制定。
在金融领域,人工智能可以进行风险评估和投资策略的制定等。
四、人工智能的未来发展随着技术的不断进步和发展,人工智能的未来发展前景非常广阔。
人工智能知识点总结
一、AI技术的分类
1、模式识别
模式识别是人工智能的基础,主要处理有形实体及其模式之间的关系,大致可分为结构模式识别与表示模式识别。
结构模式识别以特征提取作为
基础,其拟合方式通常包括统计模型、模板匹配、算法拼接等,表示模式
识别则基于抽象表示,其研究关注如何用可以有效计算的抽象表示实体以
及它们之间的关系,包括深度学习、半监督学习、概率图模型等。
2、机器学习
机器学习是人工智能的重要研究领域,主要关注如何让机器通过数据
发现规则,从而做出智能化决策和推理。
它包括规则学习、学习、聚类学习、联合学习及其他未知学习方法,在机器学习的基础上,还有生成式模型、强化学习等方法。
3、计算机视觉
计算机视觉是人工智能的重要研究分支,它的目标是使计算机能够理
解图像和视频信息,大致可以归纳为图像分类与识别、图像检索、目标检
测与跟踪、图像分割、视频识别、视觉导航等。
4、自然语言处理
自然语言处理主要关注如何让计算机能够理解自然语言文本,主要包
括文本分析、语义分析、情感分析、语音识别等。
5、机器人技术。
人工智能重点总结
一、人工智能概述
人工智能(Artificial Intelligence,简称AI)是指以计算机为基础,使用人工智能和人工智能技术对动物、人类、机器人、系统等进行智能控制和自主操作的一组系统。
它的最终目标是开发机器具备人类智能,即机器具有识别、判断、分析、规划和自主行动等功能,给人们创造更优质的生活环境。
二、人工智能发展历程
1960年,丹麦数学家斯诺提出了AI诞生的第一个理论:可以使用有限的算法在有限的时间内解决任何复杂的问题。
1966年,美国计算机科学家斯坦福大学的教授约翰·古德里安提出了人工智能,被定义为“利用自然语言处理、机器视觉、语音识别、机器学习和机器思维等技术,使计算机具有人类智慧的研究领域”。
1976年,经美国国家科学基金会联合基金会的资助,美国麻省理工学院正式开设人工智能课程。
1984年,英国著名科学家克劳斯·斯特鲁普提出了“模式识别”的概念,详细定义了人工智能的基本概念和技术细节,并提出了人工智能的发展目标。
1989年,伯克利大学计算机与科学研究所的英国科学家山德森将智能机器比作同位素,开发出观察、建模、推理和学习的智能机器,发表的《机器智能:它的结构。