燃烧热的测定
- 格式:docx
- 大小:122.67 KB
- 文档页数:10
实验报告燃烧热的测定实验报告:燃烧热的测定一、实验目的本次实验的主要目的是准确测定某些物质的燃烧热,通过实验操作和数据处理,深入理解燃烧热的概念及其在热力学中的重要性。
同时,掌握量热计的使用方法和相关实验技能,提高实验数据的处理和分析能力。
二、实验原理燃烧热是指 1 摩尔物质完全燃烧时所放出的热量。
在恒压条件下测量的燃烧热称为恒压燃烧热(Qp),在恒容条件下测量的燃烧热称为恒容燃烧热(Qv)。
对于理想气体,Qp = Qv +ΔnRT,其中Δn 为反应前后气体物质的量的变化,R 为气体常数,T 为反应温度。
本实验中,采用氧弹式量热计来测量燃烧热。
量热计内装有一定量的水,样品在氧弹中燃烧放出的热量使量热计和水的温度升高。
根据水的温升、量热计的热容以及样品的质量,可计算出样品的燃烧热。
三、实验仪器与试剂1、仪器氧弹式量热计压片机电子天平贝克曼温度计氧气钢瓶点火丝2、试剂苯甲酸(标准物质)待测物质(如萘)四、实验步骤1、样品准备用电子天平准确称取约 10g 苯甲酸,在压片机上压成片状。
称取约 08g 待测物质(萘),同样压片处理。
2、量热计准备检查氧弹的气密性,确保其完好无损。
向量热计内加入一定量的去离子水,准确测量水的质量。
3、安装样品将压好的样品片放在氧弹的坩埚内,用点火丝连接好。
拧紧氧弹盖,充入氧气至一定压力。
4、测量初温将氧弹放入量热计中,插入贝克曼温度计,搅拌均匀,测量体系的初始温度。
5、点火燃烧接通点火电路,点火使样品燃烧。
6、测量终温观察温度变化,待温度上升至最高点后,继续测量一段时间,以确保温度稳定。
记录最终温度。
7、重复实验对同一待测物质进行至少两次平行实验,以提高数据的准确性。
五、实验数据处理1、苯甲酸燃烧热的测定根据苯甲酸燃烧前后的温度变化(ΔT1)、水的质量(m1)、量热计的热容(C),计算苯甲酸的燃烧热(Q1)。
2、萘燃烧热的测定同样根据萘燃烧前后的温度变化(ΔT2)、水的质量(m2)、量热计的热容(C),计算萘的燃烧热(Q2)。
燃烧热的测定一、实验目的●使用氧弹式量热计测定固体有机物质(萘)的恒容燃烧热,并由此求算其摩尔燃烧热。
●了解氧弹式量热计的结构及各部分作用,掌握氧弹式量热计的使用方法,熟悉贝克曼温度计的调节和使用方法●掌握恒容燃烧热和恒压燃烧热的差异和相互换算二、实验原理摩尔燃烧焓∆c H m 恒容燃烧热Q V∆r H m = Q p ∆r U m = Q V对于单位燃烧反应,气相视为理想气体∆c H m = Q V +∑νB RT=Q V +△n(g)RT氧弹中放热(样品、点火丝)=吸热(水、氧弹、量热计、温度计)待测物质QV-摩尔质量ε-点火丝热值bx-所耗点火丝质量q-助燃棉线热值cx-所耗棉线质量K-氧弹量热计常数∆Tx-体系温度改变值三、仪器及设备标准物质:苯甲酸待测物质:萘氧弹式量热计1-恒热夹套2-氧弹3-量热容器4-绝热垫片5-隔热盖盖板6-马达7,10-搅拌器8-伯克曼温度计9-读数放大镜11-振动器12-温度计四、实验步骤1.量热计常数K的测定(1) 苯甲酸约1.0g,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量W1和W2(2)把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线(3) 盖好氧弹,与减压阀相连,充气到弹内压力为1.2MPa为止(4)把氧弹放入量热容器中,加入3000ml水(5) 调节贝克曼温度计,水银球应在氧弹高度约1/2处(6) 接好电路,计时开关指向“1分”,点火开关到向“振动”,开启电源。
约10min后,若温度变化均匀,开始读取温度。
读数前5s振动器自动振动,两次振动间隔1min,每次振动结束读数。
(7)在第10min读数后按下“点火”开关,同时将计时开关倒向“半分”,点火指示灯亮。
加大点火电流使点火指示灯熄灭,样品燃烧。
灯灭时读取温度。
(8)温度变化率降为0.05°C·min-1后,改为1min计时,在记录温度读数至少10min,关闭电源。
实验一燃烧热的测定一、实验目的1.明确燃烧热的定义,了解QV与Qp的差别。
2.通过萘的燃烧热的测量,了解氧弹式量热计中主要部件的作用,掌握量热计的使用技术。
3.学会雷诺图解法。
二、实验原理燃烧热:1mol物质完全燃烧时所放出的热量。
恒容条件下测得的燃烧热称为恒容燃烧热(QV),QV=ΔU。
恒压条件下测得的燃烧热为恒压燃烧热(Qp),Qp=ΔH。
若把参加反应的气体和生成的气体作为理想气体处理,则存在如下关系式:Qp=QV+ΔnRT。
Δn为反应产物中气体物质的总摩尔数与反应物中气体物质总摩尔数之差;R为气体常数;T为反应前后绝对温度。
本实验采用氧氮式量热计测量萘的燃烧热。
氧弹是一具特制的不锈钢容器,如图4-1所示。
为保证样品在其中迅速而完全地燃烧,需要用过量的强氧化剂,通常氧弹中充以氧气作为氧化剂。
实验时氧弹是旋转在装有一定量水的不锈钢桶中,水桶外是空气隔热层,再外面是恒定的水夹套,如图4-2所示。
样品和点火丝在氧弹中燃烧所放出的热大部分被不锈钢桶中的水所吸收,其余部分为氧弹、水桶、搅拌器、感温探头等吸收。
在热量计没有热量交换的情况下,可以写出以下平衡关系“丝丝样Q m Q m T C v if +=∆(1)ifC :量热计的热容,包括氧弹、量热计、水的热容。
1-⋅g JT ∆:准确温差。
K样m :样品的质量。
gvQ :所求样品的恒容燃烧热。
1-⋅g J丝m :燃烧掉的点火丝的质量。
g丝Q :点火丝的燃烧热。
1-⋅g J已知:实验所用点火丝丝Q =-41001-⋅g J要测量样品的v Q ,必须先知道热量计的ifC ,测定的方法就是在一定温度下,用已知燃烧热的标准物质(苯甲酸-26477=v Q 1-⋅g J ),在相同条件下进行实验,测量其温差,代入(1)式后,计算出热量计的ifC 。
关于真实温差的求算:氧弹量热计不可能是严格绝热的。
在燃烧后升温阶段,系统和环境间难免要发生热交换,因而温度计读得的温差并非真实温差。
燃烧热的测定Ⅰ 实验目的1、掌握燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别及相互关系;2、熟悉热量计中主要部分的原理和作用,掌握氧弹热量计的实验技术;3、用氧弹热量计测定苯甲酸和萘的燃烧热;4、学会雷诺图解法校正温度改变值。
Ⅱ 实验原理 1、燃烧与量热根据热化学的定义,1mol 物质完全氧化时的反应热称作燃烧热。
燃烧热的测定,除了有其实际应用价值外,还可以用于求算化合物的生成热、键能等。
量热法是热力学的一种基本实验方法。
在恒容或恒压条件下可以分别测得恒容燃烧热Q V 和恒压燃烧热Q p 。
由热力学第一定律可知,Q V 等于体积内能变化∆U ;Q p 等于其焓变∆H 。
若把参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在以下关系:Q p = Q V + ∆nRT 2、氧弹热量计氧弹热量计的基本原理是能量守恒定律。
样品完全燃烧后释放的能量使得氧弹本身及其周围的介质和热量计有关附件的温度升高 ,则测量介质在燃烧前后体系温度的变化值,就可求算该样品的恒容燃烧热。
其关系式如下:T C C W qb Q Mw J V ∆+=--)(水水样Ⅲ 仪器 试剂氧弹量热计 1套 万用表 1个 数字式精密温差测量仪 1台 案秤 1台 氧气钢瓶 1只 秒表 1个 氧气减压阀 1只 分析天平 1台 压片机 1台 引燃专用镍铬丝 塑料桶 1个 苯甲酸 剪刀 1把 萘Ⅳ 实验装置图Ⅴ实验步骤1、测定热量计的水当量1.1样品制作用分析天平称取大约1.15g左右的苯甲酸,在压片机上压成圆片。
用镊子将样品在干净的称量纸上轻击,除去表面松散粉末后再用分析天平称量,精确0.0001g。
1.2装样并充氧气打开氧弹盖,将氧弹内部擦干净。
测量金属小杯质量后,小心将样品片放置在金属小杯中部。
称取一定长度的引燃镍铬丝,在直径约2mm的万用电表笔上,将引燃镍铬丝的中段绕成螺旋形8圈。
将螺旋部分紧贴在样片的表面。
旋紧氧弹,将导气口与氧气钢瓶上的减压阀相连接。
燃烧热测定一、实验目的1、学会用氧弹热量计测定有机物燃烧热的方法。
2、明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别。
3、掌握用雷诺曲线法校正所测温差的方法。
4、掌握压片技术,熟悉高压钢瓶的使用方法。
学会用精密电子温差测量仪测定温度的改变值。
二、基本原理燃烧焓的定义:在指定的温度和压力下,lmol的物质完全燃烧生成指定产物的焓变,称该物质在此温度下的摩尔燃烧焓,记作H。
燃烧产物指定该化合物c m中C变为C02(g),H变为H2O(l),S变为SO2(g),N变为N2 (g),Cl变为HCl(aq),金属都成为游离状态等。
燃烧热的测定,除了有其实际应用价值外,还可用来求算化合物的生成热、化学反应的反应热和键能等,具有重要的理论价值。
量热方法是热力学的一个基本实验方法。
热量有Q p和Q v之分。
用氧弹热量计测得的是恒容燃烧热Q v;从手册上查到的燃烧热数值都是在298.15 K,1p条件下,即标准摩尔燃烧焓,属于恒压燃烧热Qp。
由热Q H。
若力学第一定律可知,在不做非膨胀功的条件下,v Q U;p把参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在以下关系:Q Q nRT(1)p v式中,△n为反应前后生成物和反应物中气体的物质的量之差;R为气体常数;T为反应的热力学温度(量热计的外桶温度,环境温度)。
在本实验中,在盛有2500ml水的容器中放入装有W克样品和氧气的密闭氧弹,使样品完全燃烧,放出的热量引起体系温度的上升。
根据能量守恒原理,用温度计测量温度的改变量,由下式求得Q v。
()vM Q C T T W终始(2)式中,M 是样品的摩尔质量(g.mol -1);C 为样品燃烧放热给水和仪器每升高1度所需要的热量,称为水当量(J.K -1)。
水当量的求法是用已知燃烧热的物质(本实验用苯甲酸)放在量热计中,测定和T 始和T 终,即可求出水当量C ;然后再用相同的方法对奈进行测定,测定和T 始和T 终,代入上式,便可求得其燃烧热。
燃烧热的测定1 引言 1.1实验目的1. 熟悉弹式量热计的原理、构造及使用方法。
2. 明确恒压燃烧热与恒容燃烧热的差别及相互关系。
3. 掌握温差测量的实验原理和技术。
4. 学会用雷诺图解法校正温度改变值。
1.2实验原理在指定温度及一定压力下,1mol 物质完全燃烧时的定压反应热,称为该物质在此温度下的摩尔燃烧热,记作△c H m 。
通常,完全燃烧是指C →CO 2(g ),H 2→H 2O (l ),S →SO 2(g ),而N 、卤素、银等元素变为游离状态。
由于在上述条件下△H =Q p ,因此△c H m 也就是该物质燃烧反应的等压热效应Q p 。
在实际测量中,燃烧反应在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q v (即燃烧反应的△c U m )。
若反应系统中的气体均为理想气体,根据热力学推导,Q p 和Q v 的关系为p V Q Q nRT =+∆ (1) 式中:T ——反应温度,K ;△n ——反应前后产物与反应物中气体的物质的量之差; R ——摩尔气体常数。
通过实验测得Q v 值,根据上式就可计算出Q p ,即燃烧热的值。
测量热效应的仪器称作量热计。
量热计的种类很多。
一般测量燃烧热用弹式量热计。
本实验所用量热计和氧弹结构如图2-2-1和图2-2-2所示。
实验过程中外水套保持恒温,内水桶与外水套之间以空气隔热。
同时,还对内水桶的外表面进行了电抛光。
这样,内水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成一个绝热体系。
弹式量热计的基本原理是能量守恒定律。
样品完全燃烧所释放的能量使得氧弹本身及周围的介质和量热计有关附件的温度升高。
测量介质在燃烧前后的变化值,就可求算该样品的恒容燃烧热。
V V V rmQ K T Q m Q m M ••=•∆--棉线棉线点火丝点火丝 (2) 式中:m ——为待测物的质量,kg ;r M ——为待测物的摩尔质量,k g ·mol -1;K ——仪器常数,k J ·℃-1 ;T ∆——样品燃烧前后量热计温度的变化值;V Q 棉线,V Q 点火丝——分别为棉线和点火丝的恒容燃烧热(-16736和-3243k J ·kg )m 棉线,m 点火丝——分别为棉线和点火丝的质量,kg ;先燃烧已知燃烧热的物质(如苯甲酸),标定仪器常数K ,再燃烧未知物质,便可由上式计算出未知物的恒容摩尔燃烧热,再根据(1)式计算出摩尔燃烧热。
燃烧热(焓)的测定【实验目的】1.用恒温式热量计测定萘的燃烧焓2.明确燃烧焓的定义,了解恒压燃烧热与恒容燃烧热的差别3.了解恒温式热量计中主要部分的作用,掌握恒温式热量计的实验技术4.学会雷诺图解法,校正温度改变值【实验原理】燃烧焓是指1mol物质在等温、等压下与氧进行完全氧化反应时的焓变。
“完全氧化”的意思是化合物中的元素生成较高级的稳定氧化物,如碳被氧化成CO2(气),氢被氧化成H2O (液),硫被氧化成SO(气)等。
燃烧焓是热化学中重要的基本数据,因为许多有机化合物的标准摩尔生成焓都可通过盖斯定律由它的标准摩尔燃烧焓及二氧化碳和水的标准摩尔生成焓求得。
通过燃烧焓的测定,还可以判断工业用燃料的质量等。
由上述燃烧焓的定义可知,在非体积功为零的情况下,物质的燃烧焓常以物质燃烧时的热效应(燃烧热)来表示,即ΔC H m=Q p·m。
因此,测定物质的燃烧焓实际就是测定物质在等温、等压下的燃烧热。
量热法是热力学实验的一个基本方法。
测定燃烧热可以在等容条件下,亦可以在等压条件下进行。
等压燃烧热(Q P)与等容燃烧热(Q V)之间的关系为:Q P=Q V+Δm(g)=Δξ∑v B(g)RT (2—1)或Q p·m=Q v·m+∑v B(g)RT式中,Q p·m或Q v·m均指摩尔反应热,∑v B(g)为气体物质化学计算数的代数和;Δξ为反应进度增量,Q p或Q v则为反应物质的量为Δξ时的反应热,Δm(g)为该反应前后气体物质的物质的量变化,T为反应的绝对温度。
测量其原理是能量守恒定律,样品完全燃烧放出的能量使热量计本身及其周围介质(本实验用水)温度升高,测量了介质燃烧前后温度的变化,就可以求算该样品的恒容燃烧热。
其关系如:Q v=-C vΔT (2-2)上式中负号是指系统放出热量,放热时系统的内能降低,而C v和ΔT均为正值。
系统除样品燃烧放出热量引起系统温度升高以外,其他因素:燃烧丝的燃烧,氧弹内N2和O2化合并溶于水中形成硝酸等都会引起系统温度的变化,因此在计算水当量及发热量时,这引起因素都必须进行校正,其校正值如下:(1)燃烧丝的校正:Cu-Ni合金丝:-3.138J·cm-1(2)酸形成的校正:(本实验此因素忽略)。
物理化学实验燃烧热的测定燃烧热是指物质在恒定压力下完全燃烧时释放或吸收的热量。
测定物质的燃烧热对于研究物质的性质、燃烧过程以及能量转化等方面有着重要的意义。
本文将介绍物理化学实验中燃烧热的测定方法及实验操作步骤。
一、实验原理物质的燃烧热可以通过燃烧反应的焓变来确定。
焓变是指在恒定压力下,反应过程中系统的热量变化。
燃烧反应通常可写为:物质A + O2 →产物其中A为被燃烧的物质,O2为氧气。
在完全燃烧状态下,反应中物质A测绝对燃烧热ΔH0为反应放出的能量。
ΔH0 = Q = mCpΔTΔH0为燃烧热,Q为吸热或放热量,m为物质A的质量,Cp为物质的定压比热容,ΔT为温度变化。
因此,测定物质的燃烧热可以通过测量温度的变化来获得。
通常使用强酸作为火焰初始温度的参比剂,并且将物质A置于绝热杯中,然后点燃A,利用燃烧释放的能量将水加热,并通过温度变化来计算燃烧热。
二、实验操作步骤1.实验器材准备:绝热容器、温度计、天平、火焰点火器、水槽等。
2.实验器材清洗:将使用的器材仔细清洗,确保没有残留物影响实验结果。
3.实验设备调整:调整绝热容器的蓄热性能,使其能够尽可能阻止热量的流失。
4.实验样品准备:将待测物质A称取适量,并记录其质量m1。
5.温度计校准:将温度计置于标准温度环境中,校准它的读数准确性。
6.绝热环境建立:将绝热容器放入水槽中,并检查是否存在漏气现象。
7.水槽温度调节:调节水槽内的水温至近似于室温。
8.实验数据记录:将待测物质A点燃,同时记录绝热容器的初始温度。
9.燃烧反应进行:将点燃的物质A以尽量均匀的速率燃烧,观察温度变化情况,直到温度基本稳定。
10.温度数据记录:记录绝热容器中水的温度随时间的变化情况。
11.数据处理:将温度数据绘制成曲线图,计算出最终温度变化ΔT。
12.计算燃烧热:根据实验原理,计算物质A的燃烧热ΔH0。
三、实验注意事项1.实验器材应干净整洁,以免影响实验结果。
2.实验样品应准确称量,以确保实验的准确性。
燃烧热实验测定不同物质的燃烧热值引言:燃烧热是指单位质量物质完全燃烧时释放出的热量。
燃烧热的测定对于认识物质的性质、研究燃烧反应机理以及工业生产具有重要意义。
本文将介绍燃烧热实验测定不同物质燃烧热值的方法和应用。
一、燃烧热测定方法1. 单位质量法单位质量法是最常用的燃烧热测定方法之一。
实验中,将待测物质与氧气完全燃烧,通过测量产生的热量和物质质量的比值来求得燃烧热值。
例如,对于液体物质的测定,通常可以使用热量计测量产生的热量,再除以物质的质量得到燃烧热值。
2. 完全燃烧法完全燃烧法是一种较为准确的燃烧热测定方法。
在实验中,将待测物质与适量的氧气充分混合后进行完全燃烧,通过测量温度的变化和进气和出气的体积来计算燃烧热值。
以液体物质为例,实验中常使用流量计测量进气和出气的体积,并通过温度计测量燃烧前后的温度变化,进而推算出燃烧热值。
三、应用举例燃烧热测定在各个领域都有广泛的应用。
下面以几种常见物质为例,介绍其燃烧热值的测定和应用。
1. 纯净石墨纯净石墨的燃烧热值可通过燃烧实验测定得到。
实验结果表明,每克纯净石墨的燃烧热值约为33.6千焦/克。
这一数值在材料研究和工程设计中具有重要应用,可用于计算石墨材料的能量储存性能。
2. 甲醇甲醇是一种常见的有机化合物,其燃烧热值对于燃料开发和利用具有重要意义。
实验测定结果显示,每克甲醇的燃烧热值约为22.7千焦/克。
这一数值可作为评估甲醇燃料的能量密度和燃烧效率的重要参考。
3. 石油石油是重要的化石燃料资源,其燃烧热值的测定对于能源开发和利用至关重要。
经过实验测定,可以得出每克石油的燃烧热值约为47.4千焦/克。
这一数值可用于石油储备评估、燃料设计以及气候变化研究等方面。
结论:燃烧热实验测定可以准确地得到不同物质的燃烧热值,为认识物质性质、研究燃烧反应机理以及工业生产提供了重要依据。
通过单位质量法和完全燃烧法,可以对不同物质进行燃烧热值的测定。
燃烧热值的测定结果在材料研究、工程设计、能源开发和利用等领域具有广泛的应用。
燃烧热的测定1 引言1.1 实验目的1、熟悉氧弹式量热计原理、构造及使用方法。
2、 明确恒压燃烧热与恒容燃烧热的差别及相互关系。
3、掌握温差测量的实验原理和技术。
4、学会用雷诺图解法校正温度改变值。
1.2 实验原理1、摩尔燃烧热:指在在指定温度和一定压力下,1mol 物质完全燃烧时的定压反应热,记做C m H ∆。
由于在该条件下p H Q ∆=(等压热效应),故C m p H Q ∆=。
2、恒容热效应V Q 与等压热效应p Q :若反应系统中的气体均为理想气体,由热力学推导得:p V Q Q nRT =+∆在实际测量中,燃烧反应在恒容条件下进行(如在氧弹式量热汁中进行),这样直接测得的是反应的恒容热效应V Q (即燃烧反应的C m H ∆)。
3、量热计:氧弹式量热计的外水套保持恒温,内水桶与外水套之间以空气隔热。
内水桶外表面进行了电抛光,这样内水桶及其内部的氧弹、测温器件、搅拌器和水便近似构成一绝热体系。
由能量守恒定律可得:V V V rmQ K T Q m Q m M =∆-- 棉线棉线点火丝点火丝 其中K 为仪器常数,单位1kJ C -︒,T ∆为样品燃烧前后量热计温度的变化值。
并且已知16736V Q =-棉线1kJ C -︒,3243V Q =-点火丝1kJ C -︒ 。
4、实验时,先燃烧已知燃烧热的物质(如苯甲酸),标定仪器常数K ,再燃烧未知物质,便可由上式计算出未知物的恒容摩尔燃烧热,再计算出摩尔燃烧热。
2 实验操作2.1 实验药品、仪器型号及测试装置示意图SR-1数显热量计控制器 长沙奔特仪器有限公司,神斧牌氧弹式量热计 长沙奔特仪器有限公司,2000 mL 容量瓶1个,1000 mL 容量瓶1个,水盆一个,压片机,镍丝,棉线,万用表,分析天平,剪刀,氧气瓶及减压阀公用。
萘(AR ),苯甲酸(AR )。
2.2 实验条件温度:16.2 ℃湿度:72.0%压强:103.5kPa2.3 实验操作步骤及方法要点1、仪器常数的测定打开氧气瓶总阀,打开减压阀,调节减压阀气压1 MPa左右。
TC C W Q l Q MW l v ∆+=⋅--)计水水样(燃烧热的测定一、目的要求1、用数字式氧弹热量计测定样品的燃烧热2、明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别3、了解热量计中主要部分的作用,掌握数字式氧弹热量计的实验技术 二、实验原理根据热化学的定义,1mol 物质完全氧化时的反应热称作燃烧热。
量热法是热力学的一个基本实验方法。
在恒温或恒压条件下,可以分别测得亨容燃烧热Q v 和恒压热容Q P 。
由热力学第一定律可知,Qv 等于体系内能ΔU 变化;等于其焓变ΔH 。
若把参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在以下关系:ΔH=ΔU+Δ(PV) -----------------------------------(1)QP = QV + ΔnRT ----------------------------------(2) 氧弹热量计的基本原理是能量守恒定律。
样品完全燃烧所释放的能量使得氧弹本身及其周围的介质和有关附件的温度升高。
测量介质在燃烧前后温度的变化值,就可以求算该样品的恒容燃烧热。
关系式如下:式中,W 样和M 分别为样品的质量和摩尔质量;QV 为样品的恒容燃烧热;l 和Ql 是引燃用铁丝的长度和单位长度燃烧热,W 水和C 水是以水为测量介质时,水的质量和比热容;C 计称为热量计的水当量,即除水之外,热量计升高1℃所需要的热量。
ΔT 为样品燃烧前后水温的变化值。
实际上,热量计于周围环境的热交换无法完全避免,它对温差测量值的影响可用雷诺温度校正图校正。
三、仪器与试剂四、实验步骤(1)仪器准备:开启ZDW-1A精密数字温差测量仪的电源开关,温度探头放入热量计外桶内。
开启计算机电源,进入Windows操作系统。
大烧杯中盛约800ml自来水,并放入3块冰块。
(2)样品准备:①剪取10cm长的点火丝,将其两端放入氧弹弹盖上的点火电极的槽缝内,滑下电极上方的套圈,将点火丝固定。
燃烧热的测定(定容量热法)一、实验目的:1.明确燃烧热的定义,了解定压燃烧热与定容燃烧热的差别;2.了解氧弹量热计的主要组成及作用,掌握氧弹量热计的操作技术;3.学会雷诺图解法,校正体系漏热引起的温度改变值;4.能够快速、熟练的测定燃烧热。
(技能要求:掌握HR-15A氧弹式热量计氧气钢瓶、氧气减压阀、充氧器、压片机的使用方法,实验数据的雷诺作图处理方法)二、实验原理:(一)热化学测量包括量热法和热分析法。
直接测定定容过程热效应Qy和定压过程热效应Q的实验方法称为量热法。
量热法是热化学测量中的基本方法,通常能直接测定的热效应,有物质的热容、溶解热、中和热、稀释热、燃烧热等;热效应的数据也常用于计算平衡常数和其他热力学量。
热分析法是在程序控制温度下,测量物质的物理性质与温度关系的测量技术,常用于绘制相图和测定某些物质的分子量。
(二)燃烧热: 1 mol物质完全被氧化所放出的热量。
在恒容条件下测得的燃烧热称为恒容燃烧热(Q v), 其值等于这个过程的内能变化(ΔU)Q v = – MC VΔT/m在恒压条件下测得的燃烧热称为恒压燃烧热(Q p),其值等于这个过程的热焓变化(ΔH)Q p = Q + ΔnRT在略去体系与环境的热交换的前提下,体系的热平衡关系为Q v = – M[(WC水+ C体系)ΔT – Q a L a– Q b L b]/m令 k = WC水+ C体系,则Q v = – M( kΔT – Q a L a– Q b L b)/M其中:M为燃烧物质的摩尔质量;m为燃烧物质的质量;Qv 为物质的定容燃烧热;ΔT为燃烧反应前后体系的真实差;W为水的质量;CC体系为量热计的水氧弹,水桶,贝克曼温度计,搅拌器水为水的比热容;的热容;Q a、Q b分别为燃烧丝,棉线热容;L a,L b分别为燃烧丝,棉线的长度。
在已知苯甲酸燃烧热值的情况下,我们通过实验可测出k的大小,用同样的方法我们就可以测出萘的燃烧热值Q v。
燃烧热的测定原理是什么燃烧热的测定原理是通过燃烧反应释放的热量来测定物质的燃烧热。
燃烧是物质与氧气或其他氧化剂发生剧烈的氧化反应,同时释放出大量的能量,即热量。
燃烧热是描述物质燃烧过程中所释放的能量的物理量。
燃烧热的测定原理基于热力学第一定律,即能量守恒定律,它指出能量无法被创造或破坏,只能从一种形式转化为另一种形式。
根据这个原理,我们可以测定物质的燃烧热。
在进行实验测定时,通常使用焦弧法来测定物质的燃烧热。
焦弧法是一种间接测定燃烧热的方法,它基于煤的燃烧热与焦化热之间的关系。
焦弧法首先要确定煤的燃烧热。
煤是一种常见的燃料,在燃烧过程中释放的热量可用于测定其他物质的燃烧热。
煤的燃烧热是通过焦化热来间接测定的。
焦化是煤在高温下分解的过程,它释放出的热量与煤的燃烧热相同。
因此,可以通过测定焦化热来确定煤的燃烧热。
在焦化实验中,将煤样放入燃烧室中,在高温下进行焦化反应。
燃烧室内部有电炉和电阻丝,通过控制电流来提供恒定的功率。
当煤样焦化时,释放出的热量会加热燃烧室,电阻丝的长度会发生变化,燃烧了的煤的质量会减少。
通过测量电阻丝的长度的变化,就可以计算出焦化热,并间接得到煤的燃烧热。
在知道了煤的燃烧热后,就可以用它来测定其他物质的燃烧热。
测定其他物质的燃烧热时,首先需要将待测物质与煤样一起放入燃烧室中,并在相同的温度下进行燃烧反应。
其中一个关键步骤是测量燃烧前后燃烧室的温度变化。
当待测物质和煤样发生燃烧反应时,释放的热量会加热燃烧室,导致温度上升。
通过测量燃烧前后温度的变化,可以计算出气室所吸收的总热量。
然后,通过计算煤的燃烧热和辅助热机做功的热量,可以得到待测物质的燃烧热。
计算公式如下:燃烧热= 总热量- 辅助热机做功的热量- 煤样的燃烧热这样,我们就可以通过实验测定出待测物质的燃烧热。
燃烧热的测定不仅可以帮助我们了解物质的能量释放能力,还可以用于燃料的选择和优化,以及理论计算的验证和修正。
总之,燃烧热的测定原理是通过测量燃烧反应释放的热量来间接测定物质的燃烧热。
题目:燃烧热的测定学院名称:化学与环境工程学院专业:化学工程与工艺班级:14化工2学号:***********名:**指导老师:***二〇一六年十一月目录一目的要求、实验原理·········3~4页二仪器试剂、实验步骤·········5~6页三数据处理、结果讨论·········6~9页四其他·········9~10页燃烧热的测定关键词:燃烧热、雷诺温度校正图一目的要求1、掌握燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别及相互关系;2、熟悉热量计中主要部件的原理和作用,掌握氧弹热量计的实验技术;3、用氧弹热量计测定苯甲酸和蔗糖的燃烧热;4、学会雷诺图解法校正温度改变值。
二基本原理1、燃烧与量热根据热化学的定义,1mol物质完全氧化时的反应热称为燃烧热。
所谓完全氧化,对燃烧产物有明确规定。
如有机化合物中的碳氧化成一氧化碳不能认为是完全氧化,只有氧化成二氧化碳才是完全氧化。
燃烧热的测定,除了有其实际应用价值外,还可以用于求算化合物的生成热、键能等。
量热法是热力学的一种基本实验方法。
在恒容或恒压条件下可以分别测得恒容燃烧热Qv和恒压燃烧热Qp。
由热力学第一定律可知,Qv等于体积内能变化ΔU;Qp等于其焓变ΔH。
若参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在以下关系:ΔH=ΔU+Δ(PV)Qp=Qv+ΔnRT式中Δn为反应前后反应物和生成物中气体的物质的量之差;R为摩尔气体常数;T为反应时的热力学温度。
热量计的种类很多,本实验所用的氧弹热量计是一种环境恒温式的热量计。
氧弹热量计测量装置如图1所示,图2是氧弹的剖面图。
图1 氧弹热量计测量装置示意图图2 氧弹剖面图2、氧弹热量计氧弹热量计的基本原理是能量守恒定律。
样品完全燃烧后所释放的能量使得氧弹本身及其周围的介质和热量计有关附件的温度升高,则测量介质在燃烧前后体系温度的变化值,就可求算该样品的恒容燃烧热。
其关系式如下:-m样Qv/M-l·Ql=(m水C水+C计)ΔT式中m样和M分别为样品的质量和摩尔质量;Qv为样品的恒容燃烧热;l和Ql 是引燃用铁丝的长度和单位长度燃烧热;m水和C水是以水作为测量介质时,水的质量和比热容;C计称为热量计的水当量,即除水外,热量计升高1℃所需的热量;ΔT为样品燃烧前后水温的变化值。
为了保证样品完全燃烧,氧弹中须充以高压氧气或其他氧化剂。
因此氧弹应有很好的密封性能,耐高压且耐腐蚀。
氧弹应放在一个与室温一致的恒温套壳中。
盛水桶与套壳之间有一个高度抛光的挡板,以减少热辐射和空气的对流。
3、雷诺温度校正图实际上,热量计与周围环境的热交换无法避免,它对温度测量值的影响可用雷诺温度校正图校正。
具体方法为:称取适量待测物质,估计燃烧后的可使水温上升1.5~2.0℃。
预先调解水温使其低于室温1.0℃左右。
按操作步骤进行测定,将燃烧前后观察所得的一系列水温和时间关系作图。
可得如图3所示的曲线。
图中b点意味着燃烧开始,热传入介质;c点为观察到的最高温度值;相当于室温的T点作水平线交曲线O点,过O点作垂线AB,再将ab线和dc线分别延长交AB 线于E、F两点,其间的温度差值即为经过校正的ΔT。
图中EE’为开始燃烧到体系温度上升至室温这段时间Δt1内,由环境辐射和搅拌引进的能量所造成的升温,故应予以扣除。
FF’是由温度升高到最高点c点这一段时间Δt2内,热量计向环境的热漏造成的温度降低,计算时必须考虑在内。
故可认为,EF两点的差值较客观地表示了样品燃烧引起的升温数值。
在某些情况下,热量计的绝热性能良好,热漏很小,而搅拌器功率较大,不断引进的能量使得曲线不出现极高温度点,如图4所示。
其校正方法与前述相似。
本实验采用数字式精密温差测量仪来测量温度差。
图3 绝热稍差情况下的雷诺温度校正图图4 绝热良好情况下的雷诺温度校正图三仪器试剂氧弹热量计1套万用表1个数字式精密温度差测量仪1台案秤(5kg)1台氧气钢瓶1只温度计(0~50℃)1支氧气减压阀1只小台钟1只压片机1台烧杯(1000ml)1只电炉(500W)1个药物天平1台塑料桶1个引燃专用铁丝直尺1把苯甲酸(分析纯)剪刀1把萘(分析纯)四实验步骤一测量热量计的水当量1、样品制作用药物天平称取大约0.9g左右的苯甲酸,在压片机上稍用力压成圆片。
用镊子将样品在干净的称量纸上轻击二、三次,出去表面粉末后在用分析天平准确称量。
2、装样并充氧气拧开氧弹盖,将氧弹内壁擦干净,特别是电极下端的不锈钢丝更应擦干净。
搁上金属小器皿,小心将样品片放置在小器皿中部。
剪取18cm长的引燃铁丝,在直径约3mm的铁钉上,将引燃铁丝的中段绕成螺旋形约5~6圈。
将螺旋部分紧贴在样品片的表面,两端如图2所示固定在电极上。
注意引燃铁丝不能与金属器皿想接触。
用万用电表检查两电极间电阻值,一般应不大于20Ω。
紧旋氧弹盖,卸下进气管口的螺栓,换接上导气管接头。
导气管的另外一端与氧气钢瓶上的减压阀连接。
打开钢瓶阀门,向氧弹中充入2MPa。
3、测量用案秤准确称取已被调节到低于室温1.0℃的自来水3kg于盛水桶内。
将氧弹放入水桶中央,装好搅拌马达,把氧弹两电极用导线与点火变压器相连接,盖上盖子后,先将数字式精密温差测量仪的探头插入恒温水夹套中测出环境温度(即雷诺温度校正图中的O点),然后将其插入系统。
开动搅拌马达,待温度上升后,每隔1min读取一次温度(准确读至0.001℃)。
10~12min后,按下变压器上电键通电4~5s点火。
自按下电键后,温度读数改为每隔15s一次,直到两次读数差值小于0.005℃,读数间隔恢复为1min一次,继续10~12min后方可停止实验。
关闭电源后,取出数字式精密温差测量仪的探头,再取出氧弹,打开氧弹出气口放出余气。
旋开氧弹盖,检查样品燃烧是否完全。
氧弹中应没有明显的燃烧残渣。
若发现黑色残渣,则应重新实验。
测量未燃烧的铁丝长度,并计算实际燃烧掉的铁丝长度。
最后擦干氧弹和盛水桶。
样品点燃及燃烧完全与否,是本实验最重要的一步。
二蔗糖的燃烧热测定称取0.9g左右萘,按上述方法进行测定。
五数据处理1.苯甲酸的燃烧热为-26460J·g,引燃铁丝的燃烧热值为-2.9J/cm。
2.作苯甲酸和萘燃烧的雷诺温度校正图,由ΔT计算水当量的萘的恒容燃烧热Qv,并计算其恒压燃烧热Qp。
3.根据所用仪器的精密,正确表示测量结果,并指出最大测量误差所在。
4.文献值原始数据记录其中Qm=-6695J/gQv=ΔH -ΔnRT=-3226.9-(7-7.5)X0.5812÷122.12X8.314X298.15 =-3221.01KJ/mol 由雷诺温度校正图得ΔT=0.931℃ 代入可得 计水水C C m +=1.65x10^4J/℃ 214.14^1065.16695-x 0041.018.1286779.0⨯⨯=--)(Qv 由图可得: T1=0.029 T2=1.243 ΔT=0.931℃解得Qv=-3782.4KJ/molQp=Qv+ΔnRT=-3782.4+0.6779÷128.18×(10-12)×8.314×298.15=-3808.6KJ/mol六实验注意事项1.注意氧气钢瓶的使用2.铁丝要连紧电极,与药品接触紧凑以让药品完全燃烧,若实验结束后氧弹内存有残渣则需重新实验七 结果分析与讨论1.引燃铁丝与药品接触方式会造成实验结果的误差;2.样品完全燃烧的程度是实验成功与否的关键,若氧弹中还剩余黑色残渣,则说明样品未完全燃烧;3.实验仪器自身存在不可避免的系统误差;4.对本实验进行如下改进可降低误差对实验结果的影响:改变燃烧丝在片状药品中的状态和位置 ,改变药片在氧弹内坩埚中的状态 ,改变氧弹内氧气的压力值和改变点火电流控制转钮的操作方式。
5.本实验是用数字式精密温差测量仪测量温度,也可以用热电堆或其他热敏元件代替,或用自动平衡记录仪自动记录温度及其变化情况。
八 参考文献1 Shoemaker D P, Garland C W, Nibler J W. Experimnents in Physical Chemistry. 5th edn. New York: McGraw -Hill Book Company,1989)(3)(7)(215)(222267l O H g CO g O s O H C +→+T C C Q Q M m ∆+=-⋅)(计水水铁丝样m m -m v 214.14^1065.16695-x 0041.018.1286779.0⨯⨯=--)(Qv2 北京大学化学系物理化学教研室编. 物理化学实验. 第三版. 北京:北京大学出版社,1995.043 Weast R C. CRC Handbook of Chemistry and Physics. Boca Raton, Florda: CRC Press, Inc, 1985-1986.2724 印永嘉主编.物理化学简明手册.北京:高等教育出版社,1980.805 朱京,陈卫,金贤德,蔡显鄂.液体燃烧热和苯共振能的测定.化学通报.1984(3):50。