中考文档精选——专题复习 正方形(含答案)
- 格式:docx
- 大小:832.53 KB
- 文档页数:32
33第6章四边形之与正方形有关的其他题型一、单项选择题1.如图,四边形ABCD 是正方形,E 是BC 的中点,连接AE 与对角线BD 相交于点G ,连接CG 并延长,交AB 于点F ,连接DE 交CF 于点H .以下结论:①CDE BAE ∠=∠;②CF DE ⊥;③AF BF =;④22CE CH CF =⋅.其中正确结论的个数有〔 〕A .1B .2C .3D .42.如图,正方期ABCD 的边长为4,点E 在对角线BD 上,且22.5,BAE EF AB ︒∠=⊥为F ,那么EF 的长为〔 〕A .2B 2.2.422-3.如图,正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB =2AG ;③∠GDB =45°;④S △BEF =725.在以上4个结论中,正确的有〔 〕A .1B .2C .3D .44.如图,正方形ABCD 的边长为4,P 是对角线BD 上一点,PE //CD 于点E,PF //BC 于点F,连接AP,EF.给出以下结论:①PD 2EC =;②四边形PECF 的周长为8;③APD 一定是等腰三角形;④AP EF =;⑤EF 的最小值为2 2.其中正确结论的序号为( )A .①②④⑤B .①③④⑤C .②④⑤D .②③⑤5.如图,在正方形ABCD 中,点M 是AB 上一动点,点E 是CM 的中点,AE 绕点E 顺时针旋转90°得到EF ,连接DE ,DF 给出结论:①DE EF =;②45CDF ∠=︒;③75AM DF =;④假设正方形的边长为2,那么点M 在射线AB 上运动时,CF 有最小值2.其中结论正确的选项是〔 〕A .①②③B .①②④C .①③④D .②③④6.如图,E 、F 分别是正方形ABCD 的边BC 、CD 的中点,连接AF 、DE 交于点P ,过B 作BG ∥DE 交AD 于G ,BG 与AF 交于点M .对于以下结论:①AF ⊥DE ;②G 是AD 的中点;③∠GBP =∠BPE ;④S △AGM :S △DEC=1:4.正确的个数是〔 〕A .1个B .2个C .3个D .4个7.如图,在正方形ABCD 中,点E 是边BC 上的点,且CE =2BE ,连接AE 、DE ,分别交BD 、AC 于点P 、Q ,过点P 作PF ⊥AE 交CB 的延长线于点F ,以下结论:①∠AED +∠EAC +∠EDB =90°;②AP =FP ;③AE =1510AO ;④假设四边形OPEQ 的面积为2,那么该正方形的面积为36;⑤CE ·EF =EQ ·DE .其中正确的结论有〔 〕A .1个B .2个C .3个D .4个8.如图,四边形ABCD 是边长为2的正方形,点P 为线段AB 上的动点,E 为AD 的中点,射线PE 交CD 的延长线于点Q ,过点E 作PQ 的垂线交CD 于点H 、交BC 的延长线于点F ,那么以下结论:①AEP CHF ;②EHQ CHF ;③当点F 与点C 重合时3PA PB ;④当PA PB =时,22CF =.成立的是( )A.①③④B.②③④C.①③D.②④二、填空题9.如图,矩形ABCD中,3AB=,4BC=,点M,N分别在边AD,BC上,沿着MN折叠矩形ABCD,使点A,B分别落在E,F处,且点F在线段CD上〔不与两端点重合〕,过点M作MH BC⊥于点H,连接BF.当四边形CDMH为正方形时,NC=______;假设13DF DC=,那么折叠后重叠局部的面积为______.10.如图,将边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AEFC的位置,那么图中阴影局部的面积为_______.11.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于G,以下结论:①BE=DF,②∠AEB=75°,③EG=FG且∠AGE=90°,④BE=FG⑤S△ABE=12S△CEF.其中正确结论是_____〔填序号〕.12.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.假设△CEF 的周长为18,那么OF的长为_____________________ .13.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,那么BE的长为_________.14.如图,正方形ABCD中,AB=3,点E为对角线AC上一点,EF⊥DE交AB于F,假设四边形AFED的面积为4,那么四边形AFED的周长为______.15.如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.那么以下结论:①四边形AEGF是菱形;②△HED的面积是1﹣22;③∠AFG=135°;④BC+FG3_____.〔填入正确的序号〕16.如图,以Rt ABC的斜边AB为一边,在AB的右侧作正方形ABED,正方形对角线交于点O,连接CO,如果AC=4,CO=62,那么BC=______.三、解做题17.正方形ABCD,点E在AB上,点G在AD,点F在射线BC上,点H在CD上.〔1〕如图1,DE⊥FG,求证:BF=AE+AG;〔2〕如图2,DE⊥DF,P为EF中点,求证:BE=2PC;〔3〕如图3,EH交FG于O,∠GOH=45°,假设CD=4,BF=DG=1,那么线段EH的长为.18.正方形ABCD中AC与BD交于点O,点M在线段BD上,作直线AM交直线DC于点E,过D作DH⊥AE 于H,设直线DH交AC于点N.〔1〕如图1,当M在线段BO上时,求证:OM=ON;〔2〕如图2,当M在线段OD上,连接NE和MN,当EN//BD时,求证:四边形DENM是菱形;〔3〕在〔2〕的条件下,假设正方形边长为4,求EC的长.19.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ.〔1〕求证:EA是∠QED的平分线;〔2〕BE=1,DF=3,求EF的长.20.如图1,在正方形ABCD中,E为边BC上一点〔不与点B、C重合〕,垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.〔1〕求证AE=MN;〔2〕如图2,假设垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF 的度数;〔3〕如图3,假设该正方形ABCD边长为10,将正方形沿着直线MN翻折,使得BC的对应边B′C′恰好经过点A,过点A作AG⊥MN,垂足分别为G,假设AG=6,请直接写出AC′的长________.21.如图,在平面直角坐标系中,边长为4的正方形OABC的顶点A、C分别在y轴、x轴的正半轴上,点O=上时停止在原点.现将正方形OABC绕点O按顺时针方向旋转,旋转角为θ,当点A第一次落在直线y x=于点M,BC边交x轴于点N.旋转,旋转过程中,AB边交直线y xθ=︒时,求点A的坐标;〔1〕假设30△的周长为P,在旋转正方形OABC的过程中,P值是否有变化?请证实你的结论;〔2〕设MBN22.在ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点〔点D不与B,C重合〕,以AD为边在AD 的右侧作正方形ADEF,连接CF.〔1〕观察猜测如图1,当点D在线段BC上时,①BC 与CF 的位置关系为: ;②BC,CD,CF 之间的数量关系为: .〔将结论直接写在横线上〕〔2〕数学思考 如图2,当点D 在线段CB 的延长线上时,结论①②是否仍然成立?假设成立,请给予证实:假设不成立,请你写出正确结论再给予证实,〔3〕拓展延伸如图3,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G,连接GE .假设AB =22,CD =1,请求出GE 的长.23.如图1,正方形ABCD 顶点A ,B 分别在y 轴和x 轴上,边CD 交x 轴的正半轴于点E .〔1〕假设()20,45A a a -+,且32a =,求A 点的坐标.〔2〕在〔1〕的条件下,假设34AO EO =,D 点的坐标.〔3〕如图2,连结AC 交x 轴于点F ,点H 是A 点上方轴上一动点,以AF ,AH 为边作平行四边形AFGH ,使G 点恰好落在AD 边上.求证:22224HG DG BF +=.24.,四边形ABCD是正方形,点E是正方形ABCD所在平面内一动点〔不与点D重合〕,AB=AE,过点B作DE的垂线交DE所在直线于F,连接CF.提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发生改变?探究问题:〔1〕首先考察点E的一个特殊位置:当点E与点B重合〔如图①〕时,点F与点B也重合.用等式表示线段CF与线段DE之间的数量关系:;〔2〕然后考察点E的一般位置,分两种情况:情况1:当点E是正方形ABCD内部一点〔如图②〕时;情况2:当点E是正方形ABCD外部一点〔如图③〕时.在情况1或情况2下,线段CF与线段DE之间的数量关系与〔1〕中的结论是否相同?如果都相同,请选择一种情况证实;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:〔3〕连接AF,用等式表示线段AF、CF、DF三者之间的数量关系:.25.如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.〔1〕写出BE与AF之间的关系,并证实你的结论;〔2〕如图2,假设AB=2,点E为AD的中点,连接GD,试证实GD是∠EGF的角平分线,并求出GD的长.26.根底探究:如图①,在正方形ABCD中,点E为AD上一点,DF⊥CE交AB于F,垂足为点O.求证:CE =DF.应用拓展:如图②,在正方形ABCD中,点E为AD上一点,FG⊥CE分别交AB、CD于F、G,垂足为点O.假设正方形ABCD的边长为12,DE=5,那么四边形EFCG的面积为_______.。
专题22 正方形1.正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2.正方形的性质:(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3.正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
即有一组邻边相等的矩形是正方形先证它是菱形,再证有一个角是直角。
即有一个角是直角的菱形是正方形。
4.正方形的面积:设正方形边长为a,对角线长为b ,S正方形=222ba【例题1】(2019湖南郴州)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是()A.√2B.2C.√3D.4专题知识回顾专题典型题考法及解析【例题2】(2019•四川省凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接E B.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.一、选择题1.(2019内蒙古包头)如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.﹣1D.2.(2019湖南张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)3.(2019•四川省广安市)把边长分别为1和2的两个正方形按图的方式放置.则图中阴影部分的面积为()专题典型训练题()A61()B31()C51()D414.(2019•贵州省铜仁市)如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是()A.2B.3C.4D.5\5.(2019黑龙江省绥化)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<42﹣2时,P点最多有9个③当P点有8个时,x=22﹣2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③二、填空题6.(2019湖南邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.127.(2019湖南张家界)如图:正方形ABCD的边长为1,点E,F分别为BC,CD边的中点,连接AE,BF交于点P,连接PD,则tan∠APD=.8.(2019•湖北省随州市)如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.给出下列判断:①∠EAG=45°;②若DE=a,则AG∥CF;③若E为CD的中点,则△GFC的面积为a2;④若CF=FG,则DE=(-1)a;⑤BG•DE+AF•GE=a2.其中正确的是______.(写出所有正确判断的序号)9.(2019福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是.(结果保留π)10.(2019•四川省凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.11. (2019•广东广州)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是.(填写所有正确结论的序号)12.(2019·广西贺州)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE 绕点A顺时针旋转90°得△ABG,则CF的长为.13.(2019•山东青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(2019江苏镇江)将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD= .(结果保留根号)15.(2019辽宁抚顺)如图,在2×6的网格中,每个小正方形的边长都是1个单位长度,网格中小正方形的顶点叫格点,点A ,B ,C 在格点上,连接AB ,BC ,则tan ∠ABC = .三、解答题16.(2019湖南湘西州)如图,在正方形ABCD 中,点E ,F 分别在边CD ,AD 上,且AF =CE .(1)求证:△ABF ≌△CBE ;(2)若AB =4,AF =1,求四边形BEDF 的面积.17. (2019海南)如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A,D 不重合),射线PE 与BC 的延长线交于点Q.第10题图HGFEDCBA(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连接AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.18.(2019湖南株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.19.(2019•湖北省仙桃市)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG ∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.20.(2019•山东泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG ⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.21.(2019湖北襄阳)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.①求证:DQ=AE;②推断:的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC 边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若tan∠CGP=,GF=2,求CP的长.。
2019年中考数学专题复习27——正方形(含答案解析)一、选择题1. 如图,将正方形放在平面直角坐标系中,是原点,若点的坐标为,则点的坐标为2. 若正方形的周长为A. B. C. D.3.C. D.4. 如图,正方形和正方形中,点在上,,,于点,那么A. B. C. D.5. 如图,在正方形外侧,作等边三角形,,相交于点,则A. B. C. D.6. 如图,正方形的边长为,点在对角线上,且,,垂足为,则A. B. C. D.7. 如图,在边长为的正方形中,为上一点,连接.过点作,交于点,若,则A. B. C. D.8. 如图,正方形的边长为,在的延长线上,四边形也为正方形,则A. B. C. D.9. 如图所示,正方形的面积为,是等边三角形,点在正方形内,在对角线上有一点,使A. B. C. D.10. 如图,将个边长都为的正方形按如图所示摆放,点,,,分别是正方形的中心,则这A. B. C. D.二、填空题11. 如图,已知,相邻两条平行线间的距离都相等,如果正方形的四个顶点分别在四条直线上,与交于点,则与正方形的面积之比为.12. 如图,在正方形中,为对角线,点在边上,于点,连接,,的周长为,则的长为.13. 如图,边长为的正方形的对角线相交于点,过点的直线分别交,于,,则阴影部分的面积是.14. 如图,将边长为的正方形绕点顺时针旋转得到正方形,则点的旋转路径长为(结果保留).15. 如图,是正方形的一条对称轴,点是直线上的一个动点,当最小时,16. 处,沿角画线,将正方形纸片分成部分,则中间一块阴影部分的面积为.17. 如图,正方形的边长为,点是对角线、的交点,点是的中点,连接.过点作,垂足是,连接,则的长为.18. 正方形,,,,按如图所示的方式放置.点,,,,和点,,,,分别在直线和轴上,已知点,,则点的坐标是.19. 如图,在正方形中,点,,,分别在边,,,上,点,,都在对角线上,且四边形和均为正方形,则的值等于.20. 如图,正方形绕点逆时针旋转后得到正方形,与相交于点,延长交于点.若正方形边长为,则.三、解答题21. 如图5,正方形的边长为,是对角线,平分,.(1)求证:.(2)求的长.22. 如图,正方形中,点在对角线上,连接、.(1)求证:;(2)延长交于点,若,求的度数.23. 如图,在正方形中,等边三角形的顶点,分别在和上.(1)求证:;(2)若等边三角形的边长为,求正方形的周长.24. 如图,点是正方形对角线的延长线上任意一点,以线段为边作一个正方形,线段和相交于点.(1)求证:;(2)判断与的位置关系,并说明理由;25. 如图,在平行四边形中,对角线,交于点,是延长线上的点,且是等边三角形.(1)求证:四边形是菱形;(2)若,求证:四边形是正方形.26. 已知:如图,平行四边形中,是的中点,连接并延长,交的延长线于点.(1)求证:;(2)连接,,当时,四边形是正方形?请说明理由.27. 中,,,点为直线上一动点(点不与,重合),以为边在右侧作正方形,连接.(1)观察猜想如图1,当点在线段上时,①与的位置关系为:.②,,之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点在线段的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点在线段的延长线上时,延长交于点,连接.若已知,,请求出的长.28. 如图,已知是的角平分线,交与点,交与点.(1)求证:四边形是菱形;(2)当满足什么条件时,四边形是正方形?并说明理由.29. 如图,在中,,是边上一点,,,垂足分别是,,.(1)求证:;(2)若,求证:四边形是正方形.30. 在正方形中,对角线,交于点,点在线段上(不含点),,交于点,过点作,垂足为,交于点.(1)当点与点重合时(如图).求证:;(2)结合图,通过观察、测量、猜想:,并证明你的猜想;(3)把正方形改为菱形,其他条件不变(如图),若,,直接写出的值.答案第一部分1. C 【解析】如图,过点作于点.是正方形,易证,,,所以.2. C3. A ,边长为,面积为.4. A 【解析】提示:连接,,延长交于点.易证,,,.,.5. C【解析】,的角度可求,为的外角.6. C 【解析】连接交于.四边形为正方形,,,.又,,..7. C 【解析】.8. D 【解析】设正方形的边长为,则9. A 【解析】点关于的对称点为,连接于交于一点,即为满足条件的点,此时则.由正方形的面积为,可求出.10. B,已知两个正方形可得到一个阴影部分,则个这样的正方形重叠部分即为阴影部分的和.第二部分11.12.【解析】设,根据正方形的性质及题意知,由的周长为,得,根据勾股定理得,解得.13.14.15.【解析】连接,交于点,此时最小,.16.【解析】延长小正方形的一边,与大正方形的一边交于点,连接,为直角边长为的等腰直角三角形,,阴影正方形的边长,阴影正方形的面积为:.17.【解析】在上截取,连接.四边形是正方形,,,.中,,..在与中,.,..在中,,,..根据射影定理得:,则.解得:..,..在等腰直角中,,.18.【解析】点,且四边形,,为正方形,,,..的坐标是.【解析】连接,四边形和四边形是正方形,.由旋转的性质得:,,.在和中,.,,,,.在中,,,.第三部分21. (1)证明:,;平分故又在中,故则(2)正方形的边长为对角线由(1)得,22. (1)正方形中,为对角线上一点,,.,().(2)由全等可知,.在中,,在正方形中,,有.23. (1)四边形是正方形,,.是等边三角形,,,.,.(2)在中,.设正方形的边长为,则,解得.正方形的周长.24. (1)四边形,四边形都是正方形,,,..在和中..(2).,.,,,.25. (1)四边形是平行四边形,.是等边三角形,,即,四边形是菱形.(2)是等边三角形,.,.,,.四边形是菱形,,四边形是正方形.26. (1)四边形是平行四边形,.,.又,.(2)当时,四边形是正方形.,.又,四边形是平行四边形.,,.四边形是平行四边形,,..平行四边形是菱形.,,.菱形是正方形.27. (1)①垂直.正方形中,,,.在与中..,即.②.,.,.(2)①成立②不成立.正方形中,,,.在与中,., .,,..,即 .,.(3)过作于,过作于,于 .,,...由(2)证得,,四边形是正方形,, .,,,四边形是矩形., .,..在与中,., ., .,.是等腰直角三角形....28. (1),,,.四边形是平行四边形..又是的角平分线,..四边形是菱形.(2)由(1)知,四边形是菱形.当四边形是正方形时,,即,的时,四边形是正方形.29. (1),,,,,,,,,,垂足分别是,,,在和中,.(2),,,,是边上的高,,,,,,,,四边形是矩形,,矩形是正方形.30. (1)四边形是正方形,与重合,,.,,,...(2如图,过作交于,交于.,.,..,,.()..,,.,.又,().,即.,即.(3).【解析】如图,过作交于,交于.,,.由(2)同理可得:,.,..、为菱形对角线,,,.....。
中考数学复习----《正方形的性质》知识点总结与专项练习题(含答案解析)知识点总结1.正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形2.正方形的性质:①具有平行四边形的一切性质。
②具有矩形与菱形的一切性质。
所以正方形的四条边都相等,四个角都是直角。
对角线相互平分且相等,且垂直,且平分每一组对角,把正方形分成了四个全等的等腰直角三角形。
正方形既是中心对称图形,也是轴对称图形。
对角线交点是对称中心,对角线所在直线是对称轴,过每一组对边中点的直线也是对称轴。
练习题1.(2022•黄石)如图,正方形OABC的边长为,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(﹣2,0)B.(2,0)C.(0,2)D.(0,2)【分析】连接OB,由正方形的性质和勾股定理得OB=2,再由旋转的性质得B1在y轴正半轴上,且OB1=OB=2,即可得出结论.【解答】解:如图,连接OB,∵正方形OABC的边长为,∴OC=BC=,∠BCO=90°,∠BOC=45°,∴OB===2,∵将正方形OABC绕原点O顺时针旋转45°后点B旋转到B1的位置,∴B 1在y 轴正半轴上,且OB 1=OB =2,∴点B 1的坐标为(0,2),故选:D .2.(2022•广州)如图,正方形ABCD 的面积为3,点E 在边CD 上,且CE =1,∠ABE 的平分线交AD 于点F ,点M ,N 分别是BE ,BF 的中点,则MN 的长为( )A .26B .23C .2﹣3D .226− 【分析】连接EF ,由正方形ABCD 的面积为3,CE =1,可得DE =﹣1,tan ∠EBC ===,即得∠EBC =30°,又AF 平分∠ABE ,可得∠ABF =∠ABE =30°,故AF ==1,DF =AD ﹣AF =﹣1,可知EF =DE =×(﹣1)=﹣,而M ,N 分别是BE ,BF 的中点,即得MN =EF =. 【解答】解:连接EF ,如图:∵正方形ABCD 的面积为3,∴AB =BC =CD =AD =,∵CE =1,∴DE=﹣1,tan∠EBC===,∴∠EBC=30°,∴∠ABE=∠ABC﹣∠EBC=60°,∵AF平分∠ABE,∴∠ABF=∠ABE=30°,在Rt△ABF中,AF==1,∴DF=AD﹣AF=﹣1,∴DE=DF,△DEF是等腰直角三角形,∴EF=DE=×(﹣1)=﹣,∵M,N分别是BE,BF的中点,∴MN是△BEF的中位线,∴MN=EF=.故选:D.3.(2022•贵阳)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.16【分析】根据题意和题目中的数据,可以计算出小正方形的边长,然后即可得到小正方形的周长.【解答】解:由题意可得,小正方形的边长为3﹣1=2,∴小正方形的周长为2×4=8,故选:B.4.(2022•青岛)如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE 的长度为( )A .26B .6C .22D .23【分析】首先利用正方形的性质可以求出AC ,然后利用等边三角形的性质可求出OE .【解答】解:∵四边形ABCD 为正方形,AB =2,∴AC =2,∵O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形,∴∠AOE =90°,∴AC =AE =2,AO =,∴OE =×=. 故选:B .5.(2022•泰州)如图,正方形ABCD 的边长为2,E 为与点D 不重合的动点,以DE 为一边作正方形DEFG .设DE =d 1,点F 、G 与点C 的距离分别为d 2、d 3,则d 1+d 2+d 3的最小值为( )A .2B .2C .22D .4【分析】连接AE ,那么,AE =CG ,所以这三个d 的和就是AE +EF +FC ,所以大于等于AC ,故当AEFC 四点共线有最小值,最后求解,即可求出答案.【解答】解:如图,连接AE ,∵四边形DEFG 是正方形,∴∠EDG =90°,EF =DE =DG ,∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,∴∠ADE =∠CDG ,∴△ADE ≌△CDG (SAS ),∴AE =CG ,∴d 1+d 2+d 3=EF +CF +AE ,∴点A ,E ,F ,C 在同一条线上时,EF +CF +AE 最小,即d 1+d 2+d 3最小,连接AC ,∴d 1+d 2+d 3最小值为AC ,在Rt △ABC 中,AC =AB =2,∴d 1+d 2+d 3最小=AC =2, 故选:C .6.(2022•黔东南州)如图,在边长为2的等边三角形ABC 的外侧作正方形ABED ,过点D 作DF ⊥BC ,垂足为F ,则DF 的长为( )A .23+2B .5﹣33C .3﹣3D .3+1【分析】方法一:如图,延长DA 、BC 交于点G ,利用正方形性质和等边三角形性质可得:∠BAG =90°,AB =2,∠ABC =60°,运用解直角三角形可得AG =2,DG =2+2,再求得∠G =30°,根据直角三角形性质得出答案.方法二:过点E 作EG ⊥DF 于点G ,作EH ⊥BC 于点H ,利用解直角三角形可得EH =1,BH =,再证明△BEH ≌△DEG ,可得DG =BH =,即可求得答案.【解答】解:方法一:如图,延长DA、BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°﹣90°=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∴AG=AB•tan∠ABC=2×tan60°=2,∴DG=AD+AG=2+2,∵∠G=90°﹣60°=30°,DF⊥BC,∴DF=DG=×(2+2)=1+,故选D.方法二:如图,过点E作EG⊥DF于点G,作EH⊥BC于点H,则∠BHE=∠DGE=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∵四边形ABED是正方形,∴BE=DE=2,∠ABE=∠BED=90°,∴∠EBH=180°﹣∠ABC﹣∠ABE=180°﹣60°﹣90°=30°,∴EH=BE•sin∠EBH=2•sin30°=2×=1,BH=BE•cos∠EBH=2cos30°=,∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°,∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG,在△BEH和△DEG中,,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1,故选:D.7.(2022•随州)七巧板是一种古老的中国传统智力玩具,如图,在正方形纸板ABCD中,BD为对角线,E,F分别为BC,CD的中点,AP⊥EF分别交BD,EF于O,P两点,M,N分别为BO,DO的中点,连接MP,NF,沿图中实线剪开即可得到一副七巧板.则在剪开之前,关于该图形,下列说法正确的有()①图中的三角形都是等腰直角三角形;②四边形MPEB是菱形;③四边形PFDM的面积占正方形ABCD面积的.A.只有①B.①②C.①③D.②③【分析】①利用正方形的性质和中位线的性质可以解决问题;②利用①的结论可以证明OM≠MP解决问题;③如图,过M作MG⊥BC于G,设AB=BC=x,利用正方形的性质与中位线的性质分别求出BE和MG即可判定是否正确.【解答】解:①如图,∵E,F分别为BC,CD的中点,∴EF为△CBD的中位线,∴EF∥BD,∵AP⊥EF,∴AP⊥BD,∵四边形ABCD为正方形,∴A、O、P、C在同一条直线上,∴△ABC、△ACD、△ABD、△BCD、△OAB、△OAD、△OBC、△OCD、△EFC都是等腰直角三角形,∵M,N分别为BO,DO的中点,∴MP∥BC,NF∥OC,∴△DNF、△OMP也是等腰直角三角形.故①正确;②根据①得OM=BM=PM,∴BM≠PM∴四边形MPEB不可能是菱形.故②错误;③∵E,F分别为BC,CD的中点,∴EF∥BD,EF=BD,∵四边形ABCD是正方形,且设AB=BC=x,∴BD=x,∵AP⊥EF,∴AP⊥BD,∴BO=OD,∴点P在AC上,∴PE=EF,∴PE=BM,∴四边形BMPE是平行四边形,∴BO=BD,∵M为BO的中点,∴BM=BD=x,∵E为BC的中点,∴BE=BC=x,过M作MG⊥BC于G,∴MG=BM=x,∴四边形BMPE的面积=BE•MG=x2,∴四边形BMPE的面积占正方形ABCD面积的.∵E、F是BC,CD的中点,∴S△CEF=S△CBD=S四边形ABCD,∴四边形PFDM的面积占正方形ABCD面积的(1﹣﹣﹣)=.故③正确.故选:C.8.(2022•宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积B.四边形EFGH的面积C.△BEF的面积D.△AEH的面积【分析】根据题意设PD=x,GH=y,则PH=x﹣y,根据矩形纸片和正方形纸片的周长相等,可得AP=x+y,先用面积差表示图中阴影部分的面积,并化简,再用字母分别表示出图形四个选项的面积,可得出正确的选项.【解答】解:设PD=x,GH=y,则PH=x﹣y,∵矩形纸片和正方形纸片的周长相等,∴2AP+2(x﹣y)=4x,∴AP=x+y,∵图中阴影部分的面积=S矩形ABCD﹣2△ADH﹣2S△AEB=(2x+y)(2x﹣y)﹣2ו(x﹣y)(2x+y)﹣2ו(2x﹣y)•x=4x2﹣y2﹣(2x2+xy﹣2xy﹣y2)﹣(2x2﹣xy)=4x2﹣y2﹣2x2+xy+y2﹣2x2+xy=2xy,A、正方形纸片的面积=x2,故A不符合题意;B、四边形EFGH的面积=y2,故B不符合题意;C、△BEF的面积=•EF•BQ=xy,故C符合题意;D、△AEH的面积=•EH•AM=y(x﹣y)=xy﹣y2,故D不符合题意;故选:C.9.(2022•重庆)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°【分析】根据正方形的性质和全等三角形的判定和性质,可以得到∠ADF的度数,从而可以求得∠CDF的度数.【解答】解:∵四边形ABCD是正方形,∴AD=BA,∠DAF=∠ABE=90°,在△DAF和△ABE中,,△DAF≌△ABE(SAS),∠ADF=∠BAE,∵AE平分∠BAC,四边形ABCD是正方形,∴∠BAE=∠BAC=22.5°,∠ADC=90°,∴∠ADF=22.5°,∴∠CDF=∠ADC﹣∠ADF=90°﹣22.5°=67.5°,故选:C.10.(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为()A.50°B.55°C.65°D.70°【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【解答】解:∵四边形ABCD是正方形,∴∠AOB=∠AOD=90°,OA=OB=OD=OC.∵OE=OF,∴△OEF为等腰直角三角形,∴∠OEF=∠OFE=45°,∵∠AFE=25°,∴∠AFO=∠AFE+∠OFE=70°,∴∠F AO=20°.在△AOF和△BOE中,,∴△AOF ≌△BOE (SAS ).∴∠F AO =∠EBO =20°,∵OB =OC ,∴△OBC 是等腰直角三角形,∴∠OBC =∠OCB =45°,∴∠CBE =∠EBO +∠OBC =65°.故选:C .11.(2022•益阳)如图,将边长为3的正方形ABCD 沿其对角线AC 平移,使A 的对应点A ′满足AA ′=31AC ,则所得正方形与原正方形重叠部分的面积是 .【分析】由正方形边长为3,可求AC =3,则AA ′=AC =,由平移可得重叠部分是正方形,根据正方形的面积公式可求重叠部分面积.【解答】解:∵正方形ABCD 的边长为3,∴AC =3,∴AA ′=AC =, ∴A ′C =2,由题意可得重叠部分是正方形,且边长为2,∴S 重叠部分=4.故答案为:4.12.(2022•海南)如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,AE =AF ,∠EAF =30°,则∠AEB = °;若△AEF 的面积等于1,则AB 的值是 .【分析】利用“HL”先说明△ABE与△ADF全等,得结论∠BAE=∠DAF,再利用角的和差关系及三角形的内角和定理求出∠AEB;先利用三角形的面积求出AE,再利用直角三角形的边角间关系求出AB.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL).∴∠BAE=∠DAF.∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣30°)=30°.∴∠AEB=60°.故答案为:60.过点F作FG⊥AE,垂足为G.∵sin∠EAF=,∴FG=sin∠EAF×AF.∵S△AEF=×AE×FG=×AE×AF×sin∠EAF=1,∴×AE2×sin30°=1.即×AE2×=1.∴AE=2.在Rt△ABE中,∵cos∠BAE=,∴AB=cos30°×AE=×2=.故答案为:.13.(2022•广西)如图,在正方形ABCD中,AB=42,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.【分析】作辅助线,构建全等三角形,先根据翻折的性质得△EGH'≌△EGH,所以△EGH′的周长=△EGH的周长,接下来计算△EGH的三边即可;证明△BME≌△FNE(ASA)和△BEO≌△EFP(AAS),得OE=PF=2,OB=EP=4,利用三角函数和勾股定理分别计算EG,GH和EH的长,相加可得结论.【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.14.(2022•无锡)如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE 且分别交AE、BC于点H、G,则BG=.【分析】设CG=x,则BG=8﹣x,根据勾股定理可得AB2+BG2=CE2+CG2,可求得x 的值,进而求出BG的长.【解答】解:连接AG,EG,∵E是CD的中点,∴DE=CE=4,设CG=x,则BG=8﹣x,在Rt△ABG和Rt△GCE中,根据勾股定理,得AB2+BG2=CE2+CG2,即82+(8﹣x)2=42+x2,解得x=7,∴BG=BC﹣CG=8﹣7=1.故答案是:1.15.(2022•江西)沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为.【分析】根据图形可得长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,然后利用勾股定理即可解决问题.【解答】解:根据图形可知:长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,则长方形的对角线长==.故答案为:.。
中考专题复习第二十一讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【名师提醒:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【名师提醒:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证【名师提醒:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。
这四者之间的关系可表示为:2、正方形也既是对称图形,又是对称图形,有条对称轴3、几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的区别和联系】【重点考点例析】考点一:与矩形有关的折叠问题例1 (2016•泸州)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=105cm,且tan∠EFC=34,那么该矩形的周长为()A.72cm B.36cm C.20cmD.16cm对应训练1.(2016•湖州)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则ADAB的值为()A.12B.33C.23D.22考点二:和菱形有关的对角线、周长、面积的计算问题例2 (2016•泉州)如图,菱形ABCD的周长为85,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .对应训练2.(2016•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.1 D.17考点三:和正方形有关的证明题例3 (2016•湘潭)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.思路分析:(1)根据正方形的性质可得AO=CO ,OD=OF ,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF ,再利用“边角边”证明△AOD 和△COF 全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD ,连接DF 交OE 于G ,根据正方形的对角线互相垂直平分可得DF ⊥OE ,DG=OG=12OE ,再求出AG ,然后利用勾股定理列式计算即可求出AD . 解:(1)AD=CF .理由如下:在正方形ABCO 和正方形ODEF 中,AO=CO ,OD=OF ,∠AOC=∠DOF=90°, ∴∠AOC+∠COD=∠DOF+∠COD ,即∠AOD=∠COF ,在△AOD 和△COF 中,AO CO AOD COF OD OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△COF (SAS ), ∴AD=CF ;(2)与(1)同理求出CF=AD ,如图,连接DF 交OE 于G ,则DF ⊥OE ,DG=OG=12OE ,∵正方形ODEF 的边长为2,∴OE=2×2=2,∴DG=OG=12OE=12×2=1, ∴AG=AO+OG=3+1=4,在Rt △ADG 中,AD=22224117AG DG +=+=,∴CF=AD=17.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,(1)熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.对应训练3.(2016•三明)如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB .(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.3.(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,BC DCBCP DCPPC PC=⎧⎪∠=∠⎨⎪=⎩,∴△BCP≌△DCP(SAS);(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∴∠DPE=∠DCE,∵∠1=∠2(对顶角相等),∴180°-∠1-∠CDP=180°-∠2-∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC;(3)解:与(2)同理可得:∠DPE=∠ABC,∵∠ABC=58°,∴∠DPE=58°.故答案为:58.考点四:四边形综合性题目例4 (2016•资阳)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以2cm/s速度沿AC向点C运动,运动时间为t(t>0);①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.思路分析:(1)证明△ADF≌△DNC,即可得到DF=MN;易证△MND ∽△DFA,∴ND DMAF AD=,即ND a tat aa t-=-,得ND=t.∴ND=CM=t,AN=DM=a-t.若△MNF为等腰三角形,则可能有三种情形:(I)若FN=MN,则由AN=DM知△FAN≌△NDM,∴AF=DM,即ata t-=t,得t=0,不合题意.∴此种情形不存在;(II)若FN=FM,由MN⊥DF知,HN=HM,∴DN=DM=MC,∴t=12a,此时点F与点B重合;(III)若FM=MN,显然此时点F在BC边上,如下图所示:易得△MFC≌△NMD,∴FC=DM=a-t;又由△NDM∽△DCF,∴DN DCDM FC=,即t aa t FC=-,∴FC=()a a tt-.∴()a a tt-=a-t,∴t=a,此时点F与点C重合.综上所述,当t=a或t=12a时,△MNF能够成为等腰三角形.点评:本题是运动型几何综合题,考查了相似三角形、全等三角形、正方形、等腰三角形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)运用分类讨论的数学思想,避免漏解.对应训练4.(2016•营口)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=43,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.4.解:(1)①BF=AD ,BF ⊥AD ;②BF=AD ,BF ⊥AD 仍然成立,证明:∵△ABC 是等腰直角三角形,∠ACB=90°,∴AC=BC ,∵四边形CDEF 是正方形,∴CD=CF ,∠FCD=90°,∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,在△BCF 和△ACD 中BC ACBCF ACD CF CD=⎧⎪∠=∠⎨⎪=⎩,∴△BCF ≌△ACD (SAS ),∴BF=AD ,∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF ⊥AD ;(2)证明:连接DF ,∵四边形CDEF 是矩形,∴∠FCD=90°,又∵∠ACB=90°,∴∠ACB=∠FCD∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,∵AC=4,BC=3,CD=43,CF=1,∴34BC CF AC CD ==,∴△BCF ∽△ACD ,∴∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF⊥AD,∴∠BOD=∠AOB=90°,∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2,∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB2=AC2+BC2=32+42=25,∵在Rt△FCD中,∠FCD=90°,CD=43,CF=1,∴DF2=CD2+CF2=(43)2+12=259,∴BD2+AF2=AB2+DF2=25+259=2509.【聚焦山东中考】1.(2016•威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF2.(2016•枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.3-1B.3-5C.5+1D.5-13.(2016•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是.4.(2016•烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画AC,连结AF,CF,则图中阴影部分面积为.5.(2016•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+3.其中正确的序号是(把你认为正确的都填上).6.(2016•济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.6.(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,ABE DAFAB ADBAE D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则与(1)的情况完全相同.7.(2016•青岛)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)当AD :AB= 时,四边形MENF 是正方形(只写结论,不需证明)8.(2016•淄博)矩形纸片ABCD 中,AB=5,AD=4.(1)如图1,四边形MNEF 是在矩形纸片ABCD 中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD 剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD 中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).8.解:(1)正方形的最大面积是16.设AM =x (0≤x ≤4),则MD =4-x .∵四边形MNEF 是正方形,∴MN =MF ,∠AMN +∠FMD =90°.∵∠AMN +∠ANM =90°,∴∠ANM =∠FMD .∵在△ANM 和△DMF 中A D ANM FMD MN FM ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANM ≌△DMF (AAS ).∴DM =AN .∴S 正方形MNEF =MN 2=AM 2+AN 2,=x2+(4-x)2,=2(x-2)2+8∵函数S正方形MNEF=2(x-2)2+8的开口向上,对称轴是x=2,在对称轴的左侧S随x的增大而减小,在对称轴的右侧S随x的增大而增大,∵0≤x≤4,∴当x=0或x=4时,正方形MNEF的面积最大.最大值是16.(2)先将矩形纸片ABCD分割成4个全等的直角三角形和两个矩形如图1,然后拼成如图2的正方形.9.(2016•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.9.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,【备考真题过关】一、选择题1.(2016•铜仁地区)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形2.(2016•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.(2013•随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25B.20C.15D.104.(2016•重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm 5.(2016•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.123D.1636.(2016•巴中)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是()A.24B.16C.43D.237(2016•茂名)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC 的长是()A.2B.4C.2 3D.438.(2016•成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1B.2C.3D.4 9.(2016•包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S210.(2016•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC 于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°11.(2016•绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.2825cm B.2120cm C.2815cm D.2521cm12.(2016•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3C.4D.5二、填空题13.(2016•宿迁)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为------度时,两条对角线长度相等.14.(2016•淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是.15.(2013•无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.16.(2016•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.17.(2016•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan ∠DBE的值是.18.(2016•南充)如图,正方形ABCD的边长为2,过点A作AE⊥AC,AE=1,连接BE,则tanE= .19.(2016•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k=,则ADAB=用含k的代数式表示).20.(2016•哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.21.(2016•北京)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.22.(2016•南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.23.(2016•舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为.24.(2016•桂林)如图,已知线段AB=10,AC=BD=2,点P是CD 上一动点,分别以AP 、PB 为边向上、向下作正方形APEF 和PHKB ,设正方形对角线的交点分别为O 1、O 2,当点P 从点C 运动到点D 时,线段O 1O 2中点G 的运动路径的长是 .25.(2016•荆州)如图,将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连结AD 1、BC 1.若∠ACB=30°,AB=1,CC 1=x ,△ACD 与△A 1C 1D 1重叠部分的面积为s ,则下列结论:①△A 1AD 1≌△CC 1B ;②当x=1时,四边形ABC 1D 1是菱形;③当x=2时,△BDD 1为等边三角形;④s=38(x -2)2 (0<x <2); 其中正确的是 (填序号).三、解答题26.(2016•南通)如图,AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE .求证:四边形BCDE 是矩形.26.证明:∵∠BAD=∠CAE ,∴∠BAD -∠BAC=∠CAE -∠BAC ,∴∠BAE=∠CAD ,∵在△BAE 和△CAD 中AE AD BAE CAD AB AC =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△CAD (SAS ), ∴∠BEA=∠CDA ,BE=CD ,∵DE=BC ,∴四边形BCDE 是平行四边形,∵AE=AD ,∴∠AED=∠ADE ,∵∠BEA=∠CDA ,∴∠BED=∠CDE ,∵四边形BCDE 是平行四边形,∴BE ∥CD ,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE 是矩形.27.(2016•广州)如图,四边形ABCD 是菱形,对角线AC 与BD相交于O ,AB=5,AO=4,求BD 的长.27.解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO=2254-=3,∴BD=2BO=2×3=6.28.(2013•厦门)如图所示,在正方形ABCD 中,点G 是边BC 上任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F .在线段AG 上取点H ,使得AG=DE+HG ,连接BH .求证:∠ABH=∠CDE .28.证明:如图,在正方形ABCD 中,AB=AD ,∠ABG=∠DAF=90°,∵DE ⊥AG ,∴∠2+∠EAD=90°,又∵∠1+∠EAD=90°,∴∠1=∠2,在△ABG 和△DAF 中, 1 290AB AD ABG DAF =⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABG ≌△DAF (ASA ),∴AF=BG ,AG=DF ,∠AFD=∠BGA ,∵AG=DE+HG ,AG=DE+EF ,∴EF=HG ,在△AEF 和△BHG 中,AF BG AFD BGA EF HG =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BHG (SAS ),∴∠1=∠3,∴∠2=∠3,∵∠2+∠CDE=∠ADC=90°,∠3+∠ABH=∠ABC=90°,∴∠ABH=∠CDE .29.(2013•黔东南州)如图,在正方形ABCD 中,点M 是对角线BD 上的一点,过点M 作ME ∥CD 交BC 于点E ,作MF ∥BC 交CD 于点F .求证:AM=EF .29.证明:过M 点作MQ ⊥AD ,垂足为Q ,作MP 垂足AB ,垂足为P ,∵四边形ABCD 是正方形,∴四边形MFDQ 和四边形PBEM 是正方形,四边形APMQ 是矩形,∴AP=QM=DF=MF ,PM=PB=ME ,∵在△APM 和△FME 中,AP MF APM FME PM ME =⎧⎪∠=∠⎨⎪=⎩, ∴△APM ≌△FME (SAS ), ∴AM=EF .30.(2016•铁岭)如图,△ABC 中,AB=AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,连接AE ,BE .(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.30.(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,∴四边形AEBD 是平行四边形,∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC ,∴∠ADB=90°,∴平行四边形AEBD 是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC ,AD 是△ABC 的角平分线,∴AD=BD=CD ,∵由(1)得四边形AEBD 是矩形,∴矩形AEBD 是正方形.31.(2016•南宁)如图,在菱形ABCD 中,AC 为对角线,点E 、F 分别是边BC 、AD 的中点.(1)求证:△ABE ≌△CDF ;(2)若∠B=60°,AB=4,求线段AE 的长.31.解:(1)∵四边形ABCD 是菱形,∴AB=BC=AD=CD ,∠B=∠D ,∵点E 、F 分别是边BC 、AD 的中点,∴BE=DF ,在△ABE 和△CDF 中,∵AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS );(2)∵∠B=60°,∴△ABC 是等边三角形,∵点E 是边BC 的中点,∴AE ⊥BC ,在Rt △AEB 中,∠B=60°,AB=4,sin60°=4AE AE AB =, 解得AE=23.32.(2016•贵阳)已知:如图,在菱形ABCD 中,F 是BC 上任意一点,连接AF 交对角线BD 于点E ,连接EC .(1)求证:AE=EC ;(2)当∠ABC=60°,∠CEF=60°时,点F 在线段BC 上的什么位置?说明理由.32.(1)证明:如图,连接AC ,∵BD 也是菱形ABCD 的对角线,∴BD 垂直平分AC ,∴AE=EC ;(2)解:点F 是线段BC 的中点.理由如下:在菱形ABCD 中,AB=BC ,又∵∠ABC=60°,∴△ABC 是等边三角形,∴∠BAC=60°,∵AE=EC ,∠CEF=60°,∴∠EAC=12∠BAC=30°, ∴AF 是△ABC 的角平分线,∵AF 交BC 于F ,∴AF 是△ABC 的BC 边上的中线,∴点F 是线段BC 的中点.33.(2016•曲靖)如图,点E 在正方形ABCD 的边AB 上,连接DE ,过点C 作CF ⊥DE 于F ,过点A 作AG ∥CF 交DE 于点G .(1)求证:△DCF ≌△ADG .(2)若点E 是AB 的中点,设∠DCF=α,求sinα的值.33.(1)证明:在正方形ABCD 中,AD=DC ,∠ADC=90°,∵CF ⊥DE ,∴∠CFD=∠CFG=90°,35.(2016•绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为22,对角线AE,DF相交于点O,连接OC.求OC的长度.35.证明:(1)∵∠BAC=90°,∠ABC=45°,线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.(1)如图 ,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;(2)如图 ,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.36.解:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠PBA=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FPC=180°,即∠EPC+∠PCF=180°,∴EP∥FC,∴四边形EPCF是平行四边形;(2)结论:四边形EPCF是平行四边形,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠CBF=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,。
中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 2个图 3个图 …6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。
8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。
2021年九年级数学中考一轮复习正方形的判定与性质中考真题演练2(附答案)1.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)当∠MAN绕点A旋转到BM=DN时(如图1),请你直接写出BM、DN和MN的数量关系:__________.(2)当∠MAN绕点A旋转到BM≠DN时(如图2),(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请写出直接写出结论.2.如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE⊥AG于点E,BF ∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.3.已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别是边BC,CD上的点,且∠EOF=90°.求证:CE=DF.4.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.5.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.6.如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.7.如图,在△ABC中,点D是边BC的中点,DE⊥AC、DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:DE=DF;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,并证明你的结论.8.如图,已知四边形ABCD为正方形,AB=22,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.9.如图(1),已知四边形ABCD的四条边相等,四个内角都等于90°,点E是CD边上一点,F是BC边上一点,且∠EAF=45°.(1)求证:BF+DE=EF;(2)若AB=6,设BF=x,DE=y,求y关于x的函数解析式,并写出x的取值范围;(3)过点A作AH⊥FE于点H,如图(2),当FH=2,EH=1时,求△AFE的面积.10.取一张正方形的纸片进行折叠,具体操作过程如下:第一步:如图1,先把正方形ABCD对折,折痕为MN.第二步:点G在线段 MD上,将△GCD沿GC翻折,点D恰好落在MN上,记为点P,连接BP.(1)判断△PBC的形状,并说明理由;(2)作点C关于直线AP的对称点C′,连接PC′、DC′.①在图2中补全图形,并求出∠APC′的度数;②猜想∠PC′D的度数,并加以证明;(温馨提示:当你遇到困难时,不妨连接AC′、CC′,研究图形中特殊的三角形)11.问题提出(1)如图1,将直角三角板的直角顶点P放在正方形ABCD的对角线AC上,一条直角边经过点B,另一条直角边交边DC于点E,线段PB和线段PE相等吗?请证明;问题探究(2)如图2,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;问题解决(3)继续移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.12.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB ,E 是AB 延长线上一点,且BE=AB ,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线段AM 与DE 的位置关系.探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法:证明:∵BE=AB ,∴AE=2AB .∵AD=2AB ,∴AD=AE .∵四边形ABCD 是矩形,∴AD ∥BC . ∴EM EB DM AB=.(依据1) ∵BE=AB ,∴1EM DM =.∴EM=DM . 即AM 是△ADE 的DE 边上的中线,又∵AD=AE ,∴AM ⊥DE .(依据2)∴AM 垂直平分DE .反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明; (2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.参考答案1.解:(1)BM+DN=MN.理由如下:如图4,把△AND绕点A顺时针旋转90°得到△ABF,则由题意可得:点C、B、F三点共线,∴由旋转的性质可得:BF=DN,AF=AN,∠BAF=∠DAN,∵∠BAD=90°,∠MAN=45°,∴∠BAM+∠DAN=45°,∴∠BAF+∠BAM=45°=∠MAF=∠MAN,又∵AM=AM,∴△AMF≌△AMN,∴MF=MN,又∵MF=BM+BF,BF=DN,∴MN=BM+DN;(2)成立,理由如下:如图5,把△ADN绕点A顺时针旋转90°,得到△ABE,则可得E、B、M三点共线.∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,AE=AN,BE=DN,又∵∠NAM=45°,∴∠EAM=∠NAM,∴在△AEM与△ANM中,,∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(3)DN-BM=MN.理由如下:如图6,在DC上截取DE=BM,连接AE,∵∠ADE=∠ABM=90°,AD=AB,∴△ADE≌△ABM,∴AE=AM,∠DAE=∠BAM,∵∠BAM+∠BAN=∠MAN=45°,∴∠DAE+∠BAN=45°,∴∠EAN=90°-∠DAE-∠BAN=45°=∠MAN,又∵AN=AN,∴△EAN≌△MAN,∴EN=MN,又∵DN-DE=EN,∴DN-BM=MN.2.解:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=90°,∵DE⊥AG,∴∠DAE+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠BFA=90°=∠AED,∴AE=BF,∴AF﹣BF=AF﹣AE=EF;(2)不可能,理由是:如图,若要四边形BFDE是平行四边形,已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,∵DE=AF,∴BF=AF,即此时∠BAF=45°,而点G不与B和C重合,∴∠BAF≠45°,矛盾,∴四边形BFDE不可能是平行四边形.3.证明:∵四边形ABCD为正方形,∴OD=OC,∠ODF=∠OCE=45°,∠COD=90°,∴∠DOF+∠COF=90°,∵∠EOF=90°,即∠COE+∠COF=90°,∴∠COE=∠DOF,∴△COE≌△DOF(ASA),∴CE=DF.4.解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.5.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;(2)解:AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.6.(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),∴∠AOC=2∠COD,∠COB=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC(已知),∴OD⊥AC,AD=DC(等腰三角形的“三合一”的性质),∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF是矩形;(2)当∠AOC=90°时,四边形CDOF是正方形;理由如下:∵∠AOC=90°,AD=DC,∴OD=DC;又由(1)知四边形CDOF是矩形,则四边形CDOF是正方形;因此,当∠AOC=90°时,四边形CDOF是正方形.7.(1)证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,在Rt△BDF和Rt△CDE中,∵,∴Rt△BDF≌Rt△CDE(HL),∴DE=DF;(2)答:四边形AFDE是正方形.证明:∵∠A=90°,DE⊥AC,DF⊥AB,∴四边形AFDE是矩形,又∵Rt△BDF≌Rt△CDE,∴DF=DE,∴四边形AFDE是正方形.22.解:①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形.∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°.在△DEN和△FEM中,∵∠DNE=∠FME,EN=EM,∠DEN=∠FEM,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,②CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°.∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG.在△ADE和△CDG中,∵AD=CD,∠ADE=∠CDG,DE=DG,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=2AB=2×22=4,∴CE+CG=4 是定值.解:(1)如图1中,将△ADE绕点A顺时针旋转90°得到△ABH,∵四边形ABCD是正方形,∴AB=AD=CD=BC,∠BAD=90°,∵∠EAF=45°,∴∠BAF+∠BAH=∠BAF+∠DAE=45°,∴∠FAH=∠FAE=45°,∵AF=AF,AH=AE,∴△AFH≌△AFE(SAS),∴EF=FH,∵FH=BH+BF=DE+BF,∴EF=BF+DE;(2)∵AB=BC=CD=6,BF=x,DE=y,∴EF=x+y,FC=6=﹣x,EC=6﹣y,在Rt△ECF中,∵EF2=CF2+EC2,∴(x+y)2=(6﹣x)2+(6﹣y)2,∴y=3662+6xx(0≤x≤6);(3)如图2中,将△ADE绕点A顺时针旋转90°得到△ABM.由(1)可知△AFM≌△AFH,∵AB⊥FM,AH⊥EF,∴AB=AH,设AB=BC=CD=AD=x,∵∠ABF=∠AHF=90°,∵AF=AF.AB=AH,∴Rt△AFB≌Rt△AFH(HL),∴BF=FH=2,同理可证:DE=EH=1,∴CF=x﹣2,EC=x﹣1,在Rt△ECF中,∵EF2=CF2+EC2,∴32=(x﹣2)2+(x﹣1)2,∴x=317 +或317-(舍弃),∴S△AEF=12•EF•AH=12317+9317+8.解:(1)△PBC是等边三角形,理由如下:∵四边形ABCD是正方形,∴AB=BC=CD,∠ABC=90°,由折叠的性质得:BN=NC=12BC=12PC,MN⊥BC,∴PB=PC,∠PNC=90°,在Rt△PNC中,sin∠NPC=12NCPC=,∴∠NPC=30°,∴∠PCB=60°,∴△PBC是等边三角形;(2)①补全图形如图2所示:由①得:∠PCB=∠PBC=∠BPC=60°,PB=PC=BC,∵∠ABC=90°,∴∠ABP=90°﹣60°=30°,∵AB=BC,∴AB=PB,∴∠BAP=∠BPA=12(180°-∠PBC)=75°,∴∠APC=∠BPA+∠BPC=75°+60°=135°,∵C关于直线AP的对称点为C′,∴∠APC'=∠APC=135°;②连接AC',CC',如图3所示:由对称的性质得:AC=AC',∠CAP=∠C'AP=30°,∴∠CAC'=60°,∴△CAC'是等边三角形,∴AC'=CC',∠AC'C=60°,在△AC'D 和△CC'D 中,{AC CC AD CDC D C D=='=''', ∴△AC'D ≌△CC'D (SSS ),∴∠AC'D=∠CC'D=12∠AC'C=30°, ∵∠AC'P=∠ACP=15°,∴∠PC'D=15°.9.解:(1)如图1,过点P 作PM ⊥BC ,PN ⊥CD ,垂足分别为M ,N ,∵四边形ABCD 为正方形,∴∠BCD =90°,AC 平分∠BCD ,∵PM ⊥BC ,PN ⊥CD ,∴四边形PMCN 为正方形,PM =PN ,∵∠BPE =90°,∠BCD =90°,∴∠PBC +∠CEP =180°,而∠CEP +∠PEN =180°,∴∠PBM =∠PEN ,在△PBM 和△PEN 中, { PBM PEN PMB PNE PM PN∠=∠∠=∠= ∴△PBM ≌△PEN(AAS),∴PB =PE(2)如图2,PB =PE 还成立.理由如下:过点P 作PM ⊥BC ,PN ⊥CD ,垂足分别为M ,N ,∵四边形ABCD 为正方形,∴∠BCD =90°,AC 平分∠BCD ,∵PM ⊥BC ,PN ⊥CD ,∴四边形PMCN 为正方形,PM =PN ,∴∠MPN =90°,∵∠BPE =90°,∠BCD =90°,∴∠BPM +∠MPE =90°,而∠MPE +∠EPN =90°,∴∠BPM =∠EPN ,在△PBM 和△PEN 中, { PMB PNE PM PN BPM EPN∠=∠=∠=∠∴△PBM≌△PEN(ASA),∴PB=PE (3)如图3,PB=PE还成立.理由如下:过点P作PM⊥BC交BC 的延长线于点M,PN⊥CD的延长线于点N,∵四边形ABCD为正方形,∴∠BCD=90°,AC 平分∠BCD,∵PM⊥BC,PN⊥CD,∴四边形PMCN为正方形,PM=PN,∴∠MPN=90°,∵∠BPE=90°,∠BCD=90°,∴∠BPM+∠BPN=90°,而∠BPN+∠EPN=90°,∴∠BPM=∠EPN,在△PBM和△PEN中,{PMB PNEPM PNBPM EPN∠=∠=∠=∠∴△PBM≌△PEN(ASA),∴PB=PE12.解:由问题情景知,AM⊥DE,∵四边形DEFG是正方形,∴DE∥FG,∴点A在线段GF的垂直平分线上.(2)证明:过点G作GH⊥BC于点H,∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°,∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°,∴∠BCE+∠BCG=90°.∴∠2BEC=∠BCG.∴△GHC≌△CBE.∴HC=BE,∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC,∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°,∴四边形BENM为矩形.∴BM=EN,∠BEN=90°.∴∠1+∠2=90°.∵四边形CEFG为正方形,∴EF=EC,∠CEF=90°.∴∠2+∠3=90°.∴∠1=∠3.∵∠CBE=∠ENF=90°,∴△ENF≌△EBC.∴NE=BE.∴BM=BE.∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,AB=BE.∴BC=2BM.∴BM=MC.∴FM垂直平分BC.∴点F在BC边的垂直平分线上。
2024成都中考数学复习专题矩形、菱形、正方形的性质与判定基础题1. (2023上海)在四边形ABCD中,AD∥BC,AB=C D.下列说法能使四边形ABCD为矩形的是()A. AB∥CDB. AD=BCC. ∠A=∠BD. ∠A=∠D2. (2023自贡)如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A. (3,-3)B. (-3,3)C. (3,3)D. (-3,-3)第2题图3. (2022玉林)若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD 的两条对角线AC,BD一定是()A. 互相平分B. 互相垂直C. 互相平分且相等D. 互相垂直且相等4. (2023深圳)如图,在平行四边形ABCD中,AB=4,BC=6,将线段AB水平向右平移a 个单位长度得到线段EF,若四边形ECDF为菱形时,则a的值为()第4题图A. 1B. 2C. 3D. 45. (2023十堰)如图,将四根木条用钉子钉成一个矩形框架ABCD,然后向左扭动框架,观察所得四边形的变化.下面判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. 对角线BD的长度减小C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变第5题图6. 如图,菱形ABCD中,点E,F分别为AB,BC的中点,EF=2,BD=8,则该菱形的面积为()第6题图A. 12B. 16C. 20D. 327. (2023杭州)如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则ABBC=()A. 12 B.3-12 C.32 D.33第7题图8. (2023大庆)将两个完全相同的菱形按如图方式放置,若∠BAD=α,∠CBE=β,则β=()第8题图A. 45°+12α B. 45°+32αC. 90°-12αD. 90°-32α 9. (2023河北)如图,在Rt △ABC 中,AB =4,点M 是斜边BC 的中点,以AM 为边作正方形AMEF .若S 正方形AMEF =16,则S △ABC =( ) A. 4 3 B. 8 3 C. 12 D. 16第9题图10. [新考法—条件开放](2023齐齐哈尔)如图,在四边形ABCD 中,AD =BC ,AC ⊥BD 于点O .请添加一个条件:________,使四边形ABCD 成为菱形.第10题图 11. (2023怀化)如图,点P 是正方形ABCD 的对角线AC 上的一点,PE ⊥AD 于点E ,PE =3.则点P 到直线AB 的距离为________.第11题图12. (2023绍兴)如图,在菱形ABCD 中,∠DAB =40°,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则∠AEC 的度数是________.第12题图13. (2023河南)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为________.14. [新考法—条件开放](2023十堰)如图,▱ABCD 的对角线AC ,BD 交于点O ,分别以点B ,C 为圆心,12AC ,12BD 长为半径画弧,两弧交于点P ,连接BP ,CP . (1)试判断四边形BPCO 的形状,并说明理由;(2)请说明当▱ABCD 的对角线满足什么条件时,四边形BPCO 是正方形?第14题图15. 如图,在平行四边形ABCD 中,点E ,F 分别在边BC ,AD 上,且BE =DF ,连接AE ,CF ,EH ⊥CF 于点H ,FG ⊥AE 于点G .(1)判断四边形EGFH 的形状,并说明理由;(2)若AE =5,tan ∠DAE =2,EG =2GF ,求AG 的长.第15题图拔高题16. (2022青羊区模拟)我们规定菱形与正方形接近程度称为“接近度”,设菱形相邻两个内角的度数分别为α,β,将菱形的“接近度”定义为|α-β|,于是|α-β|越小,菱形越接近正方形.第16题图①若菱形的一个内角为80°,则该菱形的“接近度”为________;②当菱形的“接近度”等于________时,菱形是正方形.课时2基础题1. (2023湘潭)如图,菱形ABCD中,连接AC,BD,若∠1=20°,则∠2的度数为()A. 20°B. 60°C. 70°D. 80°第1题图2. 如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC 中点,则EF的长为()第2题图A. 3B. 4C. 5D. 63. 如图所示,将一张矩形纸片沿虚线对折两次,当剪刀与纸片的夹角∠ABC=45°时,已知AB=4 cm,则剪下来图形的周长为()第3题图A. 4 cmB. 4 2 cmC. 16 cmD. 16 2 cm4. (2022青岛改编)如图,O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形.若AB =2,则OE 的长度为________.第4题图5. [新考法—数学文化](2023内江)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一.如图,在矩形ABCD 中,AB =5,AD =12,对角线AC 与BD 交于点O ,点E 为BC 边上的一个动点,EF ⊥AC ,EG ⊥BD ,垂足分别为点F ,G ,则EF +EG =________.第5题图6. (2023天津)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.第6题图(1)△ADE 的面积为________;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为________.7. (2023内江)如图,在△ABC 中,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交CE 的延长线于点F .(1)求证:F A =BD ;(2)连接BF ,若AB =AC ,求证:四边形ADBF 是矩形.第7题图8. (2023兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.(1)判断四边形OCDE的形状,并说明理由;(2)当CD=4时,求EG的长.第8题图拔高题9. (2023绍兴改编)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°,动点E 在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE=OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2.当E,F,O三点重合时,当点E,F分别为OB,OD的中点时,当E,F分别运动到B,D两点时,四边形E1E2F1F2形状的变化依次是()第9题图A. 菱形→平行四边形→矩形B. 菱形→矩形→菱形C. 平行四边形→矩形→平行四边形D. 平行四边形→菱形→正方形10. (2023武侯区二诊节选)如图①,在矩形ABCD中,AD=nAB(其中n>1),点P是AD边上一动点(点P不与点A重合),点E是AB边的中点,连接PE,将矩形ABCD沿直线PE进行翻折,其顶点A翻折后的对应点为O,连接PO并延长,交BC边于点F(点F不与点C重合),过点F作∠PFC的平分线FG,交矩形ABCD的边于点G.(1)求证:PE∥FG;(2)如图②,在点P运动过程中,若E,O,G三点在同一条直线上时,点G与点D刚好重合,求n的值.图①图②第10题图参考答案与解析1. C2. C 【解析】∵正方形的边长为3,∴DC =BC =3,DC 与BC 分别垂直于y 轴和x 轴.∵点C 在第一象限,∴点C 的坐标为(3,3).3. D 【解析】如解图,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12 AC ,FG =12BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第3题解图4. B 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,CE ∥FD ,CD =AB =4.∵将线段AB 水平向右平移得到线段EF ,∴AB ∥EF ∥CD ,∴四边形ECDF 为平行四边形,当CD =CE =4时,▱ECDF 为菱形,此时a =BE =BC -CE =6-4=2.5. C 【解析】将四根木条用钉子钉成一个矩形框架ABCD ,然后向左扭动框架,∵两组对边的长度分别相等,∴四边形ABCD 是平行四边形,故A 正确,∵向左扭动框架,∴BD 的长度减小,故B 正确;∵平行四边形ABCD 的底不变,高变小了,∴平行四边形ABCD 的面积变小,故C 错误;∵平行四边形ABCD 的四条边长度不变,∴四边形ABCD 的周长不变,故D 正确.6. B 【解析】如解图,连接AC ,∵点E ,F 分别为AB ,BC 的中点,∴EF 是△ABC 的中位线,∴AC =2EF =4.∵四边形ABCD 是菱形,∴AC ⊥BD ,∴S 菱形ABCD =12 AC ·BD =12×4×8=16.第6题解图7. D 【解析】∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∠ABC =90°,∴∠OBC =∠OCB .∵∠AOB =60°,∴∠ACB =12 ∠AOB =30°,∴AB BC =tan ∠ACB =tan 30°=33. 8. D 【解析】∵四边形ABCD 和四边形BGHF 是完全相同的菱形,∴∠DBE =∠BAD =α,AB =AD ,∠ABD =∠CBD =∠CBE +∠DBE =β+α.∴∠ADB =∠ABD =β+α.∵∠BAD +∠ADB +∠ABD =180°,∴α+β+α+β+α=180°,∴β=90°-32α. 9. B 【解析】∵S 正方形AMEF =16,∴AM =4.∵M 是斜边BC 的中点,∴AM 是Rt △ABC 斜边上的中线,∴BC =2AM =8.在Rt △ABC 中,由勾股定理,得AC =BC 2-AB 2 =43 ,∴S △ABC =12 AB ·AC =12×4×43 =83 . 10. AD ∥BC (答案不唯一) 【解析】当AD ∥BC ,AD =BC 时,四边形ABCD 为平行四边形,又∵AC ⊥BD ,∴四边形ABCD 是菱形.11. 3 【解析】如解图,过点P 作PF ⊥AB 于点F ,∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =∠BAC .∵PE ⊥AD ,PF ⊥AB ,∴∠AEP =∠AFP .∵AP =AP ,∴△AEP ≌△AFP (AAS),∴PE =PF .∵PE =3,∴点P 到直线AB 的距离为PF =3.第11题解图12. 10°或80° 【解析】如解图,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E 和E ′.在菱形ABCD 中,∠DAC =∠BAC ,∵∠DAB =40°,∴∠DAC =20°.∵AC =AE ,∴∠AEC =(180°-20°)÷2=80°.∵AE ′=AC ,∴∠AE ′C =∠ACE ′=10°.综上所述,∠AEC 的度数是10°或80°.第12题解图 13. 2或2 +1 【解析】分两种情况,①当∠DNM =90°时,如解图①,则MN ∥AB ,∴AN BM=AD BD.∵M 是BD 的中点,∴BD =2BM ,∴AD =2AN =2;②当∠DMN =90°时,如解图②,连接BN ,∵M 是BD 的中点,∠DMN =90°,∴BN =DN =AB 2+AN 2 =12+12 =2 ,∴AD =2 +1.综上所述,AD 的长为2或2 +1.图①图②第13题解图14. 解:(1)四边形BPCO 为平行四边形.理由如下:由作法得,BP =12 AC ,CP =12BD , ∵四边形ABCD 为平行四边形,∴OC =12 AC ,OB =12BD, ∴OC =BP ,OB =CP ,∴四边形BPCO 为平行四边形.(2)当▱ABCD 的对角线垂直且相等时,四边形BPCO 为正方形.理由:∵AC ⊥BD ,∴四边形BPCO 为矩形,∵AC =BD ,∴OB =OC ,∴四边形BPCO 为正方形.15. 解:(1)四边形EGFH 是矩形.理由如下:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∵BE =DF ,∴AD -DF =BC -BE ,∴AF =CE ,∴四边形AECF 是平行四边形,∴AE ∥CF ,∴∠AEH +∠FHE =180°.∵EH ⊥CF ,FG ⊥AE ,∴∠FGE =∠FHE =∠GEH =90°,∴四边形EGFH 是矩形;(2)∵FG ⊥AE ,∴∠AGF =90°.在Rt △AGF 中,tan ∠DAE =GF AG=2, ∴GF =2AG .∵EG =2GF ,∴EG =4AG .∵AE =AG +EG =5,∴AG =1,即AG 的长为1.16. 20°;0° 【解析】①∵菱形相邻两个内角的度数和为180°,∴α+β=180°,即80°+β=180,解得β=100°,∴该菱形的“接近度”为|α-β|=|80°-100°|=20°;②∵当α=β=90°时,菱形是正方形,∴|α-β|=0°时,菱形是正方形.课时21. C 【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,∴∠DCA =∠1=20°,∴∠2=90°-∠DCA =70°.2. C 【解析】∵四边形ABCD 是菱形,∴BC =DC ,BE =DE ,∵∠DBC =60°,∴△BDC是等边三角形,∴CD =BD =10.∵点F 为BC 中点,∴EF =12CD =5. 3. D 【解析】由折叠可知,剪下的图形两条对角线互相垂直且平分,此时图形为菱形,∵∠ABC =45°,∴剪下的图形有一个角为90°,∴有一个角为90°的菱形是正方形,∵AB =4 cm ,根据勾股定理得BC =42 cm ,故剪下来图形的周长为4×42 =16 2 cm. 4. 6 【解析】∵四边形ABCD 为正方形,AB =2,∴AC =22 .∵O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形,∴∠AOE =90°,∴AC =AE =22 ,AO =2 ,∴OE=6 .5. 6013【解析】如解图,连接OE ,∵四边形ABCD 是矩形,∴∠BAD =90°, AB =CD =5,AD =BC =12.在Rt △ABD 中,BD =AB 2+AD 2 =13.∴AC =BD =13.∵AC 与BD 交于点O ,∴AO =CO =BO =DO =132 .∵S △BCO =14 S 四边形ABCD =14×12×5=15,∴S △BCO =S △BEO +S △CEO =12 BO ·EG +12 CO ·EF =12 ×132 (EG +EF )=15,∴EF +EG =15×413 =6013.第5题解图6. (1)3 【解析】(1)如解图,过点E 作EM ⊥AD 于点M ,∵△ADE 是等腰三角形,EA =ED =52 ,AD =3,∴AM =12 AD =32,∴EM =AE 2-AM 2 =(52)2-(32)2 =2,∴S △ADE =12 AD ·EM =12 ×3×2=3. (2)13 【解析】如解图,延长EM 交AG 于点N ,∵∠BAD =∠AME =90°,∴AB ∥NE ,∴∠ABF =∠FEN ,∠BAF =∠ENF .又∵点F 为BE 中点,∴BF =EF ,∴△AFB ≌△NFE ,∴EN =BA =3.由(1)知,EM =2,∴NM =1.∵∠NMD =∠ADC =90°,且M 为AD 中点,∴NM ∥GD ,∴NM 为△AGD 的中位线,∴GD =2NM =2,∴AG =AD 2+GD 2 =13 .第6题解图7. 证明:(1)∵AF ∥BC ,∴∠AFE =∠DCE .又∵E 是AD 的中点,∴AE =DE .在△AFE 和△DCE 中,∵ ⎩⎪⎨⎪⎧∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AFE≌△DCE,∴AF=DC.又∵D是BC的中点,∴BD=CD,∴AF=BD;(2)∵AB=AC,∴△ABC是等腰三角形.又∵D是BC的中点,∴∠ADB=90°,由(1)知F A=BD,又∵F A∥BD,∴四边形ADBF是平行四边形.又∵∠ADB=90°,∴四边形ADBF是矩形.8. 解:(1)四边形OCDE为菱形,理由如下:∵CE是线段OD的垂直平分线,∴OF=DF,OC=DC.∵CD∥OE,∴∠EOF=∠CDF.∵∠EFO=∠CFD,∴△OFE≌△DFC,∴OE=CD,∴四边形OCDE是平行四边形.又∵OC=CD,∴四边形OCDE是菱形;(2)∵四边形ABCD是矩形,∴DO=OC=OA,由(1)可知,OC=DC,∴OC=DO=CD,∴△OCD 是等边三角形,∴∠DCO =∠CDO =60°,∴∠FDG =90°-60°=30°.∵四边形OCDE 是菱形,∴∠DEC =∠DCE =30°,∠CGD =90°-∠DCE =60°,∴∠EDG =30°,∴DG =EG .∵CD =4,∴tan ∠DCG =DG CD =DG 4, ∴DG =4·tan 30°=4×33 =433, ∴EG =433. 9. B 【解析】∵四边形ABCD 为矩形,∠ABD =60°,∴∠CDF =60°,∠EDA =∠CBD =30°.∵OE =OF ,O 为对角线BD 的中点,∴DF =EB .由对称的性质得DF =DF 2,BF =BF 1,BE =BE 2,DE =DE 1,∠F 2DC =∠CDF =60°,∠EDA =∠E 1DA =30°,∠F 1BC =∠FBC =30°,∴E 1F 2=E 2F 1,∠E 1DB =60°,∠F 1BD =60°,∴DE 1∥BF 1,∴E 1F 2∥E 2F 1,∴四边形E 1E 2F 1F 2是平行四边形,如解图①,当E ,F ,O 三点重合时,DO =BO ,∴DE 1=DF 2=AE 1=AE 2,即E 1E 2=E 1F 2,∴四边形E 1E 2F 1F 2是菱形,如解图②,当E ,F 分别为OB ,OD 的中点时,设DB =4,则DF 2=DF =1,DE 1=DE =3,在Rt △ABD 中,AB =2,AD =23 ,连接AE ,易得AE =32 AB =3 ,根据对称性可得AE 1=AE =3 ,∵AD 2=12,DE 21 =9,AE 21 =3,即AD 2=AE 21 +DE 21 ,∴△DE 1A 是直角三角形,且∠E 1=90°,∴四边形E 1E 2F 1F 2是矩形;如解图③,当F ,E 分别与D ,B 重合时,△BE 1D ,△BDF 1都是等边三角形,则四边形E 1E 2F 1F 2是菱形,∴在这三个位置时,四边形E 1E 2F 1F 2形状的变化依次是菱形→矩形→菱形.图①图②图③第9题解图10. (1)证明:由翻折知,∠APE=∠OPE,∵FG平分∠PFC,∴∠PFG=∠CFG.∵AD∥BC,∴∠APF=∠CFP,∴∠EPF=∠PFG,∴PE∥FG;(2)解:由翻折知,EA=EO,∠EOP=90°.∵E,O,D三点在同一条直线上,∴∠DOF=∠EOF=∠C=90°.又∵DF=DF,∠OFG=∠CFG,∴△DOF≌△DCF(AAS),∴DO=DC=AB.∵E是AB的中点,∴设EA=EB=EO=a,∴OD=CD=AB=2a,∴DE=OE+OD=3a.在Rt△ADE中,由勾股定理,得AD2+AE2=DE2,∴AD=(3a)2-a2=22a.∵AD=nAB,∴22a=2na,∴n=2.。
第3题图A. 20 °B.302020年中考数学一轮专项复习一一矩形、菱形、正方形课时1 矩形■基础过关1. (2019重庆模拟)下列关于矩形对角线的说法中,正确的是 ( )A.对角线相互垂直B.面积等于对角线乘积的一半C.对角线平分一组对角D.对角线相等2 . (2019临沂)如图,在?ABCD 中,M, N 是BD 上两点,个条件,使四边形 AMCN 是矩形,这个条件是()B. MB= MOD. / AMB = Z CNDBM = DN,连接 AM, MC , CN, NA.添加一1A. OM =2ACC. BD± AC3 .如图,将矩形纸片 数为( )ABCD 沿BD 折叠,得到△ BCD, CD 与AB 交于点E.若/1 = 35°,则/ 2的度第2题图5.如图,矩形 ABCD 中,A (-2, 0), B (2, 0), C (2, 2),将AB 绕点A 旋转,使点 B 落在边CD 上的点E 处,则点E 的坐标为()B. (2击,2) D. (2^3-2, 2)4. (2019贵阳模拟)如图,在矩形ABCD ( ) ABCD 中,AE 平分/ BAD,交边BC 于点E,若ED=5, EC=3,则A. 11B. 14C. 22D. 28A.(a 2) C. (1 ,6.如图,在矩形ABCD 中,对角线 AC 与BD 相交于点 O,过点A 作BD 的垂线,垂足为E.已知/ EAD= 3/BAE,则/ EAO 的度数为(A . 22.5B. 67.5C. 45°D. 60°7 . (2020原创)如图,点O 是矩形 则^ BOE 的周长为()ABCD 对角线 AC 的中点,OE // AB 交AD 于点E.若AB=6, BC=8,A. 10B. 8 + 2^5C. 8+2^13D. 14E第4题图第5题图4第6题图10.(人教八下P55练习2题)如图,?ABCD的对角线AC、BD交于点O, △ OAB是等边三角形,AB =4.(1)求证:四边形ABCD是矩形;(2)求四边形ABCD的面积.8. (2018遵义)如图,点P是矩形ABCD的对角线AC上一点, 点E, F,连接PB、PD.若AE=2, PF = 8.则图中阴影部分的面积为过点P作EF // BC,分别交AB, CD于A. 10 8.12 C. 16D. 189.(2019徐州)如图,矩形ABCD中,AC、BD交于点O, M、N分别为BC、OC的中点,若MN = 4, 则AC的长为第7题图第8题图第9题图第10题图11 . (2019怀化)已知:如图,在?ABCD中,AEXBC, CFXAD, E, F分别为垂足.⑴求证:△ ABE^A CDF ;(2)求证:四边形AECF是矩形.第11题图12 . (2019连云港)如图,在^ ABC中,AB = AC>AABC沿着BC方向平移得到△ DEF ,其中点E在边BC上,DE 与AC相交于点O.(1)求证:△ OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.第12题图1 . (2019台州)如图,有两张矩形纸片 ABCD 和EFGH, AB=EF =2 cm, BC = FG=8 cm 把纸片 ABCD 交叉叠放在纸片 EFGH 上,使重叠部分为平行四边形,且点 D 与点G 重合,当两张纸片交叉所成的角 “最 小时,tan a 等于()2 .如图,在矩形 ABCD 中,AB = 4, BC = 6, E 是矩形内部的一个动点,且 AEXBE,则线段CE 的最 小值为.A.B. 2C. 187D.8_15;1 DB EC F第1题图第2题图立满分冲关1. (2019眉山模拟)如图,在矩形ABCD中,E是AD边的中点,BEXAC,垂足为点F,连接DF ,分析下列四个结论:① CF = 3AF;②AB=DF;③DF = ^BC;④S四边形CDEF^S MBF.其中正确白结论有( )第1题图A . 1个B,2个C,3个D,4个【错误结论纠正】请将错误结论改正确.2 .如图,在矩形ABCD中,ZBAC=30°,对角线AC, BD交于点O, / BCD的平分线CE分别交AB, BD于点E, H,连接OE.(1)求/ BOE的度数;(2)若BC=1,求^ BCH的面积;(3)求S A CHO :S^BHE的值.H E第2题图课时2菱形(建议时间:40分钟)名■基础过关1. (2019玉林)菱形不具备的性质是()A.是轴对称图形B.是中心对称图形C.对角线互相垂直D.对角线一定相等2. (2019 河北)如图,菱形ABCD 中,/ D= 150°,则/ 1 =()A.30 °B. 25 °C. 20 °D. 15 °DB第2题图3. (2019襄阳)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C, D两点,连接AC, BC, AD, BD,则四边形ADBC一定是()A.正方形B.矩形第3题图4. (2019呼和浩特)已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为()A.2 2B. 2 . 5C. 4 2D. 2 . 105. (2019宁夏)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是()A.AC± BDB.AB = ADC.AC= BDD./ ABD = Z CBD,4第5题图6 . (2019赤峰)如图,菱形ABCD的周长为20,对角线AC、BD相交于点O, E是CD的中点,则OE 的长是()A. 2.5B. 3第6题图7. (2019天津)如图,四边形ABCD 为菱形,A, B两点的坐标分别是(2, 0), (0, 1),点C, D在坐标轴上,则菱形ABCD的周长等于(y6D第7题图A. 5B.4 3C.4 5D. 208 . (2019永州)如图,四边形ABCD的对角线相交于点O,且点。
正方形7. 如图所示,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的中心,则阴影部分的面积是.8. 如图,将边长为6 cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是cm.9. 如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,点H是AF的中点,那么CH的长是.三、解答题(共2小题;共26分)11. 如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.12. 如图,在Rt△ABC中,∠C=90º,BD是Rt△ABC的一条角平分线,点O,E,F分别在BD,BC,AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.答案第一部分1. B2. C3. A4. D5. C第二部分6. 有一个角是直角或对角线相等7. 28. 129. √510. 12第三部分11. (1)∵四边形ABCD是正方形,∴∠BAD=∠B=90∘,∠DAF+∠FAB=∠BAM+∠AMB=90∘,∴∠AMB=∠EAF.又EF⊥AM,∴∠AFE=90∘,∴∠B=∠AFE,∴△ABM∽△EFA.(2)∵∠B=90∘,AB=12,BM=5,∴AM=√122+52=13,AD=12.∵F是AM的中点,∴AF=12AM=132.∵△ABM∽△EFA,∴BMAF =AMAE,即5132=13AE,∴AE=16.9,∴DE=AE−AD=4.9.12. (1)过点O作OM⊥AB于点M.∵正方形OECF,∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F.∵BD平分∠ABC,OM⊥AB于M,OE⊥BC于E.∴OM=OE=OF.∴点O在∠BAC的平分线上.(2)∵Rt△ABC中,∠C=90∘,AC=5,BC=12,∴AB=13.易证△BMO≌△BEO,△AMO≌△AFO.∴BE=BM,AM=AF.又BE=BC−CE,AF=AC−CF,而CE=CF=OE,故BE=12−OE,AF=5−OE.显然BM+AM=AB,即BE+AF=13,12−OE+5−OE=13.解得OE=2.。
北师大版中考数学复习:中点问题常考热点专项练习题汇编一.选择题1.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论正确的有:()①AP=FP,②AE=AO,③若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,④CE•EF=EQ•DE.A.4个B.3个C.2个D.1个2.如图,矩形ABCD中,AB=2,AD=2,动点P从点A出发向终点D运动,连BP,并过点C作CH⊥BP,垂足为H.①△ABP∽△HCB;②AH的最小值为﹣;③在运动过程中,BP扫过的面积始终等于CH扫过的面积;④在运动过程中,点H的运动路径的长为π,其中正确的有个()个.A.1B.2C.3D.43.如图,在矩形ABCD中,E,F分别为边BC,CD的中点,线段AE,AF与对角线BD分别交于点G,H.设矩形ABCD的面积为S,则以下4个结论中:①AG:GE=2:1;②BG:GH:HD=1:1:1;③S1+S2+S3=S;④S2:S4:S6=1:2:4.正确的结论有()A.1个B.2个C.3个D.4个4.如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连接AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.5.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE⊥BF;②S△BCF=5S△BGE;③QB=QF;④tan∠BQP=.A.1B.2C.3D.46.正方形ABCD中,对角线AC、BD相交于点O,DE平分∠ADO交AC于点E,把△ADE 沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.下列结论:①AD垂直平分EE′,②tan∠ADE=﹣1,③C△ADE﹣C△ODE=2﹣1,④S四边形AEFB=,其中结论正确的个数是()A.4个B.3个C.2个D.1个7.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S△ABC=2S△ABF.其中正确的结论有()A.4个B.3个C.2个D.1个8.如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC 的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO BG;③S正方形ABCD:S正方形ECGF=9﹣4:4;④EM:MG =1:(1+),其中正确的结论有()A.1个B.2个C.3个D.4个9.如图,正方形ABCD中,P为对角线上的点,PB=AB,连PC,作CE⊥CP交AP的延长线于E,AE交CD于F,交BC的延长线于G,则下列结论:①E为FG的中点;②FG2=4CF•CD;③AD=DE;④CF=2DF.其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题10.如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=2,CD=1.下列结论:①∠AED =∠ADC,②=,③BF=2AC,④BE=DE.其中结论正确的个数有.11.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,BC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F,若△AB′F为直角三角形,则AE的长为.12.已知:△ABC中,D为BC的中点,E为AB上一点,且BE=AB,F为AC上一点,且CF=AC,EF交AD于P,则EP:PF=.13.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC 边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为.14.如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC 的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO BG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.其中正确的结论有.15.如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连接EF,DE,DF,M是FE中点,连接MC,设FE与DC相交于点N.则4个结论:①DN=DG;②△BFG∽△EDG∽△BDE;③CM垂直BD;④若MC=,则BF=2;正确的结论有.16.如图,四边形ABCD中,AB=AD,∠DAB=90°,AC与BD交于点H,AE⊥BC于点E,AE交BD于点G,点F是BD的中点,连接EF,若HG=10,GB=6,tan∠ACB=1,则下列结论:①∠DAC=∠CBD;②DH+GB=HG;③4AH=5HC;④EC﹣EB=EF;其中正确结论序号是.17.如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=.18.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP 翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BP A;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.三.解答题19.在矩形ABCD中,AB=12cm,BC=16cm,EF分别是AB、BD的中点,连接EF,点P 从点E出发沿EF方向匀速运动,速度为1cm/s.同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动,连接PQ.设运动时间为t(0<t<8)s.解答下列问题:(1)如图①,求证:△BEF∽△DCB;(2)如图②,过点Q作QG⊥AB,垂足为G,若四边形EPQG为矩形,t=;(3)当△PQF为等腰三角形时,请直接写出t的值.20.如图①,在Rt△ABC中,∠ABC=90°,AB=BC,延长CA至点E,作DE⊥CE交BA 的延长线于点D,连接CD,点F为CD的中点,连接EF,BF.(1)直接写出线段EF和BF之间的数量关系为;(2)将△ADE绕点A顺时针旋转到图②的位置,猜想EF和BF之间的关系,并加以证明;(3)若AC=3,AE=2,将△ADE绕点A顺时针旋转,当A,E,B共线时,请直接写出EF的长.参考答案一.选择题1.解:连接AF.∵PF⊥AE,∴∠APF=∠ABF=90°,∴A,P,B,F四点共圆,∴∠AFP=∠ABP=45°,∴∠P AF=∠PF A=45°,∴AP=FP,故①正确,设BE=EC=a,则AE=a,OA=OC=OB=OD=a,∴,即AE=AO,故②正确,根据对称性可知,△OPE≌△OQE,∴S△OEQ=S四边形OPEQ=2,∵OB=OD,BE=EC,∴CD=2OE,OE∥CD,∴,△OEQ∽△CDQ,∴S△ODQ=4,S△CDQ=8,∴S△CDO=12,∴S正方形ABCD=48,故③错误,∵∠EPF=∠DCE=90°,∠PEF=∠DEC,∴△EPF∽△ECD,∴,∵EQ=PE,∴CE•EF=EQ•DE,故④正确,故选:B.2.解:①∵四边形ABCD是矩形,∴∠BAP=90°,AD∥BC,∴∠APB=∠HBC.∵CH⊥BP,∴∠BHC=90°.∴∠BAP=∠CHB=90°.∴△ABP∽△HCB.∴①的结论正确;②如下图,点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,设BC的中点为O,∵AH+HO≥AO,∴当A,H,O在一条直线上时,AH最小.∵BC=2,∴OB=BC=.∴AO==,∴AH的最小值=AO﹣OB=﹣,∴②的结论正确;③BP扫过的面积=.∵点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,∴CH扫过的面积为S扇形OBH+S△OHC.∵CD=2,BC=2,∴tan∠DBC=,∴∠DBC=30°,∴∠HOC=2∠DBC=60°,∴∠BOH=120°.∴CH扫过的面积为S扇形OBH+S△OHC=+××=π+,∴③的结论错误;④∵点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,∴点H的运动路径的长为:=.∴④的结论错误;综上,正确的结论有:①②,故选:B.3.解:①∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵E是BC的中点,∴BE=BC,∵AD∥BE,∴==2,即AG:GE=2:1;故①正确;②∵AD∥BE,∴,∴BG=BD,同理得:DH=BD,∴BG=GH=HD,∴BG:GH:HD=1:1:1;故②正确;③∵AD∥BE,∴△BEG∽△DAG,∴=,∵BG=GH=HD,∴S5=S3=S4,设S1=x,则S5=S3=S4=2x,∴S=12x,同理可得:S2=x,∴S1+S2+S3=x+x+2x=4x=S;故③正确;④由③知:S6=6x﹣x﹣x=4x,∴S2:S4:S6=1:2:4,故④正确;所以本题的4个结论都正确;故选:D.4.解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.5.解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故①正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S△BCF=5S△BGE,故②正确.根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正确;∵QF=QB,PF=1,则PB=2,在Rt△BPQ中,设QB=x,∴x2=(x﹣1)2+4,∴x=,∴QB=,PQ===,∴tan∠BQP==,故④错误;故选:C.6.解:如图,连接EB、EE′,作EM⊥AB于M,EE′交AD于N.∵四边形ABCD是正方形,∴AB=BC=CD=DA,AC⊥BD,AO=OB=OD=OC,∠DAC=∠CAB=∠DAE′=45°,根据对称性,△ADE≌△ADE′≌△ABE,∴DE=DE′,AE=AE′,∴AD垂直平分EE′,故①正确,∴EN=NE′,∵∠NAE=∠NEA=∠MAE=∠MEA=45°,AE=,∴AM=EM=EN=AN=1,∵ED平分∠ADO,EN⊥DA,EO⊥DB,∴EN=EO=1,AO=DO=+1,∴tan∠ADE=tan∠ODE==﹣1,故②正确,∴AB=AD=AO=2+,∴C△ADE﹣C△ODE=AD+AE﹣DO﹣EO=,故③错误,∴S△AEB=S△AED=×1×(2+)=1+,S△BDE=S△ADB﹣2S△AEB=1+,∵DF=EF,∴S△EFB=,∴S四边形AEFB=S△AEB+S△BEF=,故④错误,故选:C.7.解:如图,过D作DM∥BE交AC于N,交BC于M,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB,∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴=,∵AE=AD=BC,∴=,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DN垂直平分CF,∴DF=DC,故③正确;∵CF=2AF,∴S△ABC=3S△ABF.∴④不正确;其中正确的结论有3个,故选:B.8.解:∵四边形ABCD是正方形,∴BC=DC,∠BCE=90°,同理可得CE=CG,∠DCG=90°,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠BEC=∠DGC,∵∠EDH=∠CDG,∠DGC+∠CDG=90°,∴∠EDH+∠BEC=90°,∴∠EHD=90°,即HG⊥BE,故①正确;在△BGH和△EGH中,,∴△BGH≌△EGH(ASA),∴BH=EH,又∵O是EG的中点,∴HO=BG,且HO∥BG,故②正确;设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,∵OH∥BC,∴△DHN∽△DGC,∴=,即=,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),则=﹣1;则S正方形ABCD:S正方形ECGF=(﹣1)2=3﹣2,故③错误;∵EF∥OH,∴△EFM∽△OMH,∴==,∴=,=,∴===,故④正确.故选:C.9.解:①如图:正方形ABCD中BA=BC,∠ABP=∠CBP,BP=BP,∴△ABP≌△CBP,那么∠1=∠2,在直角三角形ABG中∠1与∠G互余,∠PCE=90°,那么∠2与∠5互余,∴∠5=∠G,∴EC=EG.在直角三角形FCG中∠3与∠G互余,∠4与∠5也互余,而∠5=∠G,∴∠3=∠4,∴EC=EF,从而得出EG=EF,即E为FG的中点.∴①正确.③∵AB=BC,∠ABD=∠CBD,BP=BP,∴△ABP≌△CBP,∴∠1=∠2,∵AB∥CD,∴∠1=∠DF A,∵AB=BP,∴∠1=∠BP A,∵∠DPF=∠APB,∵EF=CE,∴∠3=∠4,∴∠4=∠DPE,∴D、P、C、E四点共圆,∴∠DEA=∠DCP,∵∠1+∠DAP=90°,∠2+∠DCP=90°,∴∠DAP=∠DCP=∠DEA,∴AD=DE,∴③正确,②∵∠3=∠4,AD=DE(③已求证),∴△CEF∽△CDE,∴=,即CE2=CF•CD,∵∠3=∠4,∴CE=EF,∵E为FG的中点.∴FG=2CE,即CE=FG,∴=CF•CD,即FG2=4CF•CD,∴②正确.④∵四边形ABCD是正方形,∴△PDF∽△PBA,∴==,∴=,∴=,即CF=DF,∴④错误,综上所述,正确的由①②③.故选:C.二.填空题(共9小题)10.解:①∠AED=90°﹣∠EAD,∠ADC=90°﹣∠DAC,∵AD平分∠CAB,∴∠EAD=∠DAC,∴∠AED=∠ADC,故①正确;②∵∠EAD=∠DAC,∠ADE=∠ACD=90°,∴△ADE∽△ACD,∴,∵AC的值未知,故②不一定正确;③连接DM,∵MD为斜边AE的中线,∴DM=MA,∴∠MDA=∠MAD=∠DAC,∴DM∥BF∥AC,∴,∴,∴BF=2AC,故③正确;④由③知,,∵,∴DM∥AC,DM⊥BC,∴∠MDA=DAC=DAM,∵∠ADE=90°,∴DM=MA=ME,∵BM=2AM,∴BE=EM,∴ED=BE,故④正确,故答案为:3个.11.解:①如图1中,当∠AFB′=90°时.在Rt△ABC中,∵∠B=30°,AC=4,∴AB=2AC=8,∵BD=CD,∴BD=CD=BC=2,由折叠的性质得:∠BFD=90°,B'E=BE,∴∠BDF=60°,∴∠EDB=∠EDF=30°,∴∠B=∠EDB=30°,∴BE=DE=B'E,∵∠C=∠BFD=90°,∠DBF=∠ABC=90°,∴△BDF∽△BAC,∴,即=,解得:BF=3,设BE=DE=x,在Rt△EDF中,DE=2EF,∴x=2(3﹣x),解得:x=2,∴AE=8﹣2=6.②如图2中,当∠AB′F=90°时,作EH⊥AB′交AB′的延长线于H.设AE=x.∵AD=AD,CD=DB′,∴Rt△ADC≌Rt△ADB′(HL),∴AC=AB′=4,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=B′E=(8﹣x),EH=B′H=(8﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴[(8﹣x)]2+[4+(8﹣x)]2=x2,解得:x=,综上所述,满足条件的AE的值为6或.故答案为:6或.12.解:∵BE=AB,CF=AC,∴则=,=,分别作EE1,FF1平行于BC且与AD交于E1、F1两点.则EE1∥FF1,∴△EE1P∽△FF1P,=,==,==,又BD=CD,∴=,∴==,故答案为:.13.解:如图所示,以BD为对称轴作N的对称点N',连接MN′并延长交BD于P,连NP,根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==,∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.14.解:①如图,∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE,故①正确;②∵GH是∠EGC的平分线,∴∠BGH=∠EGH,在△BGH和△EGH中,,∴△BGH≌△EGH(ASA),∴BH=EH,又∵O是EG的中点,∴HO是△EBG的中位线,∴OH∥BG,HO=BG,故②正确;③由①得△EHG是直角三角形,∵O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,故③错误;④如图2,连接CF,由③可得点H在正方形CGFE的外接圆上,∴∠HFC=∠CGH,∵∠HFC+∠FMG=90°,∠CGH+∠GBE=90°,∴∠FMG=∠GBE,又∵∠EGB=∠FGM=45°,∴△GBE∽△GMF,故④正确;故答案为:①②④.15.解:正方形ABCD中,AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠ADF=∠CDE,DE=DF,∴∠EDF=∠FDC+∠CDE=∠FDC+∠ADF=∠ADC=90°,∴∠DEF=45°,∵∠DGN=45°+∠FDG,∠DNG=45°+∠CDE,∠FDG≠∠CDE,∴∠DGN≠∠DNG,∴DN≠DH,判断出①错误;∵△DEF是等腰直角三角形,∵∠ABD=∠DEF=45°,∠BGF=∠EGD(对顶角相等),∴△BFG∽△EDG,∵∠DBE=∠DEF=45°,∠BDE=∠EDG,∴△EDG∽△BDE,∴△BFG∽△EDG∽△BDE,故②正确;连接BM、DM.∵△AFD≌△CED,∴∠FDA=∠EDC,DF=DE,∴∠FDE=∠ADC=90°,∵M是EF的中点,∴MD=EF,∵BM=EF,∴MD=MB,在△DCM与△BCM中,,∴△DCM≌△BCM(SSS),∴∠BCM=∠DCM,∴CM在正方形ABCD的角平分线AC上,∴MC垂直平分BD;故③正确;过点M作MH⊥BC于H,则∠MCH=45°,∵MC=,∴MH=×=1,∵M是EF的中点,BF⊥BC,MH⊥BC,∴MH是△BEF的中位线,∴BF=2MH=2,故④正确;综上所述,正确的结论有②③④.故答案是:②③④.16.解:①以BD中点F为圆心,BD为直径可以作出△ABC的外接圆,∵tan∠ACB=45°,∴∠ACB=∠ADB=45°,∴A、B、C、D四点共圆,∴∠DAC=∠CBD,故①正确;②∵△ABH∽△GDA,∴AB2=BH•DG,即AB2=16×(10+DH),叉∵BD=AB,即16+DH=AB,解得DH=8,∵DH+GB=8+6=14≠10,∴DG+GB≠HG,故②错误;③∵△AHG∽△BHA,∴AH2=BH•HG=160,∴AH=4,根据相交弦定理:AH•HC=BH•DH,∴HC=,∴4AH=5HC,故③正确;④∵BD=BH+DH=24,△ABD为等腰直角三角形,∴AB=12,∵AC=AH+HC=,且△AEC是等腰直角三角形,∴AE=CE=,根据勾股定理可得,BE=,∴CE﹣BE=,由△ABH∽△DCH,得CD=,而FN=CD=,BF=12,由勾股定理可得,BN=,BE=,∴EN=BN﹣BE=,EF=,∴CE﹣EB=EF,故④正确.综上,正确的结论是①③④.故答案为:①③④.17.解:在BD上截取BE=CH,连接CO,OE,∵∠ACB=90°,CH⊥BD,∵AC=BC=3,CD=1,∴BD=,∴△CDH∽△BDC,∴,∴CH=,∵△ACB是等腰直角三角形,点O是AB中点,∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,∵∠DCH=∠CBD,∴∠OCH=∠ABD,在△CHO与△BEO中,,∴△CHO≌△BEO,∴OE=OH,∠BOE=∠HOC,∵OC⊥BO,∴∠EOH=90°,即△HOE是等腰直角三角形,∵EH=BD﹣DH﹣CH=﹣﹣=,∴OH=EH×=,故答案为:.18.解:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠P AB=90°,∴∠CPM=∠P AB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BP A.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BP A,∴=,∴CM=x(4﹣x),∴S四边形AMCB=[4+x(4﹣x)]×4=﹣x2+2x+8=﹣(x﹣2)2+10,∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,由折叠知,AE=AB=AD,∠AEP=∠B=90°,∴∠AEN=90°=∠D,∵AN=AN,∴Rt△ADN≌Rt△AEN(HL),∴DN=EN,设ND=NE=y,在Rt△PCN中,(y+2)2=(4﹣y)2+22解得y=,∴NE≠EP,故③错误,作MG⊥AB于G,∴MG=AD=4,根据勾股定理得:AM==,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=(x﹣2)2+3,∴x=2时,AG最小值=3,∴AM最小值==5,故④错误.∵△ABP≌△ADN时,∴△ABP≌△ADN≌△AEN≌△AEP,∴∠P AB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KP A=∠KAP=22.5°∵∠PKB=∠KP A+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=4﹣4,∴PB=4﹣4,故⑤正确.故答案为①②⑤.三.解答题(共22小题)19.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,AD∥BC,∴∠EBF==∠CDB,∵E、F分别是AB、BD的中点,∴EF是△ABD的中位线,∴EF∥AD,∴EF∥BC,∴∠EFB=∠CBD,∴△BEF∽△DCB;(2)当四边形EPQG为矩形时,如图所示,在矩形ABCD中,AB=12cm,BC=16cm,∴BD=20cm,AD=BC=16cm,∵E、F分别是AB、BD的中点,∴BF=DF=10cm,EF=AD=×16=8m,∴QF=(2t﹣10)cm,PF=(8﹣t)cm,∵四边形EPQG是矩形,∴PQ∥BE,∴△QPF∽△BEF,∴,∴,解得:t=,∴当t=时,四边形EPQG为矩形,故答案为;(3)当点Q在DF上,PF=QF,如图所示,∵PF=(8﹣t)cm,QF=(10﹣2t)cm,∴8﹣t=10﹣2t,解得:t=2,当点Q在BF上,PF=QF,如图所示,∵PF=(8﹣t)cm,QF=(2t﹣10)cm,∴8﹣t=2t﹣10,∴t=6,当点Q在BF上,PQ=QF,如图所示,过点Q作QG⊥EF于点G,则GQ∥BE,∴△QGF∽△BEF,∴,∵PQ=QF,∴GF=PF=(8﹣t),∴,∴t=,当点Q在BF上,PQ=PF,如图所示,过点P作PM⊥BF于点M,则∠PMF=∠BEF=90°,∵∠PFM=∠BFE,∴△PFM∽△BFE,∴,∵PQ=PF,∴MF=QF=(2t﹣10),∴,∴t=,综上所述,t=2或6或或时,△PQF是等腰三角形.20.解:(1)如图①中,结论:EF=BF.理由:∵DE⊥CE,∴∠CED=90°,∵∠CBD=90°,CF=DF,∴BF=CD,EF=CD,∴EF=BF.故答案为:EF=BF.(2)如图②中,结论:EF=BF,EF⊥BF.理由:过点C作CT∥DE交EF的延长线于点T,连接BT,ET,延长DE交BC于点J,设AB交DJ于点K.∵CT∥DE,∴∠CTF=∠DEF,∵∠CFT=∠DFE,CF=DF,∴△CFT≌△DFE(AAS),∴FT=EF,CT=DE,∵CT∥DJ,∴∠TCB=∠DJB,∵∠AEK=∠JBK=90°,∠AKE=∠JKB,∴∠EAK=∠BJK,∴∠BCT=∠BAE,∵AE=DE,CT=DE,∴CT=AE,∵CB=AB,∴△BCT≌△BAE(SAS),∴BT=BE,∠CBT=∠ABE,∴∠TBE=ABC=90°,∴△EBT是等腰直角三角形,∵FT=EF,∴BF⊥EF,BF=EF.(3)如图③﹣1中,当点E在BA的延长线上时,∵AB=BC,AC=3,∠ABC=90°,∴AB=AC=3,∵AE=2,∴BE=5,∵△BFE是等腰直角三角形,∴EF=AE=如图③﹣2中,当点E在线段AB上时,同法可得EF=,综上所述,满足条件的EF的长为或.。
【苏教版】中考数学精编专题汇编专题1平行四边形、矩形、菱形、正方形学校:___________姓名:___________班级:___________1.【江苏省南京市中考二模】下列命题中假命题是( ) A 、两组对边分别相等的四边形是平行四边形 B 、两组对角分别相等的四边形是平行四边形C 、一组对边平行一组对角相等的四边形是平行四边形D 、一组对边平行一组对边相等的四边形是平行四边形D 、例如等腰梯形,满足一组对边平行一组对边相等,但它不是平行四边形,所以是个假命题.正确. 故选D .【考点定位】命题与定理.2.【江苏省江阴市中考】如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于( )A.2B.3C.4D.5 【答案】C.B【解析】已知菱形ABCD ,根据菱形的性质可得AB=BC=8,OB=OD ,又因E 是CD 的中点,所以OE 为△DBC 的中位线,根据三角形的中位线定理可得OE=BC=4.故选C. 【考点定位】菱形的性质;三角形的中位线定理.3. 【江苏省常州市中考】如图,▱ABCD 的对角线AC 、BD 相交于点O ,则下列说法一定正确的是( )A .AO =ODB .AO ⊥ODC .AO =OCD .AO ⊥AB 【答案】C .【考点定位】平行四边形的性质.4.【江苏省徐州市中考】如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )【考点定位】菱形的性质.215. 【江苏省徐州市中考模拟】15.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件 .【答案】AC=BD .【考点定位】1.菱形的性质;2.三角形中位线定理.6.【江苏省徐州市中考模拟】将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD 沿射线BD 方向平移,在平移的过程中,当点B的移动距离为时,四边ABC 1D 1为矩形;当点B 的移动距离为 时,四边形ABC1D 1为菱形.【解析】当点B 的移动距离为时,∠C 1BB 1=60°,则∠ABC 1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC 1D 1为矩形;当点B 的移动距离为时,D 、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC 1D 1为菱形.333如图:【考点定位】1.菱形的判定;2.矩形的判定;3.平移的性质.7. 【江苏省淮安市中考】如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是米.【答案】720.【考点定位】1.三角形中位线定理;2.应用题.8.【江苏省无锡市中考】如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于 cm.【答案】16.【解析】根据三角形的中位线定理和矩形对角线相等的性质可证得四边形EFGH是菱形,且故答案为:16.【考点定位】三角形的中位线定理;矩形的性质;菱形的判定及性质.9.【江苏省中考模拟】已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【答案】证明见解析.【解析】试题分析:根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形是平行四边形,可得证明结论.试题解析:证明:如图,连接 BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【考点定位】平行四边形的判定与性质.10.【江苏省常州市中考】如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF 都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【答案】(1)证明见试题解析;(2)60°.【考点定位】1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的性质.专题2 圆的有关计算及圆的综合学校:___________姓名:___________班级:___________1.【江苏省南通市九年级上学期期末】如图,⊙O 中,OA ⊥BC ,∠A OB=52°,则∠ADC 的度数为( )A .36°B .26°C . 38°D .46°【答案】D . 【解析】故选D.【考点定位】1.圆周角定理;2.垂径定理.2.【江苏省江阴市九年级下学期期中】一个圆锥底面直径为2,母线为4,则它的侧面积为( ) A . B.C .D .【答案】C.【解析】根据圆锥的侧面积公式S=πrl 可得这个圆锥的侧面积为π×1×4=4π.故选C. 【考点定位】圆锥的侧面积公式.3.【江苏省苏州市区中考】如图,⊙O 上A 、B 、C 三点,若∠B=50,∠A=20°,则∠AOB 等于( ) A 、30° B 、50° C 、70° D 、60°【答案】D .2π12π4π8π【解析】先根据圆周角定理得出∠ACB=∠AOB ,再由三角形内角和定理即可得出结论.∵∠AOB 与∠ACB是同弧所对的圆心角与圆周角,∠B=50,∠A=20°,∴∠ACB=∠AOB .∴180°-∠AOB-∠A=180°-∠ACB-∠B ,即180°-∠AOB-20°=180°-∠AOB-50°,解得∠AOB=60°.故选D .【考点定位】圆周角定理.4.【江苏省南通市九年级上学期期末】某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为120°的扇形,则这个圆锥的底面半径为( )cm . A 、2B 、3C 、4D 、5【答案】A .故选A.【考点定位】弧长的计算.5.【江苏省苏州市中考一模】如图,AB 是⊙O 的切线,切点为B ,AO 交⊙O 于点C ,且AC=OC ,若⊙O 的半径为5,则图中阴影部分的面积是 .. 【解析】直接利用切线的性质结合勾股定理得出AB 的长,再利用锐角三角函数关系得出∠BOC 的度数,结合阴影部分的面积为:S △OBA -S 扇形BOC 求出即可.连接OB ,∵AB 是⊙O 的切线,切点为B ,∴∠OBBA=90°,∵AC=OC ,⊙O 的半径为5,∴AC=5,AB=5,∴∠A=30°,则∠BOC=60°,∴图中阴影部分的面积为:S △OBA -S 扇形BOC =×BO ×AB-.故答案为:121212625π312605360π⨯536225π. 【考点定位】1.扇形面积的计算;2.切线的性质.6.【江苏省徐州中考】13.圆锥底面圆的半径为3m ,其侧面展开图是半圆,则圆锥母线长为 m. 【答案】6.【考点定位】圆锥的计算.7.【江苏省中考】已知扇形的圆心角为120°,弧长为6π,则扇形的面积是 . 【答案】27π.【考点定位】扇形面积的计算.8.【江苏省南京市中考二模】已知等腰△ABC 中,AB=AC=13cm ,BC=10cm ,则△ABC 的内切圆半径为 cm . 【答案】. 【解析】如图,设△ABC 的内切圆半径为r ,由勾股定理得AD=12,再由切线长定理得AE=8,根据勾股定理求得r 即可.如图,∵AB=AC=13cm ,BC=10cm ,∴BD=5cm ,∴AD=12cm ,根据切线长定理,AE=AB-BE=AB-BD=13-5=8,设△ABC 的内切圆半径为r ,∴AO=12-r ,∴(12-r )2-r 2=64,解得r=.故答案为:. 【考点定位】1.三角形的内切圆与内心;2.等腰三角形的性质.9.【江苏省苏州中考一模】如图所示,D 是以AB 为直径的半圆O 上的一点,C 是弧AD 的中点,点M 在AB 上,AD 与CM 交于点N ,CN=AN .625π103103103(1)求证:CM⊥AB;(2)若BD=2,求半圆的直径.【答案】(1)证明见解析;(2)6.【解析】试题解析:(1)证明:如图1,连接BC,则∠ACB=90°,∵CN=AN,∴∠NCA=∠NAC,∴∠MCA=∠DAC,∵C是弧AD的中点,∴∠ABC=∠DAC,∴∠MCA=∠ABC,∵∠CAB=∠BAC,∴△ABC∽△ACM,∴∠AMC=90°,∴CM⊥AB;(2)解:如图2,连接CD,作CE⊥BD,交BD的延长线于E,在△CMB与△BCE中,,【考点定位】1.相似三角形的判定与性质;2,全等三角形的判定与性质;2.圆周角定理.10.【江苏省无锡市中考】已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =6cm ,AC =8cm ,∠ABD =45º.(1)求BD 的长;(2)求图中阴影部分的面积.【答案】(1)BD =52cm;(2)S 阴影=25π-504cm 2. 【解析】MBC CBE CMB CEB BC BC ∠=∠∠=∠=⎧⎪⎨⎪⎩【考点定位】圆周角定理的推论;勾股定理;扇形的面积公式.专题3 图形的变换、视图与投影学校:___________姓名:___________班级:___________1. 【江苏省苏州市中考一模】下列腾讯QQ表情中,不是轴对称图形的是()【答案】C.【解析】根据轴对称图形的概念求解.A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.【考点定位】轴对称图形.2.【江苏省徐州市中考模拟】下列图形中,既是中心对称图形又是轴对称图形的是()【答案】D.【考点定位】1.中心对称图形;2.轴对称图形.3. 【江苏省淮安市中考】如图所示物体的主视图是()A. B. C. D.【答案】C.【考点定位】简单组合体的三视图.4.【江苏省常州市中考】下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.【答案】B.故选B.【考点定位】轴对称图形.5.【江苏省常州市中考】将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是【答案】8cm2 .故答案为:8cm 2.【考点定位】1.翻折变换(折叠问题);2.最值问题.6.【江苏省江阴市中考】如图,Rt ΔABC 中,AB=9,BC=6,∠B=900,将ΔABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN的长为【答案】 4. 【解析】 故答案为:4.【考点定位】翻折变换;勾股定理. 7.【江苏省苏州市区中考】在R t △ABC 中,斜边AB=4,∠B=60°,将△ABC 绕点B 旋转60°,顶点C 运动的路线长是 (结果保留π).【答案】.【解析】将△ABC 绕点B 旋转60°,顶点C 运动的路线长是就是以点B 为圆心,B C 为半径所旋转的弧,根据弧长公式即可求得.∵AB=4,∴BC=2,所以弧长=.故答案为:. 【考点定位】1.弧长的计算;2.旋转的性质.8.【江苏省扬州市2015年中考数学试题】如图,已知Rt △ABC 中,∠ABC =90°,AC =6,BC =4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF = 23π602180π⨯=23π23π【答案】5【考点定位】旋转的性质9.【江苏省徐州市中考】如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.(1)画出△AOB关于x轴对称的△A1OB1.(2)画出将△AOB绕点O顺时针旋转90°的△A2OB2,并判断△A1OB1和△A2OB2在位置上有何关系?若成中心对称,请直接写出对称中心坐标;如成轴对称,请直接写出对称轴的函数关系式.(3)若将△AOB绕点O旋转360°,试求出线段AB扫过的面积.【答案】(1)画图见解析;(2)画图见解析;△A1OB1和△A2OB2是轴对称关系,对称轴为:y=﹣x.(3)2.5π.【解析】试题解析:(1)如图所示:.(2)如图所示:△A1OB1和△A2OB2是轴对称关系,对称轴为:y=﹣x.(3)过点O作OE⊥AB,线段AB2﹣π()2=5π﹣2.5π=2.5π. 【考点定位】1.作图-旋转变换;2.扇形面积的计算;3.作图-轴对称变换.10.【江苏省南京市中考二模试题】△ABC 中,AB=AC=10,BC=12,矩形DEFG 中,EF=4,FG >12.(1)如图①,点A 是FG 的中点,FG ∥BC ,将矩形DEFG 向下平移,直到DE 与BC 重合为止.要研究矩形DEFG 与△ABC 重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).(2)如图②,点B 与F 重合,E 、B 、C 在同一直线上,将矩形DEFG 向右平移,直到点E 与C 重合为止.设矩形DEFG 与△ABC 重叠部分的面积为y ,平移的距离为x .①求y 与x 的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y 与x 的大致图象,并在图象上标注出关键点坐标.2【考点定位】几何变换综合题.。
2020年中考数学二轮专题——矩形、菱形、正方形基础过关1. (2019无锡)下列结论中,矩形具有而菱形不一定具有的性质是()A. 内角和为360°B. 对角线相互平分C. 对角线相等D. 对角线互相垂直2. (2019娄底)顺次连接菱形四边中点得到的四边形是()A. 平行四边形B. 菱形C. 矩形D. 正方形3. (2019重庆A卷)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形4. (2019青羊区二诊)在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AB∥DC B.OC=OBC.AC⊥BD D.OA=OC5. (2019毕节)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A. 3B. 3C. 5D. 5第5题图6. (2019天津)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()A. 5B. 4 3C. 4 5D. 20第6题图7. (2019呼和浩特)已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为()A. 2 2B. 2 5C. 4 2D. 2108. (2019临沂)如图,在▱ABCD中,M,N是BD上的两点,BM=DN,连接AM,MC,CN,N A.添加一个条件,使四边形AMCN 是矩形,这个条件是( )A. OM =12ACB. MB =MOC. BD ⊥ACD. ∠AMB =∠CND第8题图9. 如图,在正方形ABCD 外侧,作等边△ADE ,AC ,BE 相交于点F ,则∠BFC 为( ) A. 75°B. 60°C. 55°D. 45°第9题图10. 如图,在矩形ABCD 中,点E 在BC 上,AE =AD ,DF ⊥AE ,垂足为F ,若∠FDC =30°,且AB =3,则AD 的长为( )A .3B .4C .5D .6第10题图11. (2019贵阳)如图,菱形ABCD 的周长是4 cm ,∠ABC =60°,那么这个菱形的对角线AC 的长是( ) A. 1 cmB. 2 cmC. 3 cmD. 4 cm第11题图12. (2019德阳)已知▱ABCD 的对角线AC 、BD 相交于点O ,△AOD 是等边三角形,且AD =4,则AB 等于( )A. 2B. 4C. 2 3D. 4 313. (2019河池)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE =CF ,则图中与∠AEB 相等的角的个数是( )A. 1B. 2C. 3D. 4第13题图14. 如图,在矩形ABCD 中,AB =12,BC =16,点E 是BC 的中点,点F 是边CD 上的任意一点,则AF +EF 的最小值为( )A .12B .14C .12 5D .14 5第14题图15. (2019兰州)如图,边长为2的正方形ABCD 的对角线AC 与BD 交于点O ,将正方形ABCD 沿直线DF 折叠,点C 落在对角线BD 上的点E 处,折痕DF 交AC 于点M ,则OM =( )A.12B.22C.3-1D.2-1第15题图16. (2019金华)如图,矩形ABCD 的对角线交于点O ,已知AB =m ,∠BAC =∠α,则下列结论错误..的是( )A. ∠BDC =∠αB. BC =m ·tan αC. AO =m 2sin αD. BD =m cos α第16题图17. (2019台州)如图,有两张矩形纸片ABCD 和EFGH ,AB =EF =2 cm ,BC =FG =8 cm.把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且点D 与点G 重合,当两张纸片交叉所成的角α最小时,tan α等于( )A. 14B. 12C. 817D. 815第17题图18.(2019绍兴)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D,在点E从点A移动到点B的过程中,矩形ECFG的面积()A. 先变大后变小B. 先变小后变大C. 一直变大D. 保持不变第18题图19. (2019双流区一诊)一个菱形的周长为20 cm,一条对角线长为6 cm,则这个菱形的面积是______cm2.20. (2019扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=________.第20题图21.(2019徐州)如图,矩形ABCD中,AC、BD交于点O、M、N分别为BC、OC的中点.若MN=4,则AC的长为________.第21题图22. (2019菏泽)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是________.第22题图23.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE 的长是________.第23题图24. (2019北京)如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE =DF ,连接EF . (1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O .若BD =4,tan G =12,求AO 的长.第24题图25. (2019云南)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =OC ,BO =OD ,且∠AOB =2∠OA D.(1)求证:四边形ABCD 是矩形;(2)若∠AOB ∶∠ODC =4∶3,求∠ADO 的度数.第25题图能力提升1. (2019烟台)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A. 2425 B.45 C.34 D.1225第1题图2. (2019安徽)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12.点P在正方形的边上,则满足PE+PF=9的点P的个数是()A. 0B. 4C. 6D. 8第2题图3. (2019黄石)如图,矩形ABCD中,AC与BD相交于点E,AD∶AB=3∶1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时BHCF=()A.32 B.233 C.62 D.32第3题图4.(2019遵义)如图,平行四边形纸片ABCD的边AB,BC的长分别是10 cm和7.5 cm,将其四个角向内对折后,点B与点C重合于点C′,点A与点D重合于点A′.四条折痕围成一个“信封四边形”EHFG,其顶点分别在平行四边形ABCD的四条边上,则EF=________cm.第4题图5. (2019海南)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连接AF,当PB=PQ时.①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.第5题图6. (2019双流区一诊)如图①,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.(1)求证:△ADP≌△ECP;(2)若BP=n·PK,试求出n的值;(3)作BM⊥AE于点M,作KN⊥AE于点N,连接MO、NO,如图②,请证明△MON是等腰三角形,并求出∠MON的度数.第6题图满分冲关1. (2019新都区一诊)如图,直线l 经过正方形ABCD 的顶点A ,先分别过此正方形的顶点B 、D 作BE ⊥l 于点E 、DF ⊥l 于点F ,然后再以正方形的对角线的交点O 为端点,引两条相互垂直的射线分别与AD 、CD 交于点G 、H 两点.若EF =25,S △ABE =2,则线段GH 长度的最小值是______.第1题图2. (2018本溪)在菱形ABCD 中,∠BAD =120°,点O 为射线CA 上的动点,作射线OM 与直线BC 相交于点E ,将射线OM 绕点O 逆时针旋转60°,得到射线ON ,射线ON 与直线CD 相交于点F .(1)如图①,点O 与点A 重合时,点E ,F 分别在线段BC ,CD 上,请直接写出CE ,CF ,CA 三条线段之间的数量关系;(2)如图②,点O 在CA 的延长线上,且OA =13AC ,E ,F 分别在线段BC 的延长线和线段CD 的延长线上,请写出CE ,CF ,CA 三条线段之间的数量关系,并说明理由;(3)点O 在线段AC 上,若AB =6,BO =27,当CF =1时,请直接写出BE 的长.参考答案基础过关1. C2. C 【解析】顺次连接任意四边形的四边中点,得到四边形一定是平行四边形,如果原四边形的对角线相等,则可得中点四边形的邻边相等,即是菱形;如果原四边形的对角线互相垂直,则可得中点四边形的邻边垂直,即是矩形.因为菱形的对角线互相垂直,所以它的中点四边形是矩形.3.A 【解析】根据矩形的判定定理可知,有一个角是直角的平行四边形是矩形,故A 正确;四条边相等的四边形是菱形,不是矩形,故B 错误;有一组邻边相等的平行四边形是菱形,不是矩形,故C 错误;对角线相等的平行四边形是矩形,故D 错误.4. B 【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,OA =OC ,故A ,C ,D 正确.5. B 【解析】在Rt △BCE 中,BC =22-12=3,∴正方形ABCD 的面积为(3)2=3.6. C 【解析】∵A (2,0),B (0,1),∴OA =2,OB =1,在Rt △AOB 中,由勾股定理得AB =22+12=5,∵四边形ABCD 为菱形,∴菱形ABCD 的周长为4AB =4 5.7. C 【解析】菱形对角线相互垂直且平分,因此另一条对角线长为2×32-1=4 2.8. A 【解析】∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC .∵BM =DN ,∴OM =ON ,∴四边形AMCN 是平行四边形.当OM =12AC 时,MN =AC ,∴四边形AMCN 是矩形.9. B 【解析】∵四边形ABCD 是正方形,∴∠BAD =90°,AB =AD ,∠BAF =45°,∵△ADE 是等边三角形,∴∠DAE =60°,AD =AE ,∴∠BAE =90°+60°=150°,AB =AE ,∴∠ABE =∠AEB =12(180°-150°)=15°,∴∠BFC =∠BAF +∠ABE =45°+15°=60°,故选B .10. D 【解析】∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AEB =∠DAF ,又∵DF ⊥AE ,∴∠DF A =∠B ,又∵AE =AD ,∴△ADF ≌△EAB ,∴DF =AB .∵∠ADF +∠FDC =90°,∠DAF +∠ADF =90°,∴∠FDC =∠DAF =30°,∴AD =2DF =2AB =6.11. A 【解析】∵菱形ABCD 的周长是4 cm ,∴AB =BC =CD =DA =1 cm ,又∵∠ABC =60°,∴△ABC 是等边三角形,∴AC =AB =BC =1 cm .12.D 【解析】在平行四边形ABCD 中,∵△AOD 为等边三角形,即OA =OD =AD =4,∴AC =BD =8,∴平行四边形ABCD 是矩形,∴由勾股定理得AB =4 3.13. C 【解析】四边形ABCD 是正方形,∴AD ∥BC ,∴∠DAE =∠AEB .∵BE =CF ,∠ABE =∠BCF ,AB =BC ∴△ABE ≌△BCF (SAS),∴∠BFC =∠AEB .∵AB ∥CD ,∴∠ABF =∠BFC =∠AEB .∴与∠AEB 相等的角有3个.14.C 【解析】如解图,作点E 关于直线CD 的对称点E ′,连接AE ′交CD 于点F ,此时AF +EF 的最小值为AE ′的长.∵在矩形ABCD 中,AB =12,BC =16,E 是BC 的中点,∴BE =CE =CE ′=8,∴BE ′=24,∴AE ′=AB 2+BE ′2=122+242=12 5.第14题解图15. D 【解析】∵四边形ABCD 是正方形,∴∠CBE =∠DCM =45°,BC =CD = 2.∴AC =BD =2.∴OC =1.由折叠的性质知,DE =CD =2,CF =EF ,∴BE =2-2,∠DFC =90°.∴∠CDM +∠DCE =90°.又∠BCE +∠DCE =90°,∴∠BCE =∠CDM . ∴△BCE ≌△CDM .∴CM =BE =2- 2.∴OM =OC -CM =1-(2-2)=2-1.16. C 【解析】∵四边形ABCD 是矩形,∴AC =BD ,且OD =OC ,∠ABC =90°,∴∠BDC =∠OCD =∠BAO =∠α,tan α=BC AB =BC m ,sin α=BC AC =BC 2AO ,cos α=AB AC =m AC ,∴BC =m ·tan α,AO =BC 2sin α,AC =m cos α,而BD =AC ,BC ≠m ,∴BD =m cos α,AO ≠m2sin α∴A 、B 、D 正确,C 错误.17.D 【解析】如解图,当B 、E 重合时, α最小,∵在△BMF 和△DMC 中,⎩⎪⎨⎪⎧∠BMF =∠DMC ∠F =∠C BF =DC ,∴△BMF ≌△DMC (AAS),∴BM =DM ,设FM =x ,则DM =BM =8-x ,在Rt △BFM 中,由勾股定理得22+x 2=(8-x )2,解得x =154,∴tan α=BF FM =2154=815.第17题解图18. D 【解析】如解图,连接DE ,∵在正方形ABCD 中,S △DEC =12AD ·CD =12S 正方形ABCD ,在长方形ECFG 中,S △DEC =12×EC ·GE =12S 矩形ECFG ,而点E 从点A 移动到点B 的过程中,三角形DEC 的面积保持不变,∴矩形ECFG 的面积保持不变.第18题解图19. 24 【解析】如解图,在菱形ABCD 中,BD =6.∵菱形的周长为20,BD =6,∴AB =5,BO =3,∴AO =52-32=4,AC =8.∴S 菱形ABCD =12×6×8=24.第19题解图20.132 【解析】 如解图,连接FC ,则MN =12CF ,在Rt △CFG 中,FG =5,CG =5+7=12,∴FC =52+122=13,∴MN =132.第20题解图21. 16 【解析】在△OBC 中,根据三角形中位线等于它所对的第三边的一半,得到OB =2MN =8,又根据矩形的性质:对角线相等且互相平分,得到AC =BD =2OB =16.22. 85 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是正方形,AC 是对角线,∴CD =AD ,∠DAE =∠DCF =45°,BD ⊥AC . ∵AE =CF , ∴△DAE ≌△DCF (SAS), ∴DE =DF ,同理可证:DE =BE ,BE =BF ,∴四边形BEDF 是菱形,∵AC =8,AO =OD ,AE =2,∴OE =2,OD =4,∴DE =OD 2+OE 2=42+22=2 5.∴四边形BEDF 的周长为4DE =8 5.第22题解图23. 74 【解析】如解图,连接EC ,∵OA =OC ,EF ⊥AC ,∴EC =AE ,设DE =x ,则EC =AE =8-x ,根据勾股定理可得(8-x )2=x 2+62,解得x =74.∴DE 的长为74.第23题解图24. (1)证明:∵四边形ABCD 是菱形, ∴AB =AD ,∴∠BAC =∠DAC . ∵AB =AD ,BE =DF ,∴AB -BE =AD -DF ,即AE =AF . ∴△AEF 是等腰三角形. 又∵∠BAC =∠DAC , ∴AC ⊥EF ;(2)解:由题意作解图如下, ∵四边形ABCD 是菱形,∴AC ⊥BD ,AB ∥CD ,OB =12BD =12×4=2.∴∠G =∠AEG .由(1)知EF ⊥AC .又∵BD ⊥AC . ∴EF ∥BD .∴∠AEG =∠ABO . ∴∠G =∠ABO .∵tan G =12,∴tan ∠ABO =AO OB =12.∴AO =OB ·tan ∠ABO =2×12=1.第24题解图25. (1)证明:∵AO =OC ,BO =OD , ∴四边形ABCD 是平行四边形.又∵∠AOB =2∠OAD ,∠AOB 是△AOD 的外角, ∴∠AOB =∠OAD +∠ADO . ∴∠OAD =∠ADO . ∴AO =OD .又∵AC =AO +OC =2AO ,BD =BO +OD =2OD , ∴AC =BD .∴四边形ABCD 是矩形;(2)解:设∠AOB =∠DOC =4x ,∠ODC =3x ,则∠ODC =∠OCD =3x . 在△ODC 中,∠DOC +∠OCD +∠CDO =180°, ∴4x +3x +3x =180°, 解得x =18°.∴∠ODC =3×18°=54°.∴∠ADO =90°-∠ODC =90°-54°=36°.能力提升1. A 【解析】如解图,连接AC 交BD 于点O ,过点D 作DF ⊥BE 于点F .∵BD 平分∠ABC ,∴∠ABD =∠CBD .∵四边形ABCD 是平行四边形,∴BC ∥AD . ∴∠ADB =∠CBD .∴∠ABD =∠ADB .∴AB =AD . ∴▱ABCD 是菱形. ∴AO 垂直平分BD . ∵DE ⊥BD ,∴OC ∥DE .∴OC =12DE =12×6=3.∵菱形ABCD 的面积为24,∴BD =8. ∴BO =4. ∴BC =DC =5.∵DF ·BC =24,∴DF =245. ∴sin ∠DCE =DF DC =2425.第1题解图2. D 【解析】如解图,∵点E ,F 将对角线AC 三等分,且AC =12,∴AE =EF =FC =4,当P 点在AD 上时,作E 点关于AD 的对称点E ′,连接E ′F ,则AE ′=AE =4,当P 点运动至E ′F 和AD 交点时,PE +PF 具有最小值,由对称性可知∠E ′AF =90°,此时E ′F =(AE ′)2+AF 2=42+82=45<9,当P 点和A 点重合时,过点E 作EG ⊥AD ,垂足为G ,PE +PF =AE +AF =12,当P 点和D 点重合时,连接DF ,∵AD =CD ,∠DAE =∠DCF ,AE =CF ,∴△AED ≌△CFD (SAS),∴DE =DF ,∴PE +PF =2DE =2EG 2+DG 2=2×(22)2+(42)2=410.∵45<9<12,45<9<410,∴在AD 上有两个位置存在PE +PF =9,同理在其余三边上各有两种情况,故正方形四条边上共存在8个位置使得PE +PF =9,∴满足条件的P 点有8个.第2题解图3. B 【解析】∵矩形ABCD 中,AD ∶AB =3∶1,∴∠ADB =30°,又△ABD 沿BD 折叠,点A 的对应点为F ,∴∠ADB =∠BDF =30°,∠ABD =∠DBF =60°,AD =FD ,AB =BF ,∴∠CDF =30°,△ADF 为等边三角形,DF =AF ,∴∠BAF =12(180°-∠ABD -∠DBF )=30°=∠CDF ,又DC =AB ,∴△ABF ≌△DCF ,∴CF =BF ,在Rt △ABG 中,ABG =90°,∠BAG =30°,BG =2,∴AB =23,∴CF =23,如解图,延长BA 到B ′使AB ′=AB ,连接EB ′交AD 于H ,根据对称性可知此时点H 即为满足BH +EH 的值最小的H 点.∵∠ADB =30°,∴AB =BE =ED ,又∵AB ′=AB =BE =AE ,∴△BB ′E 为直角三角形,在Rt △BEH 和Rt △BAH 中,BH =BH ,BE =BA ,∴Rt △BEH ≌Rt △BAH ,∴∠ABH =30°,∴BH =AB cos ∠ABH=4,∴BH CF =423=233.第3题解图4. 10 【解析】根据折叠的性质可得△CFH ≌△C ′FH ,△DFG ≌△A ′FG ,△AEG ≌△A ′EG ,△HBE ≌△HC ′E ,∵四边形HFGE 是矩形,∴HF =EG ,FG =HE ,∴△CFH ≌△C ′FH ≌△AEG ≌△A ′EG ,△DFG ≌△A ′FG ≌△HBE ≌△HC ′E ,∴EF =A ′F + A ′E =FD +AE = FD +CF =CD =AB =10 cm .5. (1)证明:∵四边形ABCD 是正方形, ∴∠D =∠BCD =90°. ∴∠ECQ =90°=∠D . ∵E 是CD 的中点, ∴DE =CE .又∵∠DEP =∠CEQ , ∴△PDE ≌△QCE (ASA);(2)①证明:如解图,由(1)可知△PDE ≌△QCE , ∴PE =QE =12PQ .又∵EF ∥BC , ∴PF =FB =12PB .∵PB =PQ , ∴PF =PE . ∴∠1=∠2.∵四边形ABCD 是正方形, ∴∠BAD =90°.在Rt △ABP 中,∵F 是PB 的中点, ∴AF =12BP =FP .∴∠3=∠4.又∵AD ∥BC ,EF ∥BC , ∴AD ∥EF . ∴∠1=∠4.∴∠2=∠3. 又∵PF =FP ,∴△APF ≌△EFP (AAS). ∴AP =EF . 又∵AP ∥EF ,∴四边形AFEP 是平行四边形;第5题解图②解:四边形AFEP 不是菱形,理由如下: 设PD =x ,则AP =1-x . 由(1)可知△PDE ≌△QCE . ∴CQ =PD =x . ∴BQ =BC +CQ =1+x .∵点E ,F 分别是PQ ,PB 的中点, ∵EF 是△PBQ 的中位线. ∴EF =12BQ =1+x 2.由①可知AP =EF . 即1-x =1+x 2,解得x =13.∴PD =13,AP =23.在Rt △PDE 中,∵DE =12,∴PE =PD 2+DE 2=136. ∵AP ≠PE .∴四边形AFEP 不是菱形.6. (1)证明:∵四边形ABCD 为菱形, ∴AD ∥BC ,∴∠DAP =∠CEP ,∠ADP =∠ECP , 在△ADP 和△ECP 中,⎩⎪⎨⎪⎧∠DAP =∠CEP ∠ADP =∠ECP DP =CP, ∴△ADP ≌△ECP (AAS);(2)解:如解图①,过点P 作PI ∥CE 交DE 于点I , 则PI CE =DPDC ,又点P 是CD 的中点, ∴PI CE =12, ∵△ADP ≌△ECP , ∴AD =CE , ∴KP KB =PI BE =14, ∴BP =3PK , ∴n =3;第6题解图①(3)解:如解图②,过点O 作OG ⊥AE 于点G , ∵BM ⊥AE 于点M ,KN ⊥AE 于点N , ∴BM ∥OG ∥KN , ∵点O 是线段BK 的中点, ∴MG =NG ,又∵OG ⊥MN , ∴OM =ON ,即△MON 是等腰三角形,由题意得,△BPC ,△AMB ,△ABP 为直角三角形, 设BC =2,则CP =1,由勾股定理得,BP =3, 则AP =7,根据三角形面积公式,BM =2217, ∴MP =377.易得PB =3PO ,∴OG =13BM =22121,MG =23MP =277,tan ∠MOG =MGOG =3,∴∠MOG =60°,∴∠MON 的度数为120°.第6题解图②满分冲关1. 6 【解析】由题易证△ABE ≌△DAF .∵GO ⊥HO ,易得△AGO ≌△DHO ,∴GO =HO .∴△GHO 为等腰直角三角形.∴当GO 最小时,GH 取得最小值.令AF =a ,AE =b ,则BE =a ,DF =b ,∴a +b =25,12a ·b =2,∴AB 2=a 2+b 2=12.∴AB =23.∴当GO ⊥AD 时,GO 有最小值,此时OG ∥AB ,∵O 为BD 中点,∴OG 为△ABD 的中位线,∴GO =12AB =3,∴GO 的最小值为3,∴GH 最小值为 6.2. 解:(1)CA =CE +CF ;【解法提示】∵在菱形ABCD 中,∠BAD =120°, ∴∠DAC =∠ACB =∠D =60°. 又∵∠EAF =60°, ∴∠DAF =∠CAE . ∵AD =CD 且∠D =60°,∴△ACD 是等边三角形,AD =AC , ∴△ADF ≌△ACE , ∴DF =CE .又∵CA =CD =DF +CF , ∴CA =CE +CF . (2)CF -CE =43CA ,理由:如解图①,过点O 作OG ∥AD ,交CF 于点G , ∵四边形ABCD 是菱形, ∴AB =BC =CD =DA . ∵∠BAD =120°, ∴∠B =∠ADC =60°,∴△ABC 和△ADC 都为等边三角形. ∵OG ∥AD ,∴∠OGC =∠ADC =∠ACD =60°, ∴△OGC 为等边三角形,∴OC =OG ,∠OCE =∠OGF =180°-60°=120°. ∵∠COE =∠GOF =60°-∠EOG ,∴△OCE ≌△OFG , ∴FG =CE . ∵CF =GF +CG , ∴CF -CE =CO . ∵AO =13CA ,∴OC =43CA ,∴CF -CE =43CA ;第2题解图①(3)BE 的长为1或3或5.【解法提示】连接BD 交AC 于点I ,①如解图②,当点O 在AI 上时,过点O 作OP ⊥BC 于点P ,作OQ ⊥CD 于点Q , 又∵菱形ABCD 中,AC 平分∠BCD , ∴OP =OQ .∵∠POQ =360°-120°-90°×2=60°, ∴∠EOF =∠POQ , ∴∠EOP =∠FOQ . 又∵∠OPE =OQF =90°, ∴△EOP ≌△FOQ , ∴EP =FQ .在Rt △AIB 中,AB =6,∠BAI =60°, ∴BI =AB ·sin60°=3 3. 在Rt △BIO 中, BO =27,BI =33, ∴OI =OB 2-BI 2=1. 又∵CI =12AC =3,∴OC =3+1=4, ∴CP =CQ =12OC =2.又∵CF =1,∴EP =FQ =1,∴BE =BC -CP -EP =6-2-1=3;第2题解图②②如解图③,当点O 在AI 上,点F 在线段DC 的延长线上时,过点O 作OP ⊥BC 于点P ,过点O 作OQ ⊥CD 于点Q ,同理可得EP =QF ,OC =4,CQ =CP =2, ∵CF =1,∴QF =CQ +CF =3,∴BE =CB -CP -PE =6-2-3=1;第2题解图③③如解图④,当点O 在IC 上时,由①知OC =3-1=2, 又∵CF =1,∠ACD =60°, ∴OF ⊥CD ,∴∠OEC =360°-60°-120°-90°=90°, ∴EC =12OC =1,∴BE =6-1=5;第2题解图④④如解图⑤,当点O 在IC 上,点F 在线段DC 的延长线上时,过点O 作OP ⊥BC 于点P ,过点O 作OQ ⊥CD 于点Q ,同理可得QF =PE ,OC =2,CP =CQ =1,QF =CQ +CF =2,∴BE =BC -EP -CP =6-2-1=3; 综上所述,BE 的长为1或3或5.第2题解图⑤。
备考2022年中考数学一轮复习-图形的性质_四边形_正方形的性质-综合题专训及答案正方形的性质综合题专训1、(2018哈尔滨.中考真卷) 已知:⊙O是正方形ABCD的外接圆,点E在弧AB上,连接BE、DE,点F在弧AD上,连接BF,DF,BF与DE、DA分别交于点G、点H,且DA 平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE 于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙0于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.2、(2016常州.中考真卷)(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为,故沿虚线AB 剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE剪开,使剪成的若干块能够拼成一个新的正三角形.拼成的正三角形边长为;(3)在图2中用虚线画出一种剪拼示意图.(4)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)3、(2019吴兴.中考模拟) 定义:长宽比为:为正整数的矩形称为矩形下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:过点G作CD∥AB,使点D、点C分别落在边AF,BE上.则四边形ABCD 为矩形.(1)证明:四边形ABCD为矩形;(2)点M是边AB上一动点.如图b,O是对角线AC的中点,若点N在边BC上,,连接求的值;连结AC,CM,当△AMC为等腰三角形时,将△CBM沿着CM翻折,点B的对称点为B’,连结AB’求的值.4、(2011金华.中考真卷) 在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.(1)当n=1时,如果a=﹣1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF 在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;②直接写出a关于n的关系式.5、(2017谷城.中考模拟) 如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3 时,求线段DH的长.6、(2017武汉.中考模拟) 四边形ABCD为矩形,G是BC上的任意一点,DE⊥AG于点E.(1)如图1,若AB=BC,BF∥DE,且交AG于点F,求证:AF﹣BF=EF;(2)如图2,在(1)条件下,AG= BG,求;(3)如图3,连EC,若CG=CD,DE=2,GE=1,则CE=(直接写出结果)7、(2019永州.中考真卷) 如图(1)如图1,在平行四边形ABCD中,∠A=30°,AB=6,AD=8,将平行四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)(2)若将一边长为1的正方形按如图2﹣1所示剪开,恰好能拼成如图2﹣2所示的矩形,则m的值是多少?(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图3﹣1所示的方式剪开,分成四部分,重新拼成如图3﹣2所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.8、(2019封开.中考模拟) 已知,如图,在正方形ABCD中,P是BC上的点,且BP =3PC,Q是CD的中点,求证:(1)AQ⊥QP;(2)△ADQ∽△AQP.9、(2017上思.中考模拟) 如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.10、(2017河池.中考真卷) 解答题(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.11、(2013崇左.中考真卷) 如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△ABF;(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?12、(2018沙湾.中考模拟) 如图,在正方形中,、分别是、边上的点,且.(1)求证: ;(2)若,,求的长.13、(2017兰州.中考模拟) 如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC,PD.求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.14、(2018陇南.中考真卷) 已知矩形ABCD中,E是AD边上的一个动点,点F,G,H 分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.15、(2019吉林.中考模拟) 若四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫做这个四边形的“巧分线”,这个四边形叫“巧妙四边形”,若一个四边形有两条巧分线,则称为“绝妙四边形.(1)下列四边形一定是巧妙四边形的是.(填序号)①平行四边形;②矩形;③菱形;④正方形.(初步应用)(2)如图,在绝妙四边形ABCD中,AC=AD,且AC垂直平分BD,若∠BAD=80°,求∠BCD的度数.(3)在巧妙四边形ABCD中,AB=AD=CD,∠A=90°,AC是四边形ABCD的巧分线,请直接写出∠BCD的度数.正方形的性质综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
2020-2021中考专题复习:正方形及四边形综合问题一、选择题1. 小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次2. 如图,在四边形ABCD中,AB=CD,AC,BD是对角线,E,F,G,H分别是AD,BD,BC,AC的中点,连接EF,FG,GH,HE,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形3. 如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为()A. 2B. 2 2C. 2+1D. 22+14. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是()A. 3B. 4C. 5D. 65. 如图正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于点O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°6. (2020·湖北孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°,到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G,若BG=3,CG=2,则CE的长为( )A. B. C.4 D.7. (2020·东营)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N,下列结论:①△APE≌△AME;②PM+PN=AC;③222PE PF PO;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是()A. ①②③④B. ①②③⑤C. ①②③④⑤D. ③④⑤BCDEFMNO8. 已知在平面直角坐标系中放置了5个如图X3-1-10所示的正方形(用阴影表示),点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.3+318 B.3+118C.3+36 D.3+16二、填空题9. 正方形有条对称轴.10. 如图,已知正方形ABCD 的面积为256,点F 在CD 上,点E 在CB 的延长线上,且 20AE AF AF ⊥=,,则BE 的长为FE D CBA11. 如图,E ,F是正方形ABCD 的对角线AC 上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 .12. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,请添加一个条件:________,使得▱ABCD 为正方形.13. 若正方形ABCD 的边长为4,E 为BC 边上一点,3BE =,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF AE =,则BM 的长为 .14. 将n 个边长都为1cm 的正方形按如图所示摆放,点12...n A A A ,,,分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为A 5A 4A 3A 2A 115. 如图,正方形ABCD 的边长为2cm ,以B 为圆心,BC 长为半径画弧交对角线BD 于点E ,连接CE ,P 是CE 上任意一点,PM BC ⊥于M ,PN BD ⊥于N ,则PM PN +的值为PNME DC BA16. 如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm .三、解答题17. 如图,P 为正方形ABCD 对角线上一点,PE BC ⊥于E ,PF CD ⊥于F .求证:AP EF =.F EPDCB A18. 如图,AB 是☉O 的直径,DO ⊥AB于点O ,连接DA 交☉O 于点C ,过点C 作☉O 的切线交DO 于点E ,连接BC 交DO 于点F . (1)求证:CE=EF .(2)连接AF 并延长,交☉O 于点G.填空:①当∠D 的度数为 时,四边形ECFG 为菱形; ②当∠D 的度数为 时,四边形ECOG 为正方形.19. 如图,点M N ,分别在正方形ABCD 的边BC CD ,上,已知MCN ∆的周长等于正方形ABCD 周长的一半,求MAN ∠的度数NMD CBA20. 如图,已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图①,点E在CD上,点G在BC的延长线上,判断DM,EM的数量关系与位置关系,请直接写出结论.(2)如图②,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论.21. 如图1,在正方形ABCD中,E、F、G、H分别为边AB、BC、CD、DA上的点,HA EB FC GD===,连接EG、FH,交点为O.⑴如图2,连接EF FG GH HE,,,,试判断四边形EFGH的形状,并证明你的结论;⑵将正方形ABCD沿线段EG、HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,1cmHA EB FC GD====,则图3中阴影部分的面积为_________2cm.图3图1图2HD G CFE BAOHGFED CBA22. 已知正方形ABCD 中,点E 在BC 上,连接AE ,过点B 作BF ⊥AE 于点G ,交CD 于点F .(1)如图①,连接AF ,若AB =4,BE =1,求证:△BCF ≌△ABE ;(2)如图②,连接BD ,交AE 于点N ,连接AC ,分别交BD 、BF 于点O 、M ,连接GO ,求证:GO 平分∠AGF ;(3)如图③,在第(2)问的条件下,连接CG ,若CG ⊥GO ,AG =nCG ,求n 的值.2020-2021中考专题复习:正方形及四边形综合问题-答案一、选择题 1. 【答案】B2. 【答案】C[解析]∵点E ,F ,G ,H 分别是四边形ABCD 中AD ,BD ,BC ,CA 的中点,∴EF=GH=AB ,EH=FG=CD ,∵AB=CD ,∴EF=FG=GH=EH ,∴四边形EFGH 是菱形,故选C .3. 【答案】B【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF =(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2.4. 【答案】B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.5. 【答案】A [解析]连接BF ,∵E 为AB 中点,FE ⊥AB ,∴EF 垂直平分AB ,∴AF=BF .∵AF=2AE , ∴AF=AB ,∴AF=BF=AB ,∴△ABF 为等边三角形,∴∠FBA=60°,BF=BC ,∴∠FCB=∠BFC=15°,∵四边形ABCD 为正方形,∴∠DBC=45°,根据三角形的外角等于与它不相邻的两个内角的和得∠DOC=15°+45°=60°.6. 【答案】B【解析】由旋转的性质得△ABF ≌△ADE ,∴BF=DE ,AF=AE ,又∵AH ⊥EF ,∴FH=EH ,∵四边形ABCD 是正方形,∴∠C=90°,∠EFC=∠EFC ,∴△FHG ∽△FCE ,∴FG FHFE FC=, ∵BG=3,CG=2,∴BC=5,设EC=x ,则BF=DE=5-x ,FG=BG+BF=3+5-x =8-x ,CF=BC+BF=5+5-x =10-x ,EF=22EC CF +=,22(10)x x +-2222(10)210(10)x x x x x +-=-+-,解得:x =154.故选B.7. 【答案】B【解析】本题考查了垂线、平行线和正方形的性质,全等三角形的判定与性质、等腰直角三角形的判断和性质、相似三角形的判定和性质,是常见问题的综合,灵活的运用所学知识是解答本题的关键.综合应用垂线、平行线和正方形的性质,全等三角形的判定与性质、等腰直角三角形的判断和性质、相似三角形的判定和性质等知识,逐个判断5个结论的正确性,得出结论. ①∵正方形ABCD ,∴∠APE =∠AME =45°,∵PM ⊥AE ,∴∠AEP =∠AEM =90°,∵AE =AE ,∴△APE ≌△AME (ASA ); ②过点N 作NQ ⊥AC 于点Q ,则四边形PNQE 是矩形,∴PN =EQ ,∵正方形ABCD ,∴∠P AE =∠MAE =45°,∵PM ⊥AE ,∴∠PEA =45°,∴∠P AE =∠APE ,PE =NQ ,∴△APE 等腰直角三角形,∴AE =PE ,同理得:△NQC 等腰直角三角形,∴NQ =CQ ,∵△APE ≌△AME ,∴PE =ME ,∴PE =ME = NQ =CQ ,∴PM =AE +CQ ,∴PM +PN =AE +CQ +EQ =AC ,即PM +PN =AC 成立; ③∵正方形ABCD ,∴AC ⊥BD ,∴∠EOF 是直角,∵过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,∴∠PEO 和∠PFO 是直角,∴四边形PFOE 是矩形,∴PF =OE ,在R t △PEO 中,有PE 2+OE 2=PO 2,∴PE 2+PF 2=PO 2,即PE 2+PF 2=PO 2成立;④△BNF 是等腰直角三角形,点P 不在AB 的中点时,△POF 不是等腰直角三角形,所以△POF 与△BNF 不一定相似,即△POF ∽△BNF 不一定成立; ⑤∵△AMP 是等腰直角三角形,△PMN ∽△AMP ,∴△PMN 是等腰直角三角形,∵∠MPN =90°,∴PM =PN ,∵AP 2PM ,BP 2PN ,∴AP =BP ,∴点P 是AB 的中点,又∵O 为正方形的对称中点,∴点O 在M 、N 两点的连线上.综上,①②③⑤成立,即正确的结论有4个,答案选B .8. 【答案】⎝ ⎛⎭⎪⎫72,0D 解析:过小正方形的一个顶点D 3作FQ ⊥x 轴于点Q ,过点A 3作A 3F ⊥FQ于点F .∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,∴∠B 3C 3E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°, ∴D 1E 1=12D 1C 1=12,∴D 1E 1=B 2E 2=12, ∴cos30°=B2E 2B 2C 2=12B 2C 2,解得:B 2C 2=33.∴B 3E 4=36,cos30°=B 3E 4B 3C 3.解得:B 3C 3=13. 则D 3C 3=13. 根据题意得出:∠D 3C 3Q =30°,∠C 3D 3Q =60°,∠A 3D 3F =30°, ∴D 3Q =12×13=16,FD 3=D 3A 3·cos30°=13×32=36. 则点A 3到x 轴的距离FQ =D 3Q +FD 3=16+36=3+16. 二、填空题 9. 【答案】4 10. 【答案】1211. 【答案】8[解析]如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD ⊥AC ,OD=OB=OA=OC ,∵AE=CF=2,∴OA -AE=OC -CF ,即OE=OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF , ∴四边形BEDF 为菱形,∴DE=DF=BE=BF , ∵AC=BD=8,OE=OF==2,∴由勾股定理得:DE===2,∴四边形BEDF 的周长=4DE=4×2=8,故答案为:8.12. 【答案】∠BAD =90°(答案不唯一)【解析】∵▱ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,∴▱ABCD 是菱形,当∠BAD =90°时,菱形ABCD 为正方形.故可添加条件:∠BAD =90°.13. 【答案】125(如图1)或52(如图2). 图2图1ABMECFDE FMDCBA14. 【答案】22cm 4n15. 2【解析】作CQ BD ⊥于Q ,则PM PN CQ +=,又CQ BD BC CD ⋅=⋅216. 【答案】233或33 【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎨⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AFcos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm .解图三、解答题17. 【答案】连接PC.∵ABCD为正方形∴A、C关于BD对称∴PA PC=∵PE BC⊥,PF CD⊥,BC CD⊥∴PECF为矩形∴PC EF=∴PA EF=.FEPDCBA18. 【答案】解:(1)证明:连接OC.∵CE是☉O的切线,∴OC⊥CE.∴∠FCO+∠ECF=90°.∵DO⊥AB,∴∠B+∠BFO=90°.∵∠CFE=∠BFO,∴∠B+∠CFE=90°.∵OC=OB,∴∠FCO=∠B.∴∠ECF=∠CFE.∴CE=EF .(2)∵AB 是☉O 的直径,∴∠ACB=90°.∴∠DCF=90°.∴∠DCE +∠ECF=90°,∠D +∠EFC=90°.由(1)得∠ECF=∠CFE ,∴∠D=∠DCE.∴ED=EC.∴ED=EC=EF .即点E 为线段DF 的中点.①四边形ECFG 为菱形时,CF=CE.∵CE=EF ,∴CE=CF=EF .∴△CEF 为等边三角形.∴∠CFE=60°.∴∠D=30°.故填30°.②四边形ECOG 为正方形时,△ECO 为等腰直角三角形. ∴∠CEF=45°.∵∠CEF=∠D +∠DCE ,∴∠D=∠DCE=22.5°.故填22.5°.19. 【答案】MN BM DN =+,延长CD 至'M ,使'M D BM =,证明''ADM ABM AM N AMN ∆∆∆∆≌,≌,测得1''452MAN M AN M AM ∠=∠=∠=︒20. 【答案】解:(1)结论:DM ⊥EM ,DM=EM.[解析]延长EM 交AD 于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.(2)结论不变.DM⊥EM,DM=EM.证明:延长EM交DA的延长线于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.21. 【答案】(1)四边形EFGH是正方形.证明:四边形ABCD是正方形∴90===∠=∠=∠=∠=︒,AB BC CD DAA B C D∵HA EB FC GD === ∴AE BF CG DH === ∴AEH BFE CGF DHG ∆∆∆∆≌≌≌∴EF FG GH HE ===∴四边形EFGH 是菱形.由DHG AEH ∆∆≌知DHG AEH ∠=∠∵90AEH AHE ∠+∠=︒∴90DHG AHE ∠+∠=︒∴90GHE ∠=︒∴四边形EFGH 是正方形.(2)122. 【答案】(1)证明:∵四边形ABCD 是正方形,∴BC =CD =AD =AB =4,∠ABE =∠C =∠D =90°, ∴∠ABG +∠CBF =90°,∵BF ⊥AE ,∴∠ABG +∠BAE =90°,∴∠BAE =∠CBF ,在△BCF 和△ABE 中,⎩⎨⎧∠C =∠ABEBC =AB∠CBF =∠BAE, ∴△BCF ≌△ABE (ASA);(2)证明:∵AC ⊥BD ,BF ⊥AE ,∴∠AOB =∠AGB =∠AGF =90°,∴A 、B 、G 、O 四点共圆,∴∠AGO =∠ABO =45°,∴∠FGO =90°-45°=45°=∠AGO ,∴GO 平分∠AGF ;(3)解:如解图,连接EF ,解图∵CG ⊥GO ,∴∠OGC =90°,∵∠EGF =∠BCD =90°,∴∠EGF +∠BCD =180°,∴C 、E 、G 、F 四点共圆,∴∠EFC =∠EGC =180°-90°-45°=45°,∴△CEF是等腰直角三角形,∴CE=CF,同(1)得△BCF ≌△ABE,∴CF=BE,∴CE=BE=12BC,∴OA=12AC=22BC=2CE,由(2)得A、B、G、O四点共圆,∴∠BOG=∠BAE,∵∠GEC=90°+∠BAE,∠GOA=90°+∠BOG,∴∠GOA=∠GEC,又∵∠EGC=∠AGO=45°,∴△AOG∽△CEG,∴AGCG=OACE=2,∴AG= 2 CG,∴n= 2 .。
中考复习《矩形、菱形、正方形》测试题(含答案)一、选择题(每题4分,共24分)1.[2015·泸州]菱形具有而平行四边形不具有的性质是(D) A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直2.[2015·衢州]如图28-1,已知某菱形花坛ABCD的周长是24 m,∠BAD=120°,则花坛对角线AC的长是(B)A.6 3 m B.6 m图28-1 C.3 3 m D.3 m【解析】易知△ABC为等边三角形,所以AC=AB=6 m.3.[2015·益阳]如图28-2,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D) A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD图28-2 图28-34.[2014·福州]如图28-3,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为(C) A.45°B.55°C.60°D.75°【解析】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE 是等边三角形, ∴AE =AD =DE ,∠DAE =60°, ∴AB =AE ,∴∠ABE =∠AEB ,∠BAE =90°+60°=150°, ∴∠ABE =(180°-150°)÷2=15°, 又∵∠BAC =45°, ∴∠BFC =45°+15°=60°.5.[2015·临沂]如图28-4,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连结EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是 (B) A .AB =BEB .BE ⊥DCC .∠ADB =90°D .CE ⊥DE【解析】 因为四边形ABCD 为平行四边形,所以AD 綊BC ,因为DE =AD ,所以DE 綊BC所以四边形EDBC 为平行四边形,A .假若AB =BE ,因为AB =BE ,AD =DE ,BD =BD ,所以△ADB ≌△EDB ,所以∠BDE =90°,所以四边形EDBC 为矩形; B .假若BE ⊥DC ,可得四边形EDBC 为菱形;C .假若∠ADB =90°,所以∠EDB =90°,所以四边形EDBC 为矩形;D .假若CE ⊥DE ,所以∠DEC =90°,所以四边形EDBC 为矩形,故选B. 6.[2015·日照]小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 成为正方形(如图28-5)现有下列四种选法,你图28-4图28-5认为其中错误的是(B)A.①②B.②③C.①③D.②④【解析】此题考查正方形的判定,即在▱ABCD的基础上,需要再同时具备矩形和菱形的特征.①是菱形的特征;②是矩形的特征;③是矩形的特征,④是菱形的特征.而B中都是矩形的特征,故选B.二、填空题(每题4分,共20分)7.[2015·铜仁]已知一个菱形的两条对角线长分别为6 cm和8 cm,则这个菱形的面积为__24__cm2.8.[2014·衡阳]如图28-6,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为__10__.9.[2015·上海]已知E是正方形ABCD的对角线AC上一点,图28-6 AE=AD,过点E作AC的垂线,交边CD于点F,那么∠F AD=__22.5__度.10.[2014·淄博]已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形.你添加的条件是__AB=BC或AC⊥BD等__.11.[2014·资阳]如图28-7,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为__6__.图28-7【解析】如答图,连结BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE=5,∴△BEQ周长的最小值=DE+BE=5+1=6.三、解答题(共20分)12.(10分)[2015·安顺]如图28-8,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于图28-8F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.证明:(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形,理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠F AD,∵AE∥DF,∴∠EAD=ADF,∠DAF=∠FDA,∴AF=DF,∴平行四边形AEDF为菱形.13.(10分)[2015·青岛]已知:如图28-9,在△ABC中,AB =AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;图28-9(2)连结DE ,线段DE 与AB 之间有怎样的位置和数量关系?请证明你的结论. 解:(1)证明:∵AB =AC ,AD 是BC 边上的中线, ∴AD ⊥BC ,BD =CD . ∵AE ∥BC ,CE ⊥AE , ∴四边形ADCE 是矩形, ∴AD =CE .在Rt △ABD 与Rt △CAE 中, ⎩⎪⎨⎪⎧AD =CE ,AB =CA ,∴△ABD ≌△CAE (HL );(2)DE ∥AB ,DE =AB .证明如下: 如答图所示,∵四边形ADCE 是矩形, ∴AE =CD =BD ,AE ∥BD , ∴四边形ABDE 是平行四边形, ∴DE ∥AB ,DE =AB .14.(10分)[2014·扬州]如图28-10,已知Rt △ABC ,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°后至△DBE ,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H .(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连结CG ,求证:四边形CBEG 是正方形. 解:(1)DE ⊥FG ,理由如下:由题意得∠A =∠EDB =∠GFE ,∠ABC =∠DBE =90°,第13题答图图28-10∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°,∴∠FHE=90°,即DE⊥FG;(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE.∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°,∴四边形CBEG是矩形.∵BC=BE,∴四边形CBEG是正方形.15.(10分)[2015·南京]如图28-11,AB∥CD,点E,F分别在AB,CD上,连结EF,∠AEF,∠CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD交于点P,Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形,请在下列框图中补全他的证明思路.小明的证明思路由AB∥CD,MN∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ.由已知条件__FG平分∠CFE__,MN∥EF,可证NG=NF,故只要证GM=FQ,即证△MEG≌△QFH,易证__GE=FH__,__∠GME =∠FQH__.故只要证∠MGE=∠QFH.易证∠MGE=∠GEF,∠QFH=∠EFH,__∠GEF=∠EFH__,即可得证.图28-11解:(1)证明:∵EH平分∠BEF.∴∠FEH=12∠BEF,∵FH平分∠DFE,∴∠EFH=12∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=12(∠BEF+∠DFE)=12×180°=90°,又∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°,同理可证,∠EGF=90°,∵EG平分∠AEF,∴∠FEG=12∠AEF,∵EH平分∠BEF,∴∠FEH=12∠BEF,∵点A,E,B在同一条直线上.∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形;(2)本题答案不唯一,下列解法供参考.例如,FG平分∠CFE;GE=FH;∠GME =∠FQH;∠GEF=∠EFH.16.(6分)[2015·资阳]若顺次连结四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是(D) A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形17.(10分)如图28-12,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;…;按此规律继续下去,则四边形A2B2C2D2的周长是__20__;四边形A2 016B2 016C2 016D2 016的周长是__521 005__.图28-12。
特殊的平行四边形——矩形、菱形、正方形专题培优、能力提升复习讲义中考考点梳理一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:第一步:先证明它是平行四边形;第二步:再证明它是菱形(或矩形);第三步:最后证明它是矩形(或菱形)4、正方形的面积: 设正方形边长为a ,对角线长为b ,S 正方形=222b a 中考典例精选考点典例一、矩形的性质与判定【例1】如图,矩形ABCD 的对角线AC 、BD 相交于点O ,若AB =AO , 求∠ABD 的度数.图6A B 【答案】∠ABD =60°.【解析】考点:矩形的性质;等边三角形的判定及性质.【点睛】此题考查了等边三角形的判定与性质,矩形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.【举一反三】1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【答案】详见解析.【解析】试题分析:由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到△BEF≌△CFD,利用全等三角形对应边相等即可得证.考点:矩形的性质;全等三角形的判定与性质.2. 如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于F .若AD=8cm ,AB=6cm ,AE=4cm .则△EBF 的周长是 cm .【答案】8.【解析】试题分析:BE=AB-AE=2.设AH=x ,则DH=AD ﹣AH=8﹣x ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=x ,EH=DH=8﹣x ,∴EH 2=AE 2+AH 2,即(8﹣x )2=42+x 2,解得:x=3.∴AH=3,EH=5.∴C △AEH =12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH .又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE ,∴32==∆∆AH BE C C HAE EFB . ∴C △EBF =23=C △HAE =8.考点:1折叠问题;2勾股定理;3相似三角形.考点典例二、菱形的性质与判定【例2】如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.【解析】(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE ∥AF ,∴四边形ABEF 是平行四边形,∵AF=AB ,∴四边形ABEF 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.【点睛】本题考查了平行四边形的性质,菱形的判定,熟记各性质与平行四边形和菱形的判定方法是解题的关键.在利用菱形计算或证明时,应充分利用菱形的性质,如“菱形的四条边都相等”“菱形的对角线互相垂直且平分,并且每一组对角线平分一组对角”等.对于菱形的判定,若可证出四边形为平行四边形,则可证一组邻边相等或对角线互相垂直;若相等的边较多,则可证四条边都相等.【举一反三】1. 如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于A .524 B .512 C .5 D .4【答案】A.【解析】 考点:菱形的性质.2. 如图,菱形ABCD 的边AB=8,∠B=60°,P 是AB 上一点,BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为( )A. 5B. 7C. 8D. 213 CD H【答案】B.【解析】考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.考点典例三、正方形的性质与判定【例3】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】证明见解析.【解析】考点:正方形的判定;全等三角形的判定与性质.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.正方形是特殊的矩形又是特殊的菱形,具有矩形和菱形的所有性质.证明一个四边形是正方形,可以先判定为矩形,再证邻边相等或对角线互相垂直;或先判定为菱形,再证有一个角是直角或对角线相等.【举一反三】1.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【答案】B.【解析】考点:正方形的性质;全等三角形的判定及性质;勾股定理.考点典例四、特殊平行四边形综合题【例4】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE ⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【答案】(1)证明见解析;(2)四边形BECD是菱形,(3)当∠A=45°时,四边形BECD是正方形.理由见解析.【解析】(3)当∠A=45°时,四边形BECD是正方形,理由是:考点:正方形的判定;平行四边形的判定与性质;菱形的判定.【点睛】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力. 【举一反三】如图,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转450得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED③∠DFG =112.5︒ ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5F EH G BA【答案】①②③. 【解析】试题分析:由旋转的性质可得HD=BD=2 ∴HA=12-考点:旋转的性质;全等三角形的判定及性质;菱形的判定.课后巩固、提高自测小练习一、选择题1.关于ABCD的叙述,正确的是()A.若AB⊥BC ABCD是菱形B.若AC⊥BD ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD ABCD是正方形【答案】C.【解析】试题分析:根据矩形的判定可得A、C项应是矩形;根据菱形的判定可得B、D项应是菱形,故答案选C.考点:矩形、菱形的判定.2. 下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【答案】D.【解析】考点:1菱形的判定;2矩形的性质;3平行四边形的判定.3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.此时,EP+FP的值最小,值为EF′.∵四边形ABCD为菱形,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.考点:1轴对称;2菱形.4.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A .AB =AD B .AC ⊥BD C .AC =BD D .∠BAC =∠DAC 【答案】C . 【解析】考点:菱形的判定;平行四边形的性质.5. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:∵正方形ABCD 的边长为6,CE =2DE ,∴DE =2,EC =4,∵把△ADE 沿AE 折叠使△ADE 落在△AFE 的位置,∴AF =AD =6,EF =ED =2,∠AFE =∠D =90°,∠FAE =∠DAE ,在Rt △ABG 和Rt △AFG 中,∵AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ),∴GB =GF ,∠BAG =∠FAG ,∴∠GAE =∠FAE +∠FAG =12∠BAD =45°,所以①正确; 设BG =x ,则GF =x ,C =BC ﹣BG =6﹣x ,在Rt △CGE 中,GE =x +2,EC =4,CG =6﹣x ,∵222CG CE GE +=,∴222(6)4(2)x x-+=+,解得x=3,∴BG=3,CG=6﹣3=3,∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC.∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EH EFGC EG=,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:EH EFGC EG==25,∴S△FGC=S△GCE﹣S△FEC=12×3×4﹣12×4×(25×3)=3.6,所以⑤正确.故正确的有①②③④⑤,故选D.考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.6.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次【答案】B.【解析】考点:翻折变换(折叠问题).7.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【答案】D.【解析】考点:菱形的性质;平行四边形的性质.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB//CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.二、填空题1.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)【答案】①②③④.【解析】考点:1菱形的性质和判定;2轴对称;3平行线的性质.2. 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.【答案】22.5°.【解析】试题分析:已知四边形ABCD是矩形,由矩形的性质可得AC=BD,OA=OC,OB=OD,即可得OA=OB═OC,由等腰三角形的性质可得∠OAC=∠ODA,∠OAB=∠OBA,即可得∠AOE=∠OAC+∠OCA=2∠OAC,再由∠EAC=2∠CAD,可得∠EAO=∠AOE,因AE⊥BD,可得∠AEO=90°,所以∠AOE=45°,所以∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.3. 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG•BD=AE2+CF2.【答案】(1),(2),(3),(5).【解析】1(2)∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,4∴S四边形OEBF:S正方形ABCD=1:4;故正确;(3)∴BE+BF=BF+CF=BC=2OA;故正确;(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=12BD,OE=22EF,∴OG•BD=EF2,∵在△BEF中,EF2=BE2+BF2,∴EF2=AE2+CF2,∴OG•BD=AE2+CF2.故正确.考点:四边形综合题.4.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.【答案】24. 【解析】试题分析:根据菱形面积等于两条对角线的长度的乘积的一半即可得,菱形的面积=21×6×8=24. 考点:菱形的性质.5.将矩形ABCD 纸片按如图所示的方式折叠,EF ,EG 为折痕,试问∠AEF +∠BEG = .【答案】90°. 【解析】考点:翻折变换(折叠问题).6. 如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(4,3),∠CAO 的平分线与y 轴相交于点D ,则点D 的坐标为 .【答案】(0,43).【解析】考点:矩形的性质;坐标与图形性质.三、解答题1.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=22,∠AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.【解析】考点:矩形的性质;全等三角形的判定与性质.2.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.【解析】试题分析:(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.考点:矩形的判定与性质;全等三角形的判定与性质.3.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:A E=EF.【答案】证明见解析.【解析】试题分析:先取AB的中点H,连接EH,根据∠AE F=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC 的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.试题解析:取AB的中点H,连接EH.∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,∵∠1=∠2,AH=EC,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.考点:正方形的性质;全等三角形的判定与性质.4. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【答案】详见解析.【解析】∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.考点:全等三角形的性质;菱形的判定.。
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)1.32的倒数是(). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平⽅⽶⽼住宅⼩区综合整治⼯作.130万(即1 300 000)这个数⽤科学记数法可表⽰为().A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为(). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使⽤前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进⾏。
那么要完成上述调整,最少的调动件次(n 件配件从⼀个维修点调整到相邻维修点的调动件次为n )为().A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………()A )1- B )0 C )1 D )26. 2010年⼀季度,全国城镇新增就业⼈数为289万⼈,⽤科学记数法表⽰289万正确的是()A )2.89×107.B )2.89×106 .C )2.89×105..7.下⾯两个多位数1248624……、6248624……,都是按照如下⽅法得到的:将第⼀位数字乘以2,若积为⼀位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进⾏如上操作得到第3位数字……,后⾯的每⼀位数字都是由前⼀位数字进⾏如上操作得到的。
2024年中考数学二轮复习模块专练—正方形(含答案)一、正方形的性质1.正方形具有平行四边形、矩形、菱形的所有性质;2.边的性质:对边平行,四条边相等;3.角的性质:四个角都是直角;4.对角线的性质:对角线垂直平分且相等,每条对角线平分一组对角;两条对角线把正方形分成4个全等的等腰直角三角形;5.对称性:是轴对称图形,有4条对称轴;是中心对称图形,对称中心也叫正方形的中心;二、正方形的判定1.在矩形的基础上判定(1)有一组邻边相等的矩形是正方形;(2)对角线垂直的矩形是正方形;2.在菱形的基础上判定(1)有一个角是直角的菱形是正方形;(2)对角线相等的菱形是正方形;三、中点四边形1.连接任意四边形各边中点得到的四边形是平行四边形;2.连接矩形各边中点得到的四边形是菱形;3.连接菱形各边中点得到的四边形是矩形;《义务教育数学课程标准》2022年版,学业质量要求:试卷第2页,共12页1.理解正方形的概念;2.理解矩形、菱形、正方形之间的包含关系;3.掌握正方形的性质和判定;【例1】(2023·四川攀枝花·统考中考真题)1.如图,已知正方形ABCD 的边长为3,点P 是对角线BD 上的一点,PF AD ⊥于点F ,PE AB ⊥于点E ,连接PC ,当:1:2PE PF =时,则PC =()AB .2CD .52【变1】(2023·福建·统考中考真题)2.如图,正方形四个顶点分别位于两个反比例函数3y x =和n y x=的图象的四个分支上,则实数n 的值为()A .3-B .13-C .13D .3【例1】(2022·四川攀枝花·统考中考真题)3.如图,以ABC 的三边为边在BC 上方分别作等边ACD 、ABE 、BCF △.且点A 在BCF △内部.给出以下结论:①四边形ADFE 是平行四边形;②当150BAC ∠=︒时,四边形ADFE 是矩形;③当AB AC =时,四边形ADFE 是菱形;④当AB AC =,且150BAC ∠=︒时,四边形ADFE 是正方形.其中正确结论有(填上所有正确结论的序号).【变1】(2022·辽宁阜新·统考中考真题)4.已知,四边形ABCD 是正方形,DEF 绕点D 旋转(DE AB <),90EDF ∠=︒,DE DF =,连接AE ,CF .试卷第4页,共12页(1)如图1,求证:ADE V ≌CDF ;(2)直线AE 与CF 相交于点G .①如图2,BM AG ⊥于点M ,⊥BN CF 于点N ,求证:四边形BMGN 是正方形;②如图3,连接BG ,若4AB =,2DE =,直接写出在DEF 旋转的过程中,线段BG长度的最小值.【例1】(2022·广西玉林·统考中考真题)5.若顺次连接四边形ABCD 各边的中点所得的四边形是正方形,则四边形ABCD 的两条对角线,AC BD 一定是()A .互相平分B .互相垂直C .互相平分且相等D .互相垂直且相等【变1】(2023·山东临沂·统考一模)6.四边形ABCD 的对角线AC ,BD 交点O ,点M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 的中点.有下列四个推断,①对于任意四边形ABCD ,四边形MNPQ 可能不是平行四边形;②若AC BD =,则四边形MNPQ 一定是菱形;③若AC BD ⊥,则四边形MNPQ 一定是矩形;④若四边形ABCD 是菱形,则四边形MNPQ 也是菱形.所有正确推断的序号是.一、选择题(2023·重庆·统考中考真题)7.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()A .2αB .902α︒-C .45α︒-D .90α︒-(2022·江苏泰州·统考中考真题)8.如图,正方形ABCD 的边长为2,E 为与点D 不重合的动点,以DE 一边作正方形DEFG .设DE =d 1,点F 、G 与点C 的距离分别为d 2,d 3,则d 1+d 2+d 3的最小值为()试卷第6页,共12页AB .2C.D .4(2022·内蒙古包头·中考真题)9.如图,在矩形ABCD 中,AD AB >,点E ,F 分别在,AD BC 边上,EF AB ∥,AE AB =,AF 与BE 相交于点O ,连接OC ,若2BF CF =,则OC 与EF 之间的数量关系正确的是()A.2OC =B2EF =C.2OC D .OC EF =(2022·浙江绍兴·统考中考真题)10.如图,在平行四边形ABCD 中,22AD AB ==,60ABC ∠=︒,E ,F 是对角线BD 上的动点,且BE DF =,M ,N 分别是边AD ,边BC 上的动点.下列四种说法:①存在无数个平行四边形MENF ;②存在无数个矩形MENF ;③存在无数个菱形MENF ;④存在无数个正方形MENF .其中正确的个数是()A .1B .2C .3D .4二、填空题(2023·湖南怀化·统考中考真题)11.如图,点P 是正方形ABCD 的对角线AC 上的一点,PE AD ⊥于点E ,3PE =.则点P 到直线AB 的距离为.(2023·四川宜宾·统考中考真题)12.如图,M 是正方形ABCD 边CD 的中点,P 是正方形内一点,连接BP ,线段BP 以B 为中心逆时针旋转90︒得到线段BQ ,连接MQ .若4AB =,1MP =,则MQ 的最小值为.(2022·辽宁·统考中考真题)13.如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E 是OD 的中点,连接CE 并延长交AD 于点G ,将线段CE 绕点C 逆时针旋转90°得到CF ,连接EF ,点H 为EF 的中点.连接OH ,则GE OH 的值为.(2023·浙江衢州·统考中考真题)14.如图,点A 、B 在x 轴上,分别以OA ,AB 为边,在x 轴上方作正方形OACD ,ABEF .反比例函数()0k y k x=>的图象分别交边CD ,BE 于点P ,Q .作PM x ⊥轴于点M ,QN y ⊥试卷第8页,共12页轴于点N .若2OA AB =,Q 为BE 的中点,且阴影部分面积等于6,则k 的值为.三、解答题(2022·湖南邵阳·统考中考真题)15.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在对角线BD 上,且BE DF =,OE OA =.求证:四边形AECF是正方形.(2023·湖北十堰·统考中考真题)16.如图,ABCD Y 的对角线,AC BD 交于点O ,分别以点,B C 为圆心,11,22AC BD 长为半径画弧,两弧交于点P ,连接,BP CP.(1)试判断四边形BPCO 的形状,并说明理由;(2)请说明当ABCD Y 的对角线满足什么条件时,四边形BPCO 是正方形?(2022·江苏镇江·统考中考真题)17.已知,点E 、F 、G 、H 分别在正方形ABCD 的边AB 、BC 、CD 、AD 上.(1)如图1,当四边形EFGH 是正方形时,求证:AE AH AB +=;(2)如图2,已知AE AH =,CF CG =,当AE 、CF 的大小有_________关系时,四边形EFGH 是矩形;(3)如图3,AE DG =,EG 、FH 相交于点O ,:4:5OE OF =,已知正方形ABCD 的边长为16,FH 长为20,当OEH △的面积取最大值时,判断四边形EFGH 是怎样的四边形?证明你的结论.(2022·贵州黔东南·统考中考真题)18.阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:如图,ABC 和BDE △都是等边三角形,点A 在DE 上.求证:以AE 、AD 、AC 为边的三角形是钝角三角形.(1)【探究发现】小明通过探究发现:连接DC ,根据已知条件,可以证明DC AE =,120ADC ∠=︒,从而得出ADC △为钝角三角形,故以AE 、AD 、AC 为边的三角形是钝角三角形.请你根据小明的思路,写出完整的证明过程.(2)【拓展迁移】如图,四边形ABCD 和四边形BGFE 都是正方形,点A 在EG 上.试卷第10页,共12页①试猜想:以AE 、AG 、AC 为边的三角形的形状,并说明理由.②若2210AE AG +=,试求出正方形ABCD 的面积.(2022·四川乐山·统考中考真题)19.华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.2.如图,在正方形ABCD 中,CE DF ⊥.求证:CE DF =.证明:设CE 与DF 交于点O ,∵四边形ABCD 是正方形,∴90B DCF ∠=∠=︒,BC CD =.∴90BCE DCE ∠+∠=︒.∵CE DF ⊥,∴90COD ∠=︒.∴90CDF DCE ∠+∠=︒.∴CDF BCE ∠=∠.∴CBE DFC ≌△△.∴CE DF =.某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究(1)【问题探究】如图,在正方形ABCD 中,点E 、F 、G 、H 分别在线段AB 、BC 、CD 、DA 上,且EG FH ⊥.试猜想EG FH 的值,并证明你的猜想.(2)【知识迁移】如图,在矩形ABCD 中,AB m =,BC n =,点E 、F 、G 、H 分别在线段AB 、BC 、CD 、DA 上,且EG FH ⊥.则EG FH=______.(3)【拓展应用】如图,在四边形ABCD 中,90DAB ∠=︒,60ABC ∠=︒,AB BC =,点E 、F 分别在线段AB 、AD 上,且CE BF ⊥.求CE BF 的值.(2023·辽宁丹东·统考一模)20.已知正方形ABCD 和等腰直角三角形AEF ,90EAF ∠=︒,连接BD ,BE ,BF ,DE ,点G ,H ,I 分别为线段BD ,BF ,DE 的中点,连接GH ,G I ,HI .试卷第12页,共12页(1)如图1,当点B ,A ,F 在一条直线上时,请直接写出线段GH 与G I 的关系;(2)如图2,将AEF △绕点A 顺时针旋转()090αα︒<<︒,判断线段GH 与G I 的关系,并说明理由;(3)在(2)的条件下,若4AB =,3AE =,ADE V ,ABF △,GHI 的面积分别为1S ,2S ,S .①请直接写出1S 与2S 大小关系;②直接写出124S S S +-的值.(2023·山东日照·统考中考真题)21.在平面直角坐标系xOy 内,抛物线()2520y ax ax a =-++>交y 轴于点C ,过点C作x 轴的平行线交该抛物线于点D.(1)求点C ,D 的坐标;(2)当13a =时,如图1,该抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),点P 为直线AD 上方抛物线上一点,将直线PD 沿直线AD 翻折,交x 轴于点(4,0)M ,求点P 的坐标;(3)坐标平面内有两点()1,1,5,1E a F a a ⎛⎫++ ⎪⎝⎭,以线段EF 为边向上作正方形EFGH .①若1a =,求正方形EFGH 的边与抛物线的所有交点坐标;②当正方形EFGH 的边与该抛物线有且仅有两个交点,且这两个交点到x 轴的距离之差为52时,求a 的值.参考答案:1.C【分析】先证四边形AEPF 是矩形,可得PE AF =,90PFD ∠=︒,由等腰直角三角形的性质可得PF DF =,可求AF ,DF 的长,由勾股定理可求AP 的长,由“SAS ”可证ABP CBP △≌△,可得AP PC ==【详解】解:如图:连接AP ,四边形ABCD 是正方形,3AB AD ∴==,45ADB ∠=︒,PF AD ⊥ ,PE AB ⊥,90BAD ∠=︒,∴四边形AEPF 是矩形,PE AF ∴=,90PFD ∠=︒,PFD ∴ 是等腰直角三角形,PF DF ∴=,:1:2PE PF = ,:1:2AF DF ∴=,1AF ∴=,2DF PF ==,AP ∴=答案第2页,共37页AB BC = ,45ABD CBD ∠=∠=︒,BP BP =,(SAS)ABP CBP ∴△≌△,AP PC ∴==故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.2.A【分析】如图所示,点B 在3y x=上,证明AOC OBD ≌,根据k 的几何意义即可求解.【详解】解:如图所示,连接正方形的对角线,过点,A B 分别作x 轴的垂线,垂足分别为,C D ,点B 在3y x =上,∵OB OA =,90AOB BDO ACO ∠=∠=∠=︒,∴90CAO AOC BOD ∠=︒-∠=∠.∴AOC OBD ≌.∴32AOC OBD S S == n =.∵A 点在第二象限,∴3n =-.故选:A .【点睛】本题考查了正方形的性质,反比例函数的k 的几何意义,熟练掌握以上知识是解题的关键.3.①②③④【分析】对于结论①,由等边三角形的性质可得,(SAS)EFB ACB ≌△△,则EF AC AD ==;同理,由CDF CAB ≌△△,得DF AB AE ==,由AE DF =,AD EF =即可得出四边形ADFE 是平行四边形;对于结论②,当150BAC ∠=︒时,36090EAD BAE BAC CAD ∠=︒-∠-∠-∠=︒,结合结论①,可知结论②正确;对于结论③,当AB AC =时,AE AD =,结合结论①,可知结论③正确;对于结论④,综合②③的结论知:当AB AC =,且150BAC ∠=︒时,四边形AEFD 既是菱形,又是矩形,故结论④正确.【详解】解析:①ABE 、CBF V 是等边三角形,BE AB ∴=,BF CB =,60FB EBA C =∠=︒∠,60EBF ABC ABF ∴∠=∠=︒-∠,(SAS)EFB ACB ∴≌△△,EF AC AD \==,同理由CDF CAB ≌△△,得DF AB AE ==,由AE DF =,AD EF =即可得出四边形ADFE 是平行四边形,故结论①正确;②当150BAC ∠=︒时,360360601506090EAD BAE BAC CAD ∠=︒-∠-∠-∠=︒-︒-︒-︒=︒,由①知四边形AEFD 是平行四边形,∴平行四边形ADFE 是矩形,故结论②正确;③由①知AB AE =,AC AD =,四边形AEFD 是平行四边形,∴当AB AC =时,AE AD =,∴平行四边形AEFD 是菱形,故结论③正确;答案第4页,共37页④综合②③的结论知:当AB AC =,且150BAC ∠=︒时,四边形AEFD 既是菱形,又是矩形,∴四边形AEFD 是正方形,故结论④正确.故答案为:①②③④.【点睛】本题主要考查了平行四边形、菱形、矩形、正方形的判定方法,熟练掌握以上图形的判定方法是解题的关键.4.(1)见解析(2)①见解析②【分析】()1根据SAS 证明三角形全等即可;()2①根据邻边相等的矩形是正方形证明即可;②作DH AG ⊥交AG 于点H ,作BM AG ⊥于点M ,证明BMG △是等腰直角三角形,求出BM 的最小值,可得结论.【详解】(1)证明: 四边形ABCD 是正方形,AD DC ∴=,90ADC ∠=︒.DE DF = ,90EDF ∠=︒.ADC EDF ∴∠=∠,ADE CDF \Ð=Ð,在ADE V 和CDF 中,DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩ADE ∴V ≌()SAS CDF △;(2)①证明:如图2中,设AG 与CD 相交于点P .90ADP ∠=︒ ,90DAP DPA ∴∠+∠=︒.ADE ≌CDF ,DAE DCF ∴∠=∠.DPA GPC ∠∠= ,90DAE DPA GPC GCP ∠∠∠∠∴+=+=︒.90PGN ∠∴=︒,BM AG ⊥ ,BN GN ⊥,∴四边形BMGN 是矩形,90MBN ∴∠=︒.四边形ABCD 是正方形,AB BC ∴=,90ABC MBN ∠∠==︒.ABM CBN ∴∠=∠.又90AMB BNC ∠∠==︒ ,AMB ∴ ≌CNB .MB NB ∴=.∴矩形BMGN 是正方形;答案第6页,共37页②解:作DH AG ⊥交AG 于点H ,作BM AG ⊥于点M,∵90,90,DHA AMB ADH DAH BAM AD AB∠=∠=︒∠=︒-∠=∠=∴AMB ≌DHA .BM AH ∴=.222AH AD DH =- ,4=AD ,DH ∴最大时,AH 最小,2DH DE ==最大值.BM AH ∴==最小值最小值.由()2①可知,BGM是等腰直角三角形,BG ∴==最小值【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.5.D【分析】由题意作出图形,然后根据正方形的判定定理可进行排除选项.【详解】解:如图所示,点E 、F 、G 、H 分别是四边形ABCD 边AD 、DC 、BC 、AB 的中点,∴11////,////,,22EF AC GH EH BD FG EF GH AC EH FG BD ====,∴四边形EFGH 是平行四边形,对于A 选项:对角线互相平分,四边形EFGH 仍是平行四边形,故不符合题意;对于B 选项:对角线互相垂直,则有EF EH ⊥,可推出四边形EFGH 是矩形,故不符合题意;对于C 选项:对角线互相平分且相等,则有EF EH =,可推出四边形EFGH 是菱形,故不符合题意;对于D 选项:对角线互相垂直且相等,则有EF EH ⊥,EF EH =,可推出四边形EFGH 是正方形,故符合题意;故选D .【点睛】本题主要考查三角形中位线及正方形、菱形、矩形、平行四边形的判定,熟练掌握三角形中位线及正方形、菱形、矩形、平行四边形的判定是解题的关键.6.②③【分析】根据四边形的性质及中位线的性质推导即可.【详解】解: 点M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 的中点,MN AC ∴∥且12MN AC =,PQ AC ∥且12PQ AC =,MN PQ ∴∥且MN PQ =,MNPQ∴是平行四边形,故①错误;点M,N,P,Q分别为边AB,BC,CD,DA的中点,∴12MN AC=,12PN BD=,AC BD=,MN PN∴=,MNPQ是平行四边形,∴四边形MNPQ是菱形,故②正确;点M,N,P,Q分别为边AB,BC,CD,DA的中点,MN AC∴∥,MQ BD∥,AC BD⊥,MN MQ∴⊥,90QMN∴∠=︒,MNPQ是平行四边形,∴MNPQ是矩形,故③正确;若要四边形MNPQ是菱形,需满足AC BD=,当四边形ABCD是菱形,AC不一定等于BD,故④错误;综上,正确的有:②③,故答案为:②③.答案第8页,共37页【点睛】本题考查了中位线定理,菱形的判定和性质,矩形的判定和性质,平行四边形的判定和性质,熟练掌握知识点是解题的关键.7.A【分析】利用三角形逆时针旋转90︒后,再证明三角形全等,最后根据性质和三角形内角和定理即可求解.【详解】将ADF 绕点A 逆时针旋转90︒至ABH,∵四边形ABCD 是正方形,∴AB AD =,90ABC D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180ABH ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,答案第10页,共37页∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .【点睛】此题考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解题的关键是能正确作出旋转,再证明三角形全等,熟练利用性质求出角度.8.C【分析】连接CF 、CG 、AE ,证()ADE CDG SAS ∆≅∆可得AE CG =,当A 、E 、F 、C 四点共线时,即得最小值;【详解】解:如图,连接CF 、CG 、AE,∵90ADC EDG ∠=∠=︒∴ADE CDG∠=∠在ADE ∆和CDG ∆中,∵AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩=∴AE CG++=++∴DE CF CG EF CF AE++=时,最小,当EF CF AE ACAC===∴d1+d2+d3的最小值为,故选:C.【点睛】本题主要考查正方形的性质、三角形的全等证明,正确构造全等三角形是解本题的关键.9.A==,【分析】过点O作OM⊥BC于点M,先证明四边形ABFE是正方形,得出MF CF OM再利用勾股定理得出OC=,即可得出答案.【详解】过点O作OM⊥BC于点M,90∴∠=︒,OMC四边形ABCD是矩形,∴∠=∠=︒,90ABC BADEF AB∥∴∠AEF=180°-∠BAD=90°,∴∠=∠=∠=︒,ABC BAD AEF90∴四边形ABFE是矩形,答案第12页,共37页又∵AB =AE ,∴四边形ABFE 是正方形,45,AFB OB OF ∴∠=︒=,EF =BF ,12MF BF OM ∴==,2BF CF = ,MF CF OM ∴==,EF =2CF ,由勾股定理得OC ===,2OC ∴=,故选:A .【点睛】本题考查了矩形的性质,正方形的判定和性质,平行线的性质,勾股定理,熟练掌握知识点是解题的关键.10.C【分析】根据题意作出合适的辅助线,然后逐一分析即可.【详解】如图,连接AC 、与BD 交于点O ,连接ME ,MF ,NF ,EN ,MN ,∵四边形ABCD 是平行四边形∴OA =OC ,OB =OD∵BE =DF∴OE =OF∵点E 、F 时BD 上的点,∴只要M,N过点O,那么四边形MENF就是平行四边形∴存在无数个平行四边形MENF,故①正确;只要MN=EF,MN过点O,则四边形MENF是矩形,∵点E、F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,MN过点O,则四边形MENF是菱形;∵点E、F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,MN过点O,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误;故选:C【点睛】本题考查正方形的判定、菱形的判定、矩形的判定、平行四边形的判定、解答本题的关键时明确题意,作出合适的辅助线.11.3⊥于Q,证明四边形四边形AEPQ是正方形,即可求解.【分析】过点P作PQ AB⊥于Q,【详解】解:如图所示,过点P作PQ AB答案第14页,共37页∵点P 是正方形ABCD 的对角线AC 上的一点,PE AD ⊥于点E∴四边形AEPQ 是矩形,45EAP ∠=︒∴AEP △是等腰直角三角形,∴AE EP=∴四边形AEPQ 是正方形,∴3PQ EP ==,即点P 到直线AB 的距离为3故答案为:3.【点睛】本题考查了正方形的性质与判定,点到直线的距离,熟练掌握正方形的性质与判定是解题的关键.12.1【分析】连接BM ,将BM 以B 中心,逆时针旋转90︒,M 点的对应点为E ,由P 的运动轨迹是以M 为圆心,1为半径的半圆,可得:Q 的运动轨迹是以E 为圆心,1为半径的半圆,再根据“圆外一定点到圆上任一点的距离,在圆心、定点、动点,三点共线时定点与动点之间的距离最短”,所以当M 、Q 、E 三点共线时,MQ的值最小,可求ME ==,从而可求解.【详解】解,如图,连接BM ,将BM 以B 中心,逆时针旋转90︒,M 点的对应点为E, P 的运动轨迹是以M 为圆心,1为半径的半圆,∴Q 的运动轨迹是以E 为圆心,1为半径的半圆,如图,当M 、Q 、E 三点共线时,MQ 的值最小,四边形ABCD 是正方形,4CD AB BC ∴===,90C ∠=︒,M 是CM 的中点,2CM ∴=,BM ∴==由旋转得:BM BE =,ME ∴==MQ ME EQ∴=-1=,∴MQ的值最小为1.故答案:1.【点睛】本题考查了正方形的性质,旋转的性质,勾股定理,动点产生的线段最小值问题,掌握相关的性质,根据题意找出动点的运动轨迹是解题的关键.13【分析】以O 为原点,平行于AB 的直线为x 轴,建立直角坐标系,过E 作EM ⊥CD 于M ,过F 作FN ⊥DC ,交DC 延长线于N ,设正方形ABCD 的边长为2,从而求出E 的坐标,然后根据待定系数法求出直线CE 的解析式,即可求出G 的坐标,从而可求出GE ,根据旋转的性质可求出F 的坐标,进而求出H 的坐标,则可求OH ,最后代入计算即可得出答案.【详解】解:以O 为原点,平行于AB 的直线为x 轴,建立直角坐标系,过E 作EM ⊥CD答案第16页,共37页于M ,过F 作FN ⊥DC ,交DC 延长线于N,如图:设正方形ABCD 的边长为2,则C (1,1),D (﹣1,1),∵E 为OE 中点,∴E (12-,12),设直线CE 解析式为y =kx +b ,把C (1,1),E (12-,12)代入得:11122k b k b +=⎧⎪⎨-+=⎪⎩,解得1323k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线CE 解析式为1233y x =+,在1233y x =+中,令x =﹣1得y =13,∴G (﹣1,13),∴GE∵将线段CE 绕点C 逆时针旋转90°得到CF ,∴CE =CF ,∠ECF =90°,∴∠MCE =90°﹣∠NCF =∠NFC ,∵∠EMC =∠CNF =90°,∴△EMC ≌△CNF (AAS ),∴ME =CN ,CM =NF ,∵E (12-,12),C (1,1),∴ME =CN =12,CM =NF =32,∴F (32,12-),∵H 是EF 中点,∴H (12,0),∴OH =12,∴GE OH =612=3.故答案为:3.【点睛】本题考查了正方形的性质,旋转的性质,两点间距离公式等知识,以O 为原点,平行于AB 的直线为x 轴,建立直角坐标系是解题的关键.14.24【分析】设4OA a =,则2AB a =,从而可得()4,0A a 、()6,0B a ,由正方形的性质可得()4,4C a a ,由QN y ⊥轴,点P 在CD 上,可得,44k P a a ⎛⎫ ⎪⎝⎭,由于Q 为BE 的中点,BE x ⊥轴,可得1==2BQ AB a ,则()6,Q a a ,由于点Q 在反比例函数()0k y k x =>的图象上可得26k a =,根据阴影部分为矩形,且长为4k a,宽为a ,面积为6,从而可得124=6ak a ⨯⨯,即可求解.【详解】解:设4OA a =,∵2OA AB =,∴2AB a =,∴==6OB AB OA a +,∴()6,0B a ,答案第18页,共37页在正方形ABEF 中,2AB BE a ==,∵Q 为BE 的中点,∴=12=BQ AB a ,∴()6,Q a a ,∵Q 在反比例函数()0k y k x =>的图象上,∴2=6=6k a a a ⨯,∵四边形OACD 是正方形,∴()6,6C a a ,∵P 在CD 上,∴P 点纵坐标为4a ,∵P 点在反比例函数()0k y k x =>的图象上,∴P 点横坐标为=4k x a,∴,44k P a a ⎛⎫ ⎪⎝⎭,∵===90HMO HNO NOM ∠∠∠︒,∴四边形OMHN 是矩形,∴=4k NH a,MH a =,∴64OMHN k S NH MH a a =⨯=⨯= ,∴24k =,故答案为:24.【点睛】本题考查反比例函数图象的性质及正方形的性质及矩形的面积公式,读懂题意,灵活运用所学知识是解题的关键.15.证明过程见解析【分析】菱形的两条对角线相互垂直且平分,再根据两条对角线相互垂直平分且相等的四边形是正方形即可证明四边形AECF 是正方形.【详解】证明:∵四边形ABCD 是菱形∴OA =OC ,OB =OD 且AC ⊥BD ,又∵BE =DF∴OB -BE =OD -DF即OE =OF∵OE =OA∴OA =OC =OE =OF 且AC =EF又∵AC ⊥EF∴四边形DEBF 是正方形.【点睛】此题考查了菱形的性质和正方形的判定,解题的关键是掌握上述知识.16.(1)平行四边形,见解析(2)AC BD =且AC BD⊥【分析】(1)根据平行四边形的性质,得到11,22BP AC OC CP BD OB ====,根据两组对边分别相等的四边形是平行四边形判定即可.(2)根据对角线相等、平分且垂直的四边形是正方形判定即可.【详解】(1)四边形BPCO 是平行四边形.理由如下:∵ABCD Y 的对角线,AC BD 交于点O ,∴,AO OC BO OD ==,∵以点,B C 为圆心,11,22AC BD 长为半径画弧,两弧交于点P ,答案第20页,共37页∴11,22BP AC OC CP BD OB ====∴四边形BPCO 是平行四边形.(2)∵对角线相等、平分且垂直的四边形是正方形,∴AC BD =且AC BD ⊥时,四边形BPCO 是正方形.【点睛】本题考查了平行四边形的判定和性质,正方形的判定和性质,熟练掌握判定和性质是解题的关键.17.(1)见解析(2)AE CF=(3)平行四边形,证明见解析【分析】(1)利用平行四边形的性质证得BEF AHE ∠=∠,根据角角边证明AEH BFE △≌△.(2)当AE CF =,证得AEH FCG △≌△,EBF △是等腰直角三角形,∠HEF =∠EFG =90°,即可证得四边形EFGH 是矩形.(3)利用正方形的性质证得AEGD 为平行四边形,过点H 作HM BC ⊥,垂足为点M ,交EG 于点N ,由平行线分线段成比例,设4OE x =,5OF x =,HN h =,则可表示出HN ,从而把△OEH 的面积用x 的代数式表示出来,根据二次函数求出最大值,则可得OE =OG ,OF =OH ,即可证得平行四边形.【详解】(1)∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,∴90AEH AHE ∠+∠=°.∵四边形EFGH 为正方形,∴EH EF =,90HEF ∠=︒,∴90AEH BEF ∠+∠=︒,∴BEF AHE ∠=∠.在AEH △和BFE △中,∵90A B ∠=∠=︒,AHE BEF ∠=∠,EH FE =,∴AEH BFE △≌△.∴AH BE =.∴AE AH AE BE AB +=+=;(2)AE CF =;证明如下:∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,AB =BC =AD =CD ,∵AE =AH ,CF =CG ,AE =CF ,∴AH =CG ,∴AEH FCG △≌△,∴EH =FG .∵AE =CF ,∴AB -AE =BC -CF ,即BE =BF ,∴EBF △是等腰直角三角形,∴∠BEF =∠BFE =45°,∵AE =AH ,CF =CG ,∴∠AEH =∠CFG =45°,∴∠HEF =∠EFG =90°,∴EH ∥FG ,答案第22页,共37页∴四边形EFGH 是矩形.(3)∵四边形ABCD 为正方形,∴AB CD ∥.∵AE DG =,AE DG ∥,∴四边形AEGD 为平行四边形.∴AD EG ∥.∴EG BC ∥.过点H 作HM BC ⊥,垂足为点M ,交EG 于点N ,∴HN HO HM HF=.∵:4:5OE OF =,设4OE x =,5OF x =,HN h =,则2051620h x -=,∴()44h x =-.∴21144(4)8(2)3222S OE HN x x x =⋅⋅=⋅⋅-=--+.∴当2x =时,OEH △的面积最大,∴1482OE x EG OG ====,15102OF x HF OH ====,∴四边形EFGH是平行四边形.【点睛】此题考查了正方形的性质,矩形的判定和平行四边形的性质与判定,平行线分线段成比例定理,全等三角形的判定与性质,等腰三角形的性质,二次函数的最值,有一定的综合性,解题的关键是熟悉这些知识并灵活运用.18.(1)钝角三角形;证明见详解(2)①直角三角形;证明见详解;②S 四边形ABCD =5【分析】(1)根据等边三角形性质得出,BE =BD ,AB =CB ,∠EBD =∠ABC =60°,再证△EBA ≌△DBC (SAS )∠AEB =∠CDB =60°,AE =CD ,求出∠ADC =∠ADB +∠BDC =120°,可得△ADC 为钝角三角形即可;(2)①以AE 、AG 、AC 为边的三角形是直角三角形,连结CG ,根据正方形性质,得出∠EBG =∠ABC ,EB =GB ,AB =CB ,∠BEA =∠BGE =45°,再证△EBA ≌△GBC (SAS )得出AE =CG ,∠BEA =∠BGC =45°,可证△AGC 为直角三角形即可;②连结BD ,根据勾股定理求出AC=,然后利用正方形的面积公式求解即可.【详解】(1)证明:∵△ABC 与△EBD 均为等边三角形,∴BE =BD ,AB =CB ,∠EBD =∠ABC =60°,∴∠EBA +∠ABD =∠ABD +∠DBC ,∴∠EBA =∠DBC ,在△EBA 和△DBC 中,EB DB EBA DBC AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△EBA ≌△DBC (SAS ),∴∠AEB =∠CDB =60°,AE =CD ,∴∠ADC =∠ADB +∠BDC =120°,答案第24页,共37页∴△ADC 为钝角三角形,∴以AE 、AD 、AC为边的三角形是钝角三角形.(2)证明:①以AE 、AG 、AC 为边的三角形是直角三角形.连结CG ,∵四边形ABCD 和四边形BGFE 都是正方形,∴∠EBG =∠ABC ,EB =GB ,AB =CB ,∵EG 为正方形的对角线,∴∠BEA =∠BGE =45°,∴∠EBA +∠ABG =∠ABG +∠GBC =90°,∴∠EBA =∠GBC ,在△EBA 和△GBC 中,G EB B EBA GBC AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△EBA ≌△GBC (SAS ),∴AE =CG ,∠BEA =∠BGC =45°,∴∠AGC =∠AGB +∠BGC =45°+45°=90°,∴△AGC 为直角三角形,∴以AE 、AG 、AC 为边的三角形是直角三角形;②连结BD ,∵△AGC 为直角三角形,2210AE AG +=,由(2)可知,AE =CG ,∴AC 2210AG CG +=,∴四边形ABCD 为正方形,∴AC =BD 10,∴S 四边形ABCD =211522AC BD AC ⋅==.【点睛】本题考查等边三角形的性质,三角形全等判定与性质,正方形的性质,勾股定理,掌握等边三角形的性质,三角形全等判定与性质,正方形的性质,勾股定理是解题关键.19.(1)1;证明见解析(2)n m 32【分析】(1)过点A 作AM ∥HF 交BC 于点M ,作AN ∥EG 交CD 的延长线于点N ,利用答案第26页,共37页正方形ABCD ,AB =AD ,∠ABM =∠BAD =∠ADN =90°求证△ABM ≌△ADN 即可.(2)过点A 作AM ∥HF 交BC 于点M ,作AN ∥EC 交CD 的延长线于点N ,利用在矩形ABCD 中,BC =AD ,∠ABM =∠BAD =∠ADN =90°,求证△ABM ∽△ADN .再根据其对应边成比例,将已知数值代入即可.(3)先证ABC ∆是等边三角形,设AB BC AC a ===,过点CN AB ⊥,垂足为N ,交BF 于点M ,则12AN BN a ==,在Rt BCN ∆中,利用勾股定理求得CN 的长,然后证NCE ABF ∆∆∽,利用相似三角形的对应边对应成比例即可求解.【详解】(1)1EG FH=,理由为:过点A 作AM ∥HF 交BC 于点M ,作AN ∥EG 交CD 的延长线于点N ,∵四边形ABCD 是正方形,∴AB ∥CD ,AD ∥BC ,∴四边形AMFH 是平行四边形,四边形AEGN是平行四边形,∴AM =HF ,AN =EG ,在正方形ABCD 中,AB =AD ,∠ABM =∠BAD =∠ADN =90°∵EG ⊥FH ,∴∠NAM =90°,∴∠BAM =∠DAN ,在△ABM 和△ADN 中,∠BAM =∠DAN ,AB =AD ,∠ABM =∠ADN∴△ABM ≌△ADN∴AM =AN ,即EG =FH ,∴1EG FH=;(2)解:过点A 作AM ∥HF 交BC 于点M ,作AN ∥EC 交CD 的延长线于点N ,∵四边形ABCD 是矩形,∴AB ∥CD ,AD ∥BC ,∴四边形AMFH 是平行四边形,四边形AEGN 是平行四边形,∴AM =HF ,AN =EG ,在矩形ABCD 中,BC =AD ,∠ABM =∠BAD =∠ADN =90°,∵EG ⊥FH ,∴∠NAM =90°,∴∠BAM =∠DAN .∴△ABM ∽△ADN ,∴AM AB AN AD=,∵AB m =,BC AD n ==,AM =HF ,AN =EG ,∴HF m EG n =,∴EG n FH m=;故答案为:nm (3)解:∵60ABC ∠=︒,AB BC =,∴ABC ∆是等边三角形,答案第28页,共37页∴设AB BC AC a ===,过点CN AB ⊥,垂足为N ,交BF 于点M ,则12AN BN a ==,在Rt BCN ∆中,2CN a ===,∵CN AB ⊥,CE BF ⊥,∴90ABF BMN ∠+∠=︒,90ECN CMF ∠+∠=︒,又∵CMF BMN ∠=∠,∴ABF ECN ∠=∠,∵CN AB ⊥,90DAB ∠=︒,∴90DAB CNE ∠=∠=︒,∴NCE ABF ∆∆∽,∴CE CN BF AB =,即2CE BF a ==.【点睛】此题主要考查学生对相似三角形的判定与性质,全等三角形的判定与性质,勾股定理等知识点的理解和掌握,综合性较强,难度较大,是一道难题.20.(1)GH GI =且GH GI⊥(2)GH GI =且GH GI ⊥,理由见详解(3)①12S S =,②258【分析】(1)连接DF ,延长BE 交DF 于P ,可证BAE DAF ≌ ,结合三角形中位线即可求解;(2)连接DF 交BE 于Q ,AD 与BE 交于M ,可证BAE DAF ≌ ,结合三角形中位线即可求解;(3)①过F 作FO BA ⊥,交BA 的延长线于O ,过E 作EN AD ⊥,可证FAO EAN ≌ ,即可求解;②可求218S BE =,由12EAF ABD BFED S S S S S +=-- 四边形即可求解.【详解】(1)解:GH GI =且GH GI ⊥,如图,连接DF ,延长BE 交DF 于P,四边形ABCD 是正方形,AB AD ∴=,90BAC ∠=︒,BAE DAF ∴∠=∠,AEF 是等腰直角三角形,AE AF ∴=,在BAE 和DAF △中AB AD BAE DAF AE AF =⎧⎪∠=∠⎨⎪=⎩,BAE DAF ∴≌ (SAS ),BE DF ∴=,ABE ADF ∠=∠,点G ,H ,I 分别为线段BD ,BF ,DE 的中点,答案第30页,共37页12GI BE ∴=,GI BE ∥,12GH DF =,GH DF ∥,GI GH ∴=;90ABE BEA ∠+∠=︒ ,BEA DEP ∠=∠,90ABE DEP ∴∠+∠=︒,90ADF DEP ∴∠+∠=︒,BE DF ∴⊥,BE GH ∴⊥,GI GH ∴⊥;故GH GI =且GH GI ⊥.(2)解:GH GI =且GH GI ⊥,如图,连接DF 交BE 于Q ,AD 与BE 交于M,由(1)得:,AE AF =,90BAM EAF ∠=∠=︒,BAM DAE EAF DAE∴∠+∠=∠+∠BAE DAF∴∠=∠在BAE 和DAF △中AB AD BAE DAF AE AF =⎧⎪∠=∠⎨⎪=⎩,BAE DAF ∴≌ (SAS ),BE DF ∴=,ABE ADF ∠=∠,点G ,H ,I 分别为线段BD ,BF ,DE 的中点,12GI BE ∴=,GI BE ∥,12GH DF =,GH DF ∥,GI GH ∴=;90ABM BMA ∠+∠=︒ ,BMA DMQ ∠=∠,90ABM DMQ ∴∠+∠=︒,90ADF DMQ ∴∠+∠=︒,BE DF ∴⊥,BE GH ∴⊥,GI GH ∴⊥;故GH GI =且GH GI ⊥.(3)解:①12S S =,如图,过F 作FO BA ⊥,交BA 的延长线于O ,过E 作EN AD ⊥,90ANE OAF ∴∠=∠=︒,90FAO OAE ∴∠+∠=︒,90EAN OAE ∠+∠=︒,FAO EAN ∴∠=∠,。
中考专题复习——正方形(含答案)第一部分知识梳理一、性质:边:对边平行,四条边都相等角:四个角都是直角对角线:相等、互相垂直平分,且每一条对角线平分一组对角对称性:既是轴对称图形,又是中心对称图形二、判定1、从四边形到正方形:①四条边都相等,且四个角都是直角的四边形②对角线相等,且互相垂直平分的四边形2、从平行四边形到正方形:①两条邻边相等,且有一个角是直角的平行四边形②对角线相等,且互相垂直的平行四边形3、从矩形到正方形:①有一组邻边相等的矩形②对角线互相垂直的矩形4、从菱形到正方形:①有一个角是直角的菱形②对角线相等的菱形矩形中的菱形,或者菱形中的矩形第二部分中考链接一、选择题1.(2018•无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于 B.等于 C.等于 D.随点E位置的变化而变化1题图 2题图5题图6题图2.(2018•宜昌)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI ⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.3.(2018•湘西州)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个B.2个C.3个D.4个4.(2018•张家界)下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等 B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等5.(2018•鞍山)如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF.其中正确的是()A.①③B.②④C.①③④D.②③④6、(2018•梧州)如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)7、.(2019•东营)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON 分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④7题图8题图8、(2019•德州)如图,正方形ABCD,点F在边AB上,且AF:FB=1:2,CE⊥DF,垂足为M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=BC,连接GM.有如下结论:①DE=AF;②AN=AB;③∠ADF=∠GMF;④S:S四边形CNFB=1:8.上述结论中,所有正确结论的△ANF序号是()A.①②B.①③C.①②③D.②③④9、(2019•菏泽)如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A B C D二、填空题1.(2018•青岛)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为2.(2018•潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.1题图2题图 4题图 5题图3.(2018•武汉)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.4.(2018•呼和浩特)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为.5.(2018•咸宁)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.6.(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.7.(2018•台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.8、(2018•河池)如图,四边形OABC为正方形,点D(3,1)在AB上,把△CBD绕点C顺时针旋转90°,则点D旋转后的对应点D′的坐标是.9、(2018•巴彦淖尔)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为72cm2,则菱形的边长为.(结果中如有根号保留根号)7题图8题图9题图10、(2018•兰州)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是.10题图11题图12题图11.(2018•呼和浩特)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M 位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为.12.(2019菏泽)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.13.(2019青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.13题图14题图14、(2019•泰安)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.三、解答题1.(2018•潍坊)如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM 于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.2.(2018•盐城)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.3.(2018•吉林)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.4.(2018•白银)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.5.(2018•湘潭)如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.6.(2018•遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.7、(2018烟台)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.8、(2018•安丘市)如图1,在正方形ABCD中,点E在AD的延长线上,P是对角线BD上的一点,且点P位于AE的垂直平分线上,PE交CD于点F.(1)猜测PC和PE有什么大小及位置关系,并给出证明.(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系.并说明理由.9.(2018•徐州)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?10.(2019•淄博)如图1,正方形ABDE和BCFG的边AB,BC在同一条直线上,且AB=2BC,取EF 的中点M,连接MD,MG,MB.(1)试证明DM⊥MG,并求的值.(2)如图2,将图1中的正方形变为菱形,设∠EAB=2α(0<α<90°),其它条件不变,问(1)中的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.11.(2019•潍坊)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH ∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.12.(2019•泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.13.(2019•临沂)如图,在正方形ABCD 中,E 是DC 边上一点,(与D 、C 不重合),连接AE ,将△ADE 沿AE 所在的直线折叠得到△AFE ,延长EF 交BC 于G ,连接AG ,作GH ⊥AG ,与AE 的延长线交于点H ,连接CH .显然AE 是∠DAF 的平分线,EA 是∠DEF 的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.14.(2019•威海)如图,在正方形ABCD 中,AB =10cm ,E 为对角线BD 上一动点,连接AE ,CE ,过E 点作EF ⊥AE ,交直线BC 于点F .E 点从B 点出发,沿着BD 方向以每秒2cm 的速度运动,当点E 与点D 重合时,运动停止.设△BEF 的面积为ycm 2,E 点的运动时间为x 秒.(1)求证:CE =EF ; (2)求y 与x 之间关系的函数表达式,并写出自变量x 的取值范围;(3)求△BEF 面积的最大值.15.(2019随州)如图,已知正方形ABCD 的边长为a ,E 为CD 边上的一点(不与端点重合),将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF.给出下列判断:①∠EAG=45°;②若DE=a 31,则AG ∥CF ;③若E 为CD 的中点,则△GFC 的面积为2101a ; ④若CF=FG ,则DE=a )12( ;⑤BG ·DE+AF ·GE=a ².其中正确的是 .(写出所有正确判断的序号).答案与提示答案与提示1、A2、B3、B4、D5、C6、B7、B8、C9、A1、解:∵EF∥AD,∴∠AFE=∠FAG,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG===.故选:A.2、解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选:B.5.解:①四边形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正确).②设BC=a,CE=y,∴BE+DF=2(a﹣y)EF=,∴BE+DF与EF关系不确定,只有当y=()a时成立,(故②错误).③当∠DAF=15°时,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°﹣2×15°=60°,又∵AE=AF∴△AEF为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:∴x2=2y(x+y)∵S△CEF=x2,S△ABE=,∴S△ABE=S△CEF.(故④正确).综上所述,正确的有①③④,故选:C.6、解:∵在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),∴D(﹣3,2),∴将正方形ABCD向右平移3个单位,则平移后点D的坐标是(0,2),故选:B.7、(2019•东营)解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵∠EOF =∠ECF =90°,∴点O 、E 、C 、F 四点共圆,∴∠EOG =∠CFG ,∠OEG =∠FCG ,∴OGE ∽△FGC ,故②正确;③∵△COE ≌△DOF ,∴S △COE =S △DOF ,∴S 四边形CEOF =S △OCD =14S 正方形ABCD ,故③正确; ④)∵△COE ≌△DOF ,∴OE =OF ,又∵∠EOF =90°,∴△EOF 是等腰直角三角形,∴∠OEG =∠OCE =45°,∵∠EOG =∠COE ,∴△OEG ∽△OCE ,∴OE :OC =OG :OE ,∴OG •OC =OE 2,∵OC =AC ,OE =EF ,∴OG •AC =EF 2,∵CE =DF ,BC =CD ,∴BE =CF , 又∵Rt △CEF 中,CF 2+CE 2=EF 2,∴BE 2+DF 2=EF 2,∴OG •AC =BE 2+DF 2,故④错误, 故选:B .8、(2019•德州)解:∵四边形ABCD 是正方形,∴AD =AB =CD =BC ,∠CDE =∠DAF =90°, ∵CE ⊥DF ,∴∠DCE +∠CDF =∠ADF +∠CDF =90°,∴∠ADF =∠DCE ,在△ADF 与△DCE 中,,∴△ADF ≌△DCE (ASA ),∴DE =AF ;故①正确;∵AB ∥CD ,∴=,∵AF :FB =1:2,∴AF :AB =AF :CD =1:3, ∴=, ∴=,∵AC =AB ,∴=,∴AN =AB ;故②正确;作GH ⊥CE 于H ,设AF =DE =a ,BF =2a ,则AB =CD =BC =3a ,EC =a ,由△CMD ∽△CDE ,可得CM =a ,由△GHC ∽△CDE ,可得CH =a , ∴CH =MH =CM ,∵GH ⊥CM ,∴GM =GC ,∴∠GMH =∠GCH ,∵∠FMG +∠GMH =90°,∠DCE +∠GCM =90°,∴∠FEG =∠DCE ,∵∠ADF =∠DCE ,∴∠ADF =∠GMF ;故③正确,设△ANF 的面积为m ,∵AF ∥CD ,∴==,△AFN ∽△CDN , ∴△ADN 的面积为3m ,△DCN 的面积为9m ,∴△ADC 的面积=△ABC 的面积=12m ,∴S △ANF :S 四边形CNFB =1:11,故④错误, 故选:C .9、(2019•菏泽)解:①当0≤x ≤2时,∵正方形的边长为2cm,∴y=S△APQ=AQ•AP=x2;②当2≤x≤4时,y=S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D,=2×2﹣(4﹣x)2﹣×2×(x﹣2)﹣×2×(x﹣2)=﹣x2+2x所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A选项图象符合.故选:A.二、填空题1、 2、(﹣1,) 3、30°或150° 4、①②③ 5、(﹣1,5)6、2或2或﹣7、 +38、(﹣2,0)9、2 10、1、解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.2、解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,)2题图3题图4题图3、解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.4、解:由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确;故答案为:①②③.5、解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线EG,垂足为G,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).5题图 6题图6、解:∵四边形ABCD是正方形,AB=6,∴AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=∠DAB=90°,在Rt△ABC中,由勾股定理得:AC===6,∴OA=OB=OC=OD=3,有三种情况:①点P在AD上时,∵AD=6,PD=2AP,∴AP=2;②点P在AC上时,设AP=x,则DP=2x,在Rt△DPO中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3﹣x)2,解得:x=﹣(负数舍去),即AP=﹣;③点P在AB上时,设AP=y,则DP=2y,在Rt△APD中,由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即AP=2;故答案为:2或2或﹣..7 题图 12题图7、解:∵阴影部分的面积与正方形ABCD的面积之比为2:3,∴阴影部分的面积为×9=6,∴空白部分的面积为9﹣6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×3=,设BG=a,CG=b,则ab=,又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+3,故答案为: +3.8、.解:△CBD绕点C顺时针旋转90°得到的图形如上图所示.∵D的坐标为(3,1),∴OA=3,AD=1∵在正方形OABC中,OA=AB,∴AB=3,∴BD=AB﹣AD=2,∴OD'=BD=2,∴D'的坐标为(﹣2,0),故答案为(﹣2,0).9、解:连接AC、BD,AC、BD相交于点O.∵正方形AECF的面积为72cm2,∴AE==6,AC=6×=12.∵菱形ABCD的面积为120cm2,即AC×BD=120∵AC=12,∴BD=20∵四边形ABCD是菱形,∴AO=AC=6,BO=BD=10,∴AB===2故答案为:210、解:如图,在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,,∴Rt△ADM≌Rt△BCN(HL),∴∠DAM=∠CBN,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE∴∠DAM=∠CDE,∵∠ADF+∠CDE=∠ADC=90°,∴∠DAM+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,则OF=DO=AD=3,在Rt△O DC中,OC==3根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=3﹣3.故答案为:3﹣3.10题图11题图12题图11.解:由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确;故答案为:①②③.12、解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,13.解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.14、(2019•泰安)解:由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:(OA1+C1A2+C2A3+C3A4+…+C n﹣1A n)=(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n个正方形对角线长的和是:×(2n﹣1),故答案为:(2n﹣1),三、解答题1、(1)证明:∵四边形ABCD为正方形,BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴BF=AE;(2)解:设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴sin∠EBF===.2、证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.3、证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.4、解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.5、(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.6、解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.6题图7题图7、解:(1)思路一、如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=BP=2,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=32=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;思路二、同思路一的方法;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=1,AP'=CP=,在Rt△PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=BP=,∵AP=3,∴AP2+PP'2=9+2=11,∵AP'2=()2=11,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.8、解:(1)PC=PE,PC⊥PE证明:∵正方形ABCD,点P是对角线上一点∴PA=PC∵点P位于AE的垂直平分线上∴PA=PE ∴PC=PE由正方形的轴对称性质可得,∠PAD=∠PCD,∵PA=PE ∴∠PAD=∠E ∴∠PCD=∠E ∵∠PFC=∠DFE ∴∠CPF=∠FDE∵正方形ABCD ∴∠ADC=90°∴∠FDE=90°∴∠CPF=90°∴PC⊥PE (2)PA=CE.理由如下:∵菱形ABCD,点P是对角线BD上一点∴AP=PF,∠PAD=∠PCD∵点P在AE的垂直平分线上∴AP=PE ∴PE=PC,∠PAD=∠PED∵∠PFC=∠DFE ∴∠CPF=∠EDF∵菱形ABCD,∠ABC=120°∴∠ADC=∠ABC=120°∴∠EDF=180°﹣∠ADC=60°∴∠CPF=60°∵PE=PC ∴△PCE是等边三角形∴CE=PE ∴AP=CE9、解:(1)证明:∵四边形CEFG是正方形,∴CE=EF,∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE,在△FEH和△ECD中,∴△FEH≌△ECD,∴FH=ED;(2)设AE=a,则ED=FH=4﹣a,∴S△AEF=AE•FH=a(4﹣a),=﹣(a﹣2)2+2,∴当AE=2时,△AEF的面积最大.10.(2019•淄博)(1)证明:如图1中,延长DM交FG的延长线于H.∵四边形ABCD,四边形BCFG都是正方形,∴DE∥AC∥GF,∴∠EDM=∠FHM,∵∠EMD=∠FMH,EM=FM,∴△EDM≌△FHM(AAS),∴DE=FH,DM=MH,∵DE=2FG,BG=DG,∴HG=DG,∵∠DGH=∠BGF=90°,MH=DM,∴GM⊥DM,DM=MG,连接EB,BF,设BC=a,则AB=2a,BE=2a,BF=a,∵∠EBD=∠DBF=45°,∴∠EBF=90°,∴EF==a,∵EM=MF,∴BM=EF=a,∵HM=DM,GH=FG,∴MG=DF=a,∴==.(2)解:(1)中的值有变化.理由:如图2中,连接BE,AD交于点O,连接OG,CG,BF,CG交BF于O′.∵DO=OA,DG=GB,∴GO∥AB,OG=AB,∵GF∥AC,∴O,G,F共线,∵FG=AB,∴OF=AB=DF,∵DF∥AC,AC∥OF,∴DE∥OF,∴OD与EF互相平分,∵EM=MF,∴点M在直线AD上,∵GD=GB=GO=GF,∴四边形OBFD是矩形,∴∠OBF=∠ODF=∠BOD=90°,∵OM=MD,OG=GF,∴MG=DF,设BC=m,则AB=2m,易知BE=2OB=2•2m•sinα=4m sinα,BF=2BO°=2m•cosα,DF=OB=2m•sinα,∵BM=EF==,GM=DF=m•sinα,∴==.11.(2019•潍坊)证明:(1)∵四边形ABCD,四边形ECGF都是正方形∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°∵AD∥BC,AH∥DG ∴四边形AHGD是平行四边形∴AH=DG,AD=HG=CD∵CD=HG,∠ECG=∠CGF=90°,FG=CG∴△DCG≌△HGF(SAS)∴DG=HF,∠HFG=∠HGD ∴AH=HF,∵∠HGD+∠DGF=90°∴∠HFG+∠DGF=90°∴DG⊥HF,且AH∥DG ∴AH⊥HF,且AH=HF ∴△AHF为等腰直角三角形.(2)∵AB=3,EC=5,∴AD=CD=3,DE=2,EF=5∵AD∥EF ∴=,且DE=2 ∴EM=12.(2019•泰安)解:(1)AG=FG,理由如下:如图,过点F作FM⊥AB交BA的延长线于点M∵四边形ABCD是正方形∴AB=BC,∠B=90°=∠BAD∵FM⊥AB,∠MAD=90°,FG⊥AD ∴四边形AGFM是矩形∴AG=MF,AM=FG,∵∠CEF=90°,∴∠FEM+∠BEC=90°,∠BEC+∠BCE=90°∴∠FEM=∠BCE,且∠M=∠B=90°,EF=EC ∴△EFM≌△CEB(AAS)∴BE=MF,ME=BC ∴ME=AB=BC ∴BE=MA=MF ∴AG=FG,(2)DH⊥HG理由如下:如图,延长GH交CD于点N,∵FG⊥AD,CD⊥AD ∴FG∥CD∴,且CH=FH,∴GH=HN,NC=FG ∴AG=FG=NC又∵AD=CD,∴GD=DN,且GH=HN ∴DH⊥GH12题图13题图13.(2019•临沂)解:过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠FAE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠FAG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠FAE,∠BAG=∠FAG,又∵∠BAD=90°,∴∠GAF+∠EAF=×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH ∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH是∠EGM的平分线.14.(2019•威海)(1)证明:如图1,过E作MN∥AB,交AD于M,交BC于N,∵四边形ABCD是正方形,∴AD∥BC,AB⊥AD,∴MN⊥AD,MN⊥BC,∴∠AME=∠FNE=90°=∠NFE+∠FEN,∵AE⊥EF,∴∠AEF=∠AEM+∠FEN=90°,∴∠AEM=∠NFE,∵∠DBC=45°,∠BNE=90°,∴BN=EN=AM,∴△AEM≌△EFN(AAS),∴AE=EF,∵四边形ABCD是正方形,∴AD=CD,∠ADE=∠CDE,∵DE=DE,∴△ADE≌△CDE(SAS),∴AE=CE=EF;(2)解:在Rt△BCD中,由勾股定理得:BD==10,∴0≤x≤5,由题意得:BE=2x,∴BN=EN=x,由(1)知:AE=EF=EC,分两种情况:①当0≤x≤时,如图1,∵AB=MN=10,∴ME=FN=10﹣x,∴BF=FN﹣BN=10﹣x﹣x=10﹣2x,∴y===﹣2x2+5x;②当<x≤5时,如图2,过E作EN⊥BC于N,∴EN=BN=x,∴FN=CN=10﹣x,∴BF=BC﹣2CN=10﹣2(10﹣x)=2x﹣10,∴y===2x2﹣5x;综上,y与x之间关系的函数表达式为:;(3)解:①当0≤x≤时,如图1,y=﹣2x2+5x=﹣2(x﹣)2+,∵﹣2<0,∴当x=时,y有最大值是;②当<x≤5时,如图2,∴y =2x 2﹣5x =2(x ﹣)2﹣,∵2>0,∴当x >时,y 随x 的增大而增大∴当x =5时,y 有最大值是50;综上,△BEF 面积的最大值是50.15、解:①∵四边形ABCD 是正方形,∴AB=BC=AD=a , ∵将△ADE 沿AE 对折至△AFE ,∴∠AFE=∠ADE=∠ABG=90°,AF=AD=AB ,EF=DE ,∠DAE=∠FAE ,在Rt △ABG 和Rt △AFG 中AB=AE AG=AG ∴Rt △ABG ≌Rt △AFG (HL ),∴∠BAG=∠FAG ,∴∠GAE=∠GAF+∠EAF=12⨯90°=45°,故①正确;②∴BG=GF ,∠BGA=∠FGA ,设BG=GF=x ,∵DE=13a ,∴EF=13a ,∴CG=a-x ,在Rt △EGC 中,EG=x+13a ,CE=23a ,由勾股定理可得(x+13a )2=x 2+(23a )2,解得x=12a ,此时BG=CG=12a ,∴GC=GF=12a ,∴∠GFC=∠GCF ,且∠BGF=∠GFC+∠GCF=2∠GCF ,∴2∠AGB=2∠GCF ,∴∠AGB=∠GCF ,∴AG ∥CF ,∴②正确;③若E 为CD 的中点,则DE=CE=EF=12a ,设BG=GF=y ,则CG=a-y ,CG 2+CE 2=EG 2,即22211()()()22a y a a y -+=+ 解得,y=13a ,∴BG=GF=13a ,CG=a-13a=23a ,∴12311532aGF EG a a ==+ ,∴22211215522315GFC CEG S S a a a ==⨯⨯⨯=V V 故③错误;④当CF=FG ,则∠FGC=∠FCG ,∵∠FGC+∠FEC=∠FCG+∠FCE=90°,∴∠FEC=∠FCE , ∴EF=CF=GF ,∴BG=GF=EF=DE ,∴EG=2DE ,CG=CE=a-DE ,∴2CE EG = ,即2()2a DE DE -= ∴DE=(2-1)a ,故④正确; ⑤设BG=GF=b ,DE=EF=c ,则CG=a-b ,CE=a-c ,由勾股定理得,(b+c)2=(a-b)2+(a-c)2,整理得bc=a2-ab-ac,其他综合1.(2018滨州)下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形 D.一组邻边相等的矩形是正方形2.(2018临沂)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A.1 B.2 C.3 D.4[www.zz&^s#tep.c*o~m]3.(2018•湘西州)下列说法中,正确个数有()A.1个B.2个C.3个D.4个①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.4、(2018•兴安盟)如图,矩形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E、F.(1)求证:四边形BEDF是平行四边形;(2)只需添加一个条件,即,可使四边形BEDF为菱形.5.(2018•鞍山)如图1,∠PAQ=90°,分别在∠PAQ的两边AP,AQ上取点B,E,使AB=AE,点D在∠PAQ的平分线AM上,DF⊥AB于点F,点F在线段AB上(不与点A重合),以AB,AD为邻边作▱ABCD,连接CF,EF.(1)猜想CF与EF之间的关系,并证明你的猜想;(2)如图2,连接CE交AM于点H.①求证:AD+2DH=AB.②若AB=9,=,求线段BC的长.6、(2018•锦州)如图1,以▱ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系,并说明理由;(2)延长DE、BA交于点H,其他条件不变:①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值(用含α的三角函数表示)7、(2019•滨州)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.8、(2019•泰安)在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.创新题目1.(2018•鄂尔多斯)如图1,AF,BE是△ABC的中线,AF⊥BE,垂足为点P,设BC=a,AC=b,AB=c,则a2+b2=5c2,利用这一性质计算.如图2,在▱ABCD中,E,F,G分别是AD,BC,CD 的中点,EB⊥EG于点E,AD=8,AB=2,则AF=.2、(2019•青岛)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D 出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P 作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.答案与提示1、D2、A3、B3.解:①对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误;④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选:B.4、证明:(1)∵四边形ABCD是平行四边形,O是BD的中点,∴AB∥DC,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)EF⊥BD或DE=BE或∠EDO=∠FDO.∵四边形BEDF是平行四边形,∵EF⊥BD,∴平行四边形BEDF是菱形.故答案为:EF⊥BD或DE=BE或∠EDO=∠FDO(答案不唯一)5、解:(1)CF=EF,且CF⊥EF,理由是:如图1,过C作CG⊥AP于G,∵DF⊥AP,∴DF∥CG,∵四边形ABCD是平行四边形,∴AB∥CD,即CD∥FG,∵∠GFD=90°,∴四边形GFDC是矩形,∴CG=DF=AF,FG=CD=AB=AE,∵∠CGF=∠FAE=90°,∴△CGF≌△FAE(SAS),∴CF=EF,∠GFC=∠AEF,∵∠AFE+∠AEF=90°,∴∠AFE+∠GFC=90°,∴∠CFE=90°,∴CF⊥EF;(2)①如图2,过B作BR⊥AP,交AM于R,连接RE、CR、DE,∵∠PAE=90°,∴BR∥AE,∵∠BAR=45°,∴△ABR是等腰直角三角形,∴AB=BR=AE,AR=AB,∴四边形BAER是正方形,∴RE=AB=CD,∵AB∥RE,AB∥CD,∴CD∥RE,∴四边形CDER是平行四边形,∴DH=RH,∵AR=AB,∴AD+RD=AB,∴AD+2DH=AB;②∵,设HD=2x,AH=7x,∴AD=5x,由①知:AD+2DH=AB, 5x+4x=9,x=,∴BC=AD=5.6、解:(1)BG=EG,理由是:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵四边形CFED是菱形,∴EF=CD,EF∥CD,∴AB=EF,AB∥EF,∴∠A=∠GFE,∵∠AGB=∠FGE,∴△BAG≌△EFG,∴BG=EG;(2)①如图2,设AG=a,CD=b,则DF=AB=b,由(1)知:△BAG≌△EFG,∴FG=AG=a,∵CD∥BH,∴∠HAD=∠ADC=60°,∵∠ADE=60°,∴∠AHD=∠HAD=∠ADE=60°,∴△ADH是等边三角形,∴AD=AH=2a+b,∴==;②解法一:如图3,连接EC交DF于O,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=HD,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设HA=HD=a,AB=b,Rt△EFO中,cosα=,∴OF=b cosα,DF=2OF=2b cosα,Rt△AHM中,cosα=,AM=a cosα,AD=2AM=2a cosαAG=(AD﹣DF)=AM﹣OF=a cosα﹣b cosα∴==cosα.解法二:如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设AG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO中,cosα=,∴OF=b cosα,∴DG=a+2b cosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=HD,∴AM=AD=(2a+2b cosα)=a+b cosα,Rt△AHM中,cosα=,∴AH=,∴==cosα.7、(2019•滨州)(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x,则CE=x,DE=6﹣x,∵FDE=90°,∴22+(6﹣x)2=x2,解得,x=,∴CE=,∴四边形CEFG的面积是:CE•DF=×2=.8.(2019•泰安)(1)证明:如图①中,∵四边形ABCD是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠BAE+∠EAD=90°,∠EAD+∠ADE=90°,∴∠BAE=∠ADE,∵∠AGP=∠BAG+∠ABG,∠APD=∠ADE+∠PBD,∠ABG=∠PBD,∴∠AGP=∠APG,∴AP=AG,∵PA⊥AB,PF⊥BD,BP平分∠ABD,∴PA=PF,∴PF=AG,∵AE⊥BD,PF⊥BD,∴PF∥AG,∴四边形AGFP是平行四边形,∵PA=PF,∴四边形AGFP是菱形.(2)证明:如图②中,∵AE⊥BD,PE⊥EC,∴∠AED=∠PEC=90°,∴∠AEP=∠DEC,∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,∴∠EAP=∠EDC,∴△AEP∽△DEC,∴=,∵AB=CD,∴AE•AB=DE•AP;(3)解:∵四边形ABCD是矩形,∴BC=AD=2,∠BAD=90°,∴BD==,∵AE⊥BD,∴S△ABD=•BD•AE=•AB•AD,∴AE=,∴DE==,∵AE•AB=DE•AP;∴AP==.创新题目1.解:如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=B C=8,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=4,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=2,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH(AAS),∴EH=FH,∴EP,AH分别是△AFE的中线,由a2+b2=5c2得:AF2+EF2=5AE2,∴AF2=5×42﹣(2)2=60,∴AF=2.故答案为:2.2.(2019•青岛)解:(1)在Rt△ABC中,∵∠ACB=90°,AB=10cm,BC=8cm,∴AC==6(cm),∵OD垂直平分线段AC,∴OC=OA=3(cm),∠DOC=90°,∵CD∥AB,∴∠BAC=∠DCO,∵∠DOC=∠ACB,∴△DOC∽△BCA,∴==,∴==,∴CD=5(cm),OD=4(cm),∵PB=t,PE⊥AB,易知:PE=t,BE=t,当点E在∠BAC的平分线上时,∵EP⊥AB,EC⊥AC,∴PE=EC,∴t=8﹣t,∴t=4.∴当t为4秒时,点E在∠BAC的平分线上.(2)如图,连接OE,PC.S=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)四边形OPEG=•(4﹣t)•3+[•3•(8﹣t)+•(8﹣t)•t﹣•3•(8﹣t)=﹣t2+t+6(0<t<5).(3)存在.∵S=﹣(t﹣)2+(0<t<5),∴t=时,四边形OPEG的面积最大,最大值为.(4)存在.如图,连接OQ.∵OE⊥OQ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴=,∴=,整理得:5t2﹣66t+160=0,解得t=或10(舍弃)∴当t=秒时,OE⊥OQ.。