2020高考专题复习—圆锥曲线
- 格式:doc
- 大小:481.50 KB
- 文档页数:12
2020年高考——圆锥曲线1.(20全国Ⅰ文21)(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.2.(20全国Ⅰ理20)(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.3.(20全国Ⅱ文19)(12 分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.4.(20全国Ⅱ理19)(12分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.5.(20全国Ⅲ文21)(12分)已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.6.(20全国Ⅲ理20)(12分)已知椭圆222:1(05)25x y C m m+=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.7.(20新高考Ⅰ22)(12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.8.(20天津18)(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.9.(20浙江21)(本题满分15分)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.10.(20江苏18)(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.11.(20北京20)(本小题15分)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.参考答案:1.解:(1)由题设得(,0),(,0),(0,1)A a B a G -.则(,1)AG a =,(,1)GB a =-.由8AG GB ⋅=得218a -=,即3a =.所以E 的方程为2219x y +=.(2)设1122(,),(,),(6,)C x y D x y P t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<. 由于直线PA 的方程为(3)9t y x =+,所以11(3)9ty x =+.直线PB 的方程为(3)3t y x =-,所以22(3)3ty x =-.可得12213(3)(3)y x y x -=+.由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0m y y m n y y n ++++++=.①将x my n =+代入2219xy +=得222(9)290m y mny n +++-=.所以212122229,99mn n y y y y m m -+=-=-++. 代入①式得2222(27)(9)2(3)(3)(9)0m n m n mn n m +--++++=. 解得3n =-(舍去),32n =. 故直线CD 的方程为32x my =+,即直线CD 过定点3(,0)2. 若0t =,则直线CD 的方程为0y =,过点3(,0)2.综上,直线CD 过定点3(,0)2.2.解:(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线PA 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).3.解:(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.4.解:(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.5.解:(1)由题设可得54=,得22516m =,所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ,故11APQ △的面积为1522=. 22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q的距离为26,故22AP Q △的面积为152262⨯=. 综上,APQ △的面积为52.6.解:(1)由题设可得54=,得22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >,由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ 的距离为2,故11APQ △的面积为1522=.22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q故22AP Q △的面积为1522=. 综上,APQ △的面积为52.7.解:(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k -+=-=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k-+---+-+=++.整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =--≠. 所以直线MN 过点21(,)33P -. 若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=. 又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -. 令Q 为AP 的中点,即41(,)33Q . 若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.8.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=. (Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB 和直线CP 的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120k x kx +-=,解得0x =,或21221k x k =+.依题意,可得点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121k k k -⎛⎫ ⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k k k --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =. 所以,直线AB 的方程为132y x =-,或3y x =-.9.(Ⅰ)由116p =得2C 的焦点坐标是1(,0)32. (Ⅱ)由题意可设直线:(0,0)l x my t m t =+≠≠,点00(,)A x y .将直线l 的方程代入椭圆221:12x C y +=得222(2)220m y mty t +++-=, 所以点M 的纵坐标22M mt y m =-+. 将直线l 的方程代入抛物线22:2C y px =得2220y pmy pt --=,所以02M y y pt =-,解得202(2)p m y m+=, 因此22022(2)p m x m+=. 由220012x y +=得2421224()2()160m m p m m =+++≥,所以当m,t =时,p.10.解:(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c , 则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.(2)椭圆E 的右准线为4x =.设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--,2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥, 则123(1,0),(1,0),(1,)2F F A -. 所以直线:3430.AB x y -+= 设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=. 由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解; 由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-. 代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.11.。
圆锥曲线是广泛应用于科学研究及生产和生活中的曲线,是高中数学中几何与代数知识的重要组成部分,是高中学生运用平面直角坐标系将曲线与方程、几何与代数融会贯通的重要载体,更是让学生体验和领悟数与形相互转化过程的重要途径,在高考数学中占有较大的比重.2020年高考数学试卷中圆锥曲线与方程专题部分的试题,着重考查圆锥曲线的定义、方程,以及简单的几何性质,立足“四基”,凸显基础性;注重对数形结合、代数方法与几何问题化归的考查,立意能力,在数与形之间彰显综合性、应用性;重视对数学运算、逻辑推理、直观想象等数学学科核心素养的考查,立旨素养,引导数学教学,实现数学学科的育人价值.同时,与往年相比,试题结构和难度保持稳定,既体现对主线内容、核心概念、数学本质考查的连贯性,也体现了对学生的人文关怀.一、考查内容分析2020年全国各地高考数学试卷共10套13份,具体为全国Ⅰ卷(文、理)、全国Ⅱ卷(文、理)、全国Ⅲ卷(文、理)、全国新高考Ⅰ卷、全国新高考Ⅱ卷、北京卷、上海卷、天津卷、江苏卷、浙江卷.有的试卷由国家统一命题,也有的由各省市自主命题,无论是延续2019年模式的全国卷和地方卷高考试题,还是2020年首次亮相的立足《普通高中数学课程标准(2017年版)》(以下简称《标准》)的全国新高考卷试题,都是重视基础,突出能力,并围绕学生的数学学科核心素养展开全方位考查.1.布局合理,考点紧扣标准2020年高考数学试卷,以圆锥曲线的定义、基本量、标准方程、简单几何性质、位置关系等核心内容为载体,重点考查学生对平面解析几何问题基本解决过程的掌握情况:用代数语言把几何问题转化为代数问题,根据对几何问题(图形)的分析,探索解决问题的思路,运用代数方法得到结论并给出代数结论合理的几何解释解决几何问题.突出考查学生运用代数方法研究上述曲线之间的基本关系、运用平面解析几何的思想解决一些简单的实际问题的能力,旨在考查学生的直观想象、数学运算、逻辑推理等数学学科核心素养.试题紧扣《标准》,以基础题、中档题为主,在总共的26道(相同试题算1道)试题中:基础题有10道、中档题有12道,占比约85%;难题4道,其中2020年高考“圆锥曲线与方程”专题命题分析段喜玲1摘要:2020年高考数学试题中的圆锥曲线与方程部分考查内容紧扣高中数学课程标准,分值、结构稳定,试题突出对“四基”的考查,注重圆锥曲线与其他知识的结合,注重对数学思维和数学学科核心素养的考查.试题体现基础性、应用性、综合性等特点,以基础知识的考查为载体,将对学生分析问题、解决问题能力的考查蕴含在解题过程之中,以实现对学生数学学科核心素养的考查.基于2020年高考试题的命题分析,给出高考复习建议,有效引导高三复习.关键词:圆锥曲线;命题分析;数形结合;数学运算收稿日期:2020-08-01基金项目:重庆市教育科学“十三五”规划2017年度规划课题——课堂教学中自主学习实施途径与策略的研究(2017-MS-13).作者简介:段喜玲(1979—),女,中学高级教师,主要从事高中数学课堂教学研究.全国新高考Ⅰ卷第22题、全国Ⅰ卷文科第21题(同理科第20题)、全国Ⅲ卷文科第21题(同理科第20题)为压轴题,布局合理.2.分值稳定,多选双填增新彩高考试题对本专题内容的考查一般是两道客观题和一道主观题,共22分,占全卷分值的14.7%,其中北京卷24分,占全卷分值的16%,而全国Ⅰ卷文科、全国Ⅱ卷文(理)科、天津卷、江苏卷、上海卷中是一道客观题和一道主观题,共17分,占全卷分值的11.3%.考查形式、题型分布及分值比例与往年基本持平,有很高的稳定性.在全国新高考Ⅰ卷、全国新高考Ⅱ卷中出现多选题,北京卷中出现两个空的填空题,使试题形式更丰富.这是新高考题型的示范,为教学指引方向.3.文、理略异,趋同铺垫新高考2020年高考数学试卷中只有全国卷分别命制了文、理科试题.由于新高考将不再区分文科和理科,因此2020年全国卷的文、理科试题从内容到难度,差异较往年减小,姊妹题数量增加.在对圆锥曲线与方程的考查中:全国Ⅰ卷文科第21题与理科第20题相同,第11题不同,文科比理科少一道填空题;全国Ⅱ卷文科第9题与全国Ⅱ卷理科第8题相同,全国Ⅱ卷文、理科试卷第19题第(1)小题相同,第(2)小题的已知条件不同,但求解相同,方法相同;全国Ⅲ卷文科第7题、第21题与全国Ⅲ卷理科第5题、第20题相同,文科第14题不同.由此可以看出,文、理科试题虽有不同之处,但同根同源,体现趋同性,明确导向新高考.4.层次分明,数形结合思想贯穿始终《标准》对圆锥曲线与方程的要求有了解和掌握两个层次:圆锥曲线的实际背景、圆锥曲线在刻画现实世界和解决实际问题中的作用、抛物线与双曲线的定义、几何图形和标准方程,以及它们的简单几何性质、椭圆与抛物线的简单应用为了解;椭圆的定义、标准方程及简单几何性质为掌握.2020年高考数学试题对圆锥曲线与方程部分的考查层次分明,基础题和中档题均以抛物线和双曲线的定义、简单几何性质、位置关系为考查内容,部分较难的中档题和难题考查椭圆定义、标准方程、几何性质、简单应用,唯独上海卷的解答题考查圆和双曲线的组合,意在打破常规、力求创新,以考查学生的创新应用意识.同时,在试题中,数形结合思想这条主线贯穿始终,方程与曲线的表述与理解、代数与几何的转化与化归在数形结合中体现得淋漓尽致.5.综合性强,凸显思想育素养圆锥曲线与方程知识是平面几何、平面向量、直线与圆的知识的延续,可以将很多知识、方法(如三角形、直线位置关系、圆、向量、角度、长度、面积、坐标、方程、不等式及函数等)有机结合起来进行考查,体现在知识的交会处命题的基本原则.例如,全国Ⅰ卷理科第20题、全国Ⅲ卷理科第20题、全国新高考Ⅰ卷第22题、北京卷第20题、江苏卷第18题、浙江卷第21题,上海卷第20题综合性都较强,对学生要求较高.同时,试题凸显了数形结合、转化与化归、函数与方程等重要思想,为培育学生的数学抽象、直观想象、数学运算、逻辑推理等数学学科核心素养做好了指挥引领作用.二、命题思路分析1.注重对基础知识和基本方法的考查圆锥曲线的定义、方程、基本量、性质、位置关系是这部分知识的常规考查内容,要求学生既要对椭圆、双曲线、抛物线的共性建构良好的知识网络,又要对每种曲线的自身特点掌握得清楚准确,特别是区分不同曲线的定义、方程、基本量关系、性质、离心率的异同,这些知识容易混淆出错.借助平面直角坐标系将几何问题坐标化、用代数方法解决几何问题是解析几何的灵魂所在,因此建立方程或方程组、整体求解、设而不求等基本方法,通性、通法也是高频考点.命题围绕这些设置试题,突出考查学生对基本概念、基础知识、基本方法的掌握.例1(全国Ⅰ卷·理15)已知F为双曲线C:x2a2-y2b2=1()a>0,b>0的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C 的离心率为.【评析】该题主要考查对双曲线的离心率、直线斜率、双曲线的几何性质的应用,属于基础题.可以用方程组求出||BF,或者联立方程求得点B的坐标,再或者直接用公式求得||BF,然后用斜率公式求得离心率.该题解法常规,在运算处理上较灵活,能够对学生数学思维、数学运算进行多角度考查.例2(全国Ⅱ卷·理19)已知椭圆C1:x 2a2+y2b2=1()a>b>0的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且||CD=43||AB.(1)求C1的离心率;(2)设M是C1与C2的公共点,若||MF=5,求C1与C2的标准方程.【评析】考查椭圆、抛物线的基本量a,b,c,p 之间的关系,相交弦长(通径),椭圆离心率,抛物线定义及方程,椭圆方程.注重学生对基本量、关系式、离心率、弦长等基础知识的掌握,要求学生弄清知识之间的区别与联系.该题求解方法简单,整体法求离心率亦常见,第(2)小题利用离心率得a,c的关系,化简方程是解答关键,很好地考查了学生的数学运算素养.除了联立方程求解外,还可以用圆锥曲线的统一定义表示焦半径,简化了运算,提高了解题速度和准确率.类似试题还有全国Ⅰ卷理科第4题、第15题,全国Ⅱ卷文科第19题,全国Ⅲ文科第14题,全国新高考Ⅰ卷第9题、第13题,全国新高考Ⅱ卷第9题,北京卷第7题、第12题、第20题,天津卷第7题,江苏卷第6题,浙江卷第8题,上海卷第10题.2.注重对圆锥曲线与其他知识的综合应用的考查在知识的交会处命题一直是高考数学命题的一大特点,圆锥曲线不仅是知识交会的高频考点,更是代数与几何的完美结合体,因此将圆锥曲线内容与章节内、章节间、学段间、学科间的知识综合,既体现知识的连贯性,又体现知识的交叉性,既考查学生学习的延续性,也考查学生的综合能力.2020年高考数学试题中综合考查了圆锥曲线的方程、离心率、渐近线、弦长、交点,以及三角形的面积、周长等,综合考查圆锥曲线与向量、不等式、函数、解三角形的交会,其中不乏对特殊三角形、圆、线段中垂线等初中平面几何知识的考查,以及几何性质与代数表达式之间互相转化的考查,能有效检测学生的思维能力与水平.例3(全国Ⅲ卷·理11)设双曲线C:x2a2-y2b2=1 ()a>0,b>0的左、右焦点分别为F1,F2,离心率为5.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a的值为().(A)1(B)2(C)4(D)8【评析】该题综合考查双曲线的定义、离心率、焦点直角三角形、三角形面积,要求学生不仅熟练掌握知识,还要熟悉求解方程组的方法,是一道题型常见、思路常规的综合性试题.例4(江苏卷·18)如图1,在平面直角坐标系xOy 中,已知椭圆E:x24+y23=1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求OP⋅QP的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.【评析】考查椭圆的定义、直线与椭圆相交、向量数量积和点到直线的距离.第(2)小题中数量积的最值问题考查函数与方程思想,将最值问题转化为函数问题求解的关键点是选取变量,明晰点P,Q的主、被动关系,特别是OP的纵坐标为0,即点Q的纵坐标对数量积没有影响,从而可以不求点Q的纵坐标,这是降低该题难度的关键点,需要学生有极强的数学运算素养.第(3)小题考查三角形的面积关系,实质是考查点到直线的距离,需要学生看到问题的本质,即当三角形的一边为定值时,面积取决于这一边上的高,进一步将高的值转化为椭圆上的点到直线的距离,即直线和椭圆的位置关系.这一系列问题将圆锥曲线与三角形、向量、函数、直线,以及距离流畅地结合起来,在综合考查学生基础知识的同时,考查学生灵活运用转化与化归思想以及数形结合思想解决问题的能力.例5(全国Ⅲ卷·理20)已知椭圆C :x 225+y 2m 2=1()0<m <5的离心率为,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且||BP =||BQ ,BP ⊥BQ ,求△APQ 的面积.【评析】该题是以直线与椭圆相交成图,考查三角形面积的综合问题,试题表述简洁,脉络清晰,是常规题型,但是试题却不易找到解题突破口.利用垂直关系证得三角形全等,然后用三角形全等求得关键点P ,Q 的坐标是求解该题的切入点,要求学生认识知识的联系性,将圆锥曲线与初中三角形知识自然地糅合在一起,考查学生对初中所学知识的延伸及初高中知识的融合应用,对学生的跨学段知识综合应用能力要求较高.此类型的试题还有全国Ⅰ卷文科第11题、全国Ⅱ卷理科第8题、全国Ⅲ卷文科第21题、全国新高考Ⅱ卷第21题、天津卷第18题、上海卷第10题.3.注重对数学思维、核心素养的考查《标准》对高考数学命题提出明确要求:注重对学生数学学科核心素养的考查,处理好数学学科核心素养与知识技能的关系,充分考虑对教学的积极引导作用;要适度增加试题的思维量,应特别关注数学学习过程中思维品质的形成.“一核”“四层”“四翼”的新高考评价体系也明确核心素养、关键能力等考查内容和要求.2020年高考圆锥曲线与方程的相关试题,以此为依据,注重考查数学思想方法、理性思维和学科核心素养,考查学生通过平面直角坐标系将图形定位、量化,利用代数(方程、方程组)研究平面图形的几何性质,将对数形结合思想、转化与化归思想、函数与方程思想、分类讨论思想的考查不动声色地浸润在试题里,使学生在解题中充分展示分析问题、解决问题的能力,同时注重对数学抽象、逻辑推理、数学运算、直观想象等数学学科核心素养的考查,对数学教学起到很好的引导作用.例6(全国新高考Ⅰ卷·22)已知椭圆C :x 2a2+y 2b2=1()a >b >0的离心率为,且过点A ()2,1.(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得||DQ 为定值.【评析】该题为全国新高考Ⅰ卷的压轴题,第(2)小题是圆锥曲线中的定点、定值问题,特别之处是并不知道定点Q 的具体位置,需要学生自己寻找,增加了试题的难度.首先,学生要分析点M ,N 在椭圆上运动的过程中的变量和不变量,找出直线MN 过定点E ;其次,求得定点E 的坐标,并能在由点A ,D ,E 构成的直角三角形中找到定长.该题不仅在思维上起点高、难度大,在运算上亦是如此,设点、设线还需分类讨论验证,需要学生具有超强的运算功底.在解答过程中,充分体现对通性、通法的重视,对技巧的弱化,完整展现学生分析问题、解决问题的能力,对学生数学抽象、直观想象、逻辑推理、数学运算等数学学科核心素养有充分的检验作用.由于知识和思维跨度较大,数学运算繁杂,对学生综合能力要求较高,真正考查学生用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界的能力.例7(上海卷·20)如图2,双曲线C 1:x 24-y 2b2=1,圆C 2:x 2+y 2=4+b 2()b >0在第一象限交点为A ,A ()x A ,y A ,曲线Γ:ìíîïïx 24-y 2b 2=1,x 2+y 2=4+b2()||x >x A .图2(1)若x A =6,求b ;(2)若b =5,C 2与x 轴交点记为F 1,F 2,P 是曲线Γ上一点,且在第一象限,并满足||PF 1=8,求∠F1PF2;(3)过点Sæèçöø÷0,2+b22且斜率为-b2的直线l交曲线Γ于M,N两点,用b的代数式表示OM⋅ON,并求出OM⋅ON的取值范围.【评析】该题是以双曲线系、圆系的交点为动点的轨迹问题,打破常规命题背景,有创新意识和应用意识.考查学生对曲线与方程的定义、双曲线的定义、直线与圆的位置关系、直线与直线的位置关系、向量数量积、函数最值的理解和综合应用.因为含有参数b使得轨迹不为学生所熟悉,所以要求学生对曲线方程的定义有较深的理解.第(3)小题中的直线l 与圆始终相切,切点为M是关键点,并观察直线l与一条渐近线平行,对学生的直观想象、逻辑推理素养要求较高,是一道以能力立意、考查素养、有创新意识的好题.此类型试题还有全国Ⅰ卷理科第20题、文科第21题,浙江卷第21题.三、复习建议通过对2020年高考圆锥曲线与方程试题的分析,可以看到试题对从基础知识、基本方法到运用基本数学思想解决数学问题的思维过程的考查,都体现了注重“四基”、能力立意、突出思维、落实素养的特点.因此,在高三复习过程中,要通过教学注重数学思想的渗透和学生思维能力的培养,让数学学科核心素养在课堂教学中生根发芽、开花结果.1.掌握知识,明辨异同,构建网络基础知识不仅是高考考查的重点,也是教学重点.高三复习首当其冲就是要把知识点弄清、理透、掌握牢.圆锥曲线部分的基本知识点有圆锥曲线的定义、标准方程、几何性质、位置关系,每个知识点所包含的内容很丰富.例如,圆锥曲线的定义,既有各自的定义,又有统一定义,还有其他方式的定义.又如,标准方程有焦点在x轴和焦点在y轴等.这些知识虽然靠记忆,但是学生容易混淆,因此复习时要让学生明晰同一知识点之间的联系与区别、圆锥曲线与圆锥曲线之间的联系与区别,牢固掌握基础知识.同时,复习不是知识点的简单重复与堆砌,复习是立足章节对所学知识的横向再认识,是站在数学学科角度对所学知识的纵向再认识,要高站位地建构横纵知识结构网络.2.注重通法,提升运算,渗透思想做题是复习课上必不可少的教学活动,《标准》在命题原则中明确提出:注重数学本质、通性和通法、淡化解题技巧.复习的例题、习题、试题要多选用通性、通法求解的题目,让学生熟练掌握通性、通法.圆锥曲线部分的内容特点决定了解题需要学生具有超强的运算能力,常用的运算方法、运算技巧、运算素养都需要在做题中提升.高中的运算不仅仅是简单的数的运算,更多的是式的运算,需要在理解运算对象的基础上,探究运算思路、选择运算方法、求得运算结果,即数学运算素养.这需要依赖教师在教学中加强对学生运算能力的培养,不能只靠学生自己算,要重视学生在求解运算中的过程设计,如整体解法、方程思想、设而不求、点差法、同理法等.运算的速度、准确度在很大程度上决定解析几何试题的得分情况,提升运算能力、培养数学运算素养是圆锥曲线部分复习的重点和难点.教学中要有意识渗透数学思想,方程与函数思想、数形结合思想、转化与化归思想、分类讨论思想等在解题中贯穿始终,能很好地体现理性思维.3.提高能力,增强思维,培育素养能力立意,关注思维,培育核心素养是新高考命题的宗旨,也是高三复习的风向标.能力、思维、素养的培养都“润物细无声”地存在于教学过程之中,因此教学要从培育核心素养的角度思考复习方案和教学设计,并深入了解学生学习的困难,关注一题多解和多题一解的内容与题目,体现灵活性,放手让学生大胆尝试、引导学生有效反思,有助于强化学生思维,培养学生在面对新的问题情境时运用数学概念对问题进行抽象,用数学符号表达,用逻辑推理分析问题、解决问题的能力,让学生真正做到用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界,以达到提炼学生思维品质,培养学生学科核心素养的课程目标.4.克服畏惧,锻炼意志,增强信心在高考数学试卷中,本专题试题繁冗的运算、大容量的思维使得学生有畏惧心理,很多学生给自己的定位是只做解答题第(1)小题,因此纵使有些试卷的解答题不难,考查结果却差强人意.例如,全国Ⅱ卷理科第19题,仍有很多学生没有做第(2)小题.高考不仅是对知识能力的检测,也是对心理素质的检测,复习中不能根据经验或规律,让学生将圆锥曲线与方程问题定性为难题而轻易舍弃,而要以此为契机培养学生面对较繁杂问题时耐心分析、善于转化的能力与勇气,要有意识选择一些基础题和中档题,引导学生在求解的过程中磨炼意志和耐心,克服畏惧心理,以平常心对待,增强“只要有足够的时间,我一定会做出来”的信念和信心.四、模拟题欣赏1.已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E 上,若△MF 1F 2是直角三角形,且sin ∠MF 1F 2=12,则双曲线E 的离心率为().(A )3-1(B )3(C )3+1(D )3或3+1答案:D.2.设F 为抛物线C :y 2=3x 的焦点,过焦点F 的动直线交C 于A ,B 两点,则 OA ⋅OB 的值为.答案:-2716.3.若F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1()a >b >0的左、右焦点,且离心率为12,若过右焦点F 2的直线与曲线C 交于A ,B 两点,求当△ABF 1面积的最大值为12时的椭圆标准方程.答案:x 216+y 212=1. 4.已知过椭圆x 24+y 2=1左顶点A 的直线l 交椭圆于另一点B ,以AB 为直径的圆过椭圆的上顶点,求直线l 的方程.答案:3x +10y +6=0.5.在平面直角坐标系xOy 中,已知1是椭圆C :x 2a 2+y 2b2=1()a >b >0的右焦点,离心率为,过点F 1且垂直于x 轴的直线交椭圆C 于P ,Q 两点,||PQ =(1)求椭圆C 的标准方程;(2)若过椭圆左焦点F 2且斜率为k ()k >0的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点M ,交直线x =-3于点N .求证:||OE ,||OM ,||ON 构成等比数列.答案:(1)x 23+y 22=1;(2)略.参考文献:[1]中华人民共和国教育部制定.普通高中数学课程标准(2017年版)[M ].北京:人民教育出版社,2018.[2]吴彤,徐明悦.2019年高考“圆锥曲线与方程”专题命题分析[J ].中国数学教育(高中版),2019(9):24-27.[3]任佩文,张强,霍文明.2018年高考“圆锥曲线与方程”专题命题分析[J ].中国数学教育(高中版),2018(7/8):122-128.[4]范美卿,张晓斌.2016年高考“直线和圆”专题命题分析[J ].中国数学教育(高中版),2016(9):2-8.。
圆锥曲线的定值问题题型一 长度或距离为定值【例1】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 相切,求证:点F 1,F 2到直线l 的距离之积为定值.(1)解 ∵椭圆C 的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形,∴⎩⎪⎨⎪⎧b =c ,bc =1, ∴b =c =1, ∴a 2=b 2+c 2=2,∴椭圆C 的方程为x 22+y 2=1.(2)证明 ①当直线l 的斜率不存在时,直线l 的方程为x =±2, 点F 1,F 2到直线l 的距离之积为(2-1)(2+1)=1. ②当直线l 的斜率存在时,设其方程为y =kx +m , 联立⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1得(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=(4km )2-4(1+2k 2)(2m 2-2)=-8(m 2-2k 2-1)=0, ∴m 2=1+2k 2,点F 1到直线l :y =kx +m 的距离d 1=|-k +m |k 2+1,点F 2到直线l :y =kx +m 的距离d 2=|k +m |k 2+1.∴d 1d 2=|-k +m |k 2+1·|k +m |k 2+1=|m 2-k 2|k 2+1=|2k 2+1-k 2|k 2+1=1.综上,可知当直线l 与椭圆C 相切时,点F 1,F 2到直线l 的距离之积为定值1.感悟升华 圆锥曲线中的定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.【训练1】 在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.设椭圆C 2:4x 2+y 2=1.若M ,N 分别是C 1,C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值. 证明 当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33, 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22,则直线OM 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎨⎧x 2=14+k 2,y 2=k24+k 2,所以|ON |2=1+k 24+k 2,同理|OM |2=1+k 22k 2-1, 设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2, 所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33.综上,O 到直线MN 的距离是定值. 题型二 斜率或其表达式为定值【例2】 (2020·兰州诊断)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1)且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.(1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2,所以椭圆E 的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2), x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2(即为定值).【训练2】 (2021·大同模拟)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,已知|AB |=4,且点⎝⎛⎭⎫e ,345在椭圆上,其中e 是椭圆的离心率.(1)求椭圆C 的方程;(2)设P 是椭圆C 上异于A ,B 的点,与x 轴垂直的直线l 分别交直线AP ,BP 于点M ,N ,求证:直线AN 与直线BM 的斜率之积是定值. (1)解 ∵|AB |=4,∴2a =4,∴a =2, 又点⎝⎛⎭⎫e ,354在椭圆上,∴e 24+4516b2=1, 又b 2+c 2=a 2=4,联立方程组解得b 2=3, ∴椭圆方程为x 24+y 23=1.(2)证明 设点P 的坐标为(s ,t ),点M ,N 的横坐标为m (m ≠±2), 则直线AP 的方程为y =t s +2(x +2),故M ⎝⎛⎭⎫m ,ts +2(m +2),故直线BM 的斜率k 1=t (m +2)(s +2)(m -2),同理可得直线AN 的斜率k 2=t (m -2)(s -2)(m +2),故k 1k 2=t (m +2)(s +2)(m -2)×t (m -2)(s -2)(m +2)=t 2s 2-4,又点P 在椭圆上,∴s 24+t 23=1,∴t 2=-34(s 2-4),∴k 1k 2=-34(s 2-4)s 2-4=-34.即直线AN 与直线BM 的斜率之积为定值.题型三 几何图形面积为定值【例3】 (2021·昆明诊断)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e ,点(1,e )在椭圆E上,点A (a,0),B (0,b ),△AOB 的面积为32,O 为坐标原点.(1)求椭圆E 的标准方程;(2)若直线l 交椭圆E 于M ,N 两点,直线OM 的斜率为k 1,直线ON 的斜率为k 2,且k 1k 2=-19,证明:△OMN 的面积是定值,并求此定值.解 (1)由⎩⎪⎨⎪⎧1a 2+e 2b 2=1,e =ca ,c 2=a 2-b 2,得b =1.又S △AOB =12ab =32,得a =3.所以椭圆E 的标准方程为x 29+y 2=1.(2)当直线l 的斜率不存在时,设直线l :x =t (-3<t <3且t ≠0), 由⎩⎪⎨⎪⎧x 29+y 2=1,x =t ,得y 2=1-t 29,则k 1k 2=1-t 29t×-1-t 29t=-1-t 29t 2=-19,解得t 2=92.所以S △OMN =12×2×1-t 29×|t |=32.当直线l 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),直线l :y =kx +m (m ≠0), 由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 2=1消去y 并整理,得(9k 2+1)x 2+18kmx +9m 2-9=0. Δ=(18km )2-4(9k 2+1)(9m 2-9)=36(9k 2-m 2+1)>0, x 1+x 2=-18km9k 2+1,x 1x 2=9m 2-99k 2+1,k 1k 2=y 1x 1×y 2x 2=(kx 1+m )(kx 2+m )x 1x 2=-9k 2+m 29m 2-9=-19, 化简得9k 2+1=2m 2,满足Δ>0.|MN |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·⎝⎛⎭⎫-18km 9k 2+12-4·9m 2-99k 2+1=61+k 2·9k 2-m 2+19k 2+1.又原点O 到直线l 的距离d =|m |1+k 2, 所以S △OMN =12×|MN |×d=31+k 2·9k 2-m 2+19k 2+1×|m |1+k 2=3|m |2m 2-m 22m 2=32.综上可知,△OMN 的面积为定值32.感悟升华 探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.【训练3】 已知点F (0,2),过点P (0,-2)且与y 轴垂直的直线为l 1,l 2⊥x 轴,交l 1于点N ,直线l 垂直平分FN ,交l 2于点M . (1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l ′与AB 平行,且与曲线E 相切,切点为C ,试问△ABC 的面积是否为定值.若为定值,求出△ABC 的面积;若不是定值,说明理由.解 (1)由题意得|FM |=|MN |,即动点M 到点F (0,2)的距离和到直线y =-2的距离相等,所以点M 的轨迹是以F (0,2)为焦点,直线y =-2为准线的抛物线,根据抛物线定义可知点M 的轨迹方程为x 2=8y .(2)由题意知,直线AB 的斜率存在,设其方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,x 2=8y 消去x 整理得x 2-8kx -8b =0.则x 1+x 2=8k ,x 1·x 2=-8b .设AB 的中点为Q ,则点Q 的坐标为(4k,4k 2+b ).由条件设切线方程为y =kx +t ,由⎩⎪⎨⎪⎧y =kx +t ,x 2=8y 消去y 整理得x 2-8kx -8t =0.∵直线与抛物线相切,∴Δ=64k 2+32t =0,∴t =-2k 2, ∴切点C 的横坐标为4k ,∴点C 的坐标为(4k,2k 2). ∴CQ ⊥x 轴,∵x 2-x 1=m 2+1, ∴(x 2-x 1)2=(x 1+x 2)2-4(-8b ) =64k 2+32b =(m 2+1)2,∴b =(m 2+1)2-64k 232.∴S △ABC =12|CQ |·|x 2-x 1|=12·(2k 2+b )·(x 2-x 1)=(m 2+1)364,∵m 为常数,∴△ABC 的面积为定值.1.(2021·洛阳高三统考)已知抛物线C :y 2=2px (p >0),其焦点为F ,O 为坐标原点,直线l 与抛物线C 相交于不同的两点A ,B ,M 为AB 的中点. (1)若p =2,M 的坐标为(1,1),求直线l 的方程.(2)若直线l 过焦点F ,AB 的垂直平分线交x 轴于点N ,求证:2|MN |2|FN |为定值.(1)解 由题意知直线l 的斜率存在且不为0, 故设直线l 的方程为x -1=t (y -1) 即x =ty +1-t ,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +1-t ,y 2=4x ,得y 2-4ty -4+4t =0, ∴Δ=16t 2+16-16t =16(t 2-t +1)>0,y 1+y 2=4t , ∴4t =2,即t =12.∴直线l 的方程为2x -y -1=0.(2)证明 ∵抛物线C :y 2=2px (p >0),∴焦点F 的坐标为⎝⎛⎭⎫p 2,0. 由题意知直线l 的斜率存在且不为0,∵直线l 过焦点F ,故设直线l 的方程为x =ty +p2(t ≠0),设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +p 2y 2=2px,得y 2-2pty -p 2=0, ∴y 1+y 2=2pt ,Δ=4p 2t 2+4p 2>0. ∴x 1+x 2=t (y 1+y 2)+p =2pt 2+p , ∴M ⎝⎛⎭⎫pt 2+p2,pt .∴MN 的方程为y -pt =-t ⎝⎛⎭⎫x -pt 2-p2. 令y =0,解得x =pt 2+3p2,N ⎝⎛⎭⎫pt 2+3p 2,0, ∴|MN |2=p 2+p 2t 2,|FN |=pt 2+3p 2-p2=pt 2+p , ∴2|MN |2|FN |=2(p 2+p 2t 2)pt 2+p=2p ,为定值.2.(2020·新高考山东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.(1)解 由题设得4a 2+1b 2=1, a 2-b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明 设M (x 1,y 1),N (x 2,y 2). 若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1,得(1+2k 2)x 2+4kmx +2m 2-6=0. 于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2.①由AM ⊥AN ,得AM →·AN →=0, 故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,整理得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0. 将①代入上式,可得(k 2+1)2m 2-61+2k 2-(km -k -2)4km1+2k 2+(m -1)2+4=0, 整理得(2k +3m +1)(2k +m -1)=0. 因为A (2,1)不在直线MN 上,所以2k +m -1≠0,所以2k +3m +1=0,k ≠1. 所以直线MN 的方程为y =k ⎝⎛⎭⎫x -23-13(k ≠1). 所以直线MN 过点P ⎝⎛⎭⎫23,-13. 若直线MN 与x 轴垂直,可得N (x 1,-y 1).由AM →·AN →=0,得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,所以3x 21-8x 1+4=0. 解得x 1=2(舍去),或x 1=23.此时直线MN 过点P ⎝⎛⎭⎫23,-13. 令Q 为AP 的中点,即Q ⎝⎛⎭⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合,则|DQ |=12|AP |.综上,存在点Q ⎝⎛⎭⎫43,13,使得|DQ |为定值.。
圆锥曲线之轨迹方程的求法(一) 【复习目标】□1. 了解曲线与方程的对应关系,掌握求曲线方程的一般步骤; □2. 会用直接法、定义法、相关点法(坐标代换法)求方程。
【基础练习】1.到两坐标轴的距离相等的动点的轨迹方程是( )A .y x =B .||y x =C .22y x =D .220x y +=2.已知点(,)P x y 4,则动点P 的轨迹是( )A .椭圆B .双曲线C .两条射线D .以上都不对3.设定点1(0,3)F -、2(0,3)F ,动点P 满足条件129(0)PF PF a a a+=+>,则点P 的轨迹( )A .椭圆B .线段 C. 不存在 D .椭圆或线段4.动点P 与定点(1,0)A -、(1,0)B 的连线的斜率之积为1-,则P 点的轨迹方程为______________.【例题精选】一、直接法求曲线方程根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。
即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。
例1.已知ABC ∆中,2,ABBC m AC==,试求A 点的轨迹方程,并说明轨迹是什么图形.练习:已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。
点P 的轨迹是什么曲线?二定义法若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。
例1.⊙C :22(16x y +=内部一点0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程.例2.设动点(,)(0)P x y x ≥到定点1(,0)2F 的距离比它到y 轴的距离大12。
记点P 的轨迹为曲线C 求点P 的轨迹方程;练习.若动圆与圆1)2(:221=++y x C 相外切,且与直线1=x 相切,则动圆圆心轨迹方程是 . 三代入法有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。
第 1 页 共 65 页圆锥曲线一、知识结构 1.方程的曲线在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫 做方程的曲线.点与曲线的关系 若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0两条曲线的交点 若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则 f 1(x 0,y 0)=0 点P 0(x 0,y 0)是C 1,C 2的交点⇔f 2(x 0,y 0) =0方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点.2.圆 圆的定义 点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程 (1)标准方程圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为(-2D ,-2E,半径是24F-E D 22+.配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E); 当D 2+E 2-4F <0时,方程不表示任何图形.点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,第 2 页 共 65 页|MC |=r ⇔点M 在圆C 上, |MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +.(3)直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系 直线与圆相交⇔有两个公共点 直线与圆相切⇔有一个公共点 直线与圆相离⇔没有公共点 ②直线和圆的位置关系的判定 (i)判别式法(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d=22C Bb Aa BA +++与半径r 的大小关系来判定.3.椭圆、双曲线和抛物线椭 圆 双曲线抛物线轨迹条件 点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a = 点集:{M ||MF 1|-|MF 2|.=±2a,|F 2F 2|>2a}. 点集{M | |MF |=点M 到直线l 的距离}. 圆 形标准方程 22a x +22b y =1(a >b >0)22a x -22by =1(a >0,b >0)y 2=2px(p >0)顶 点 A 1(-a,0),A 2(a,0); B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a) O(0,0) 轴对称轴x=0,y=0 长轴长:2a 短轴长:2b 对称轴x=0,y=0 实轴长:2a 虚轴长:2b 对称轴y= 焦 点F 1(-c,0),F 2(c,0) 焦点在长轴上 F 1(-c,0),F 2(c,0) 焦点在实轴上 F(2P,0) 焦点对称轴上焦 距|F 1F 2|=2c , c=b2-a2|F 1F 2|=2c, c=b2a2+准 线x=±c a 2x=±ca 2x=-2p 准线与焦点位于顶点曲 线 性 质第 3 页 共 65 页准线垂直于长轴,且在椭圆外.准线垂直于实轴,且在两顶点的内侧.两侧,且到顶点的距离相等.离心率e=a c,0<e <1 e=ac,e >1 e=14.圆锥曲线的统一定义平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线.其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率. 当0<e <1时,轨迹为椭圆 当e=1时,轨迹为抛物线 当e >1时,轨迹为双曲线 5.坐标变换坐标变换 在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做 坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点 的坐标与曲线的方程.坐标轴的平移 坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫 做坐标轴的平移,简称移轴.坐标轴的平移公式 设平面内任意一点M ,它在原坐标系xOy 中的坐标是9x,y),在新坐标系x ′O ′y ′中的坐标是(x ′,y ′).设新坐标系的原点O ′在原坐标系xOy 中的坐标是(h,k),则x=x ′+h x ′=x-h (1) 或(2)y=y ′+k y ′=y-k 公式(1)或(2)叫做平移(或移轴)公式. 中心或顶点在(h,k)的圆锥曲线方程中心或顶点在(h,k)的圆锥曲线方程见下表.方 程 焦 点 焦 线 对称轴椭圆22h)-(x a +22k)-(y b =1 (±c+h,k)x=±c a 2+hx=h y=k 22h)-(x b +22k)-(y a =1 (h,±c+k) y=±c a 2+kx=h y=k 双曲线22h)-(x a -22k)-(y b =1 (±c+h,k) =±c a 2+kx=h y=k 22k)-(y a -22h)-(x b =1(h,±c+h)y=±c a 2+kx=h y=k 抛物线 (y-k)2=2p(x-h)(2p+h,k) x=-2p +hy=k (y-k)2=-2p(x-h)(-2p+h,k) x=2p +h y=k (x-h)2=2p(y-k)(h, 2p+k)y=-2p +kx=h二、知识点、能力点提示(一)曲线和方程,由已知条件列出曲线的方程,曲线的交点说明在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求出的曲线方程才能准确无误.另外,要求会判断曲线间有无交点,会求曲线的交点坐标.三、考纲中对圆锥曲线的要求:考试内容:. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程;. 双曲线及其标准方程.双曲线的简单几何性质;. 抛物线及其标准方程.抛物线的简单几何性质;考试要求:. (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程;. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质;. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质;. (4)了解圆锥曲线的初步应用。
专题--圆锥曲线高考题研究2011-7.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为()AB C .2D .32011-14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上,离心率为2。
过F 1的直线交于C ,A B 两点,且2ABF 的周长为16,那么C 的方程为 。
2011-20.(本小题满分12分)在平面直角坐标系xOy 中, 已知点A (0,-1),B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(I )求C 的方程;(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.2010-(12)已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D )22154x y -= 2010-(15)过点A(4,1)的圆C 与直线10x y --=相切于点 B(2,1).则圆C 的方程为 . 2010-(20)(本小题满分12分)设12,F F 分别是椭圆E:22221x y a b+=(a>b>0)的左、右焦点,过1F 斜率为1的直线l 与E 相较于A,B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求E 的离心率;(Ⅱ)设点P (0,-1)满足PA PB =,求E 的方程2009-(4)双曲线24x-212y=1的焦点到渐近线的距离为()(A)(B)2 (C(D)12009-(13)设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点。
若AB的中点为(2,2),则直线 的方程为_____________.2009-(20)(本小题满分12分)已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.(Ⅰ)求椭圆C的方程;(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,OPOM=λ,求点M的轨迹方程,并说明轨迹是什么曲线。
第八章 《圆锥曲线》专题复习一、椭圆方程.1. 椭圆的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+2.椭圆的方程形式: ①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax =+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122B A By Ax =+.③椭圆的参数方程:2222+b y a x ⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则:证明:由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”.ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则:⑧通径:垂直于x 轴且过焦点的弦叫做通径: 222b d a=;坐标:22(,),(,)b b c c a a -4.共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .1020,PF a ex PF a ex=+=-1020,PF a ey PF a ey =+=-asin α,)α)二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-2.双曲线的方程:①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-. 一般方程:)0(122 AC Cy Ax =+.3.双曲线的性质:①i. 焦点在x 轴上: 顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程ca x 2±= 渐近线方程:0=±b ya x 或02222=-b y a x ii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x . ②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的距离);通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦半径公式:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=020102014. 等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 5.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .6.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程? 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x . 7.直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1区域⑤:即过原点,无切线,无与渐近线平行的直线.注意:⑴过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.⑵若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号.⑶若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的距离为m 与n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PF d d 2121= =nm. ⑷:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.设0 p ,抛物线的标准方程、类型及其几何性质:注意:⑴x c by ay =++2顶点)244(2aba b ac --.⑵)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.⑶通径为2p ,这是过焦点的所有弦中最短的.⑷px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pty ptx )(t 为参数). ⑸关于抛物线焦点弦的几个结论:设AB 为过抛物线 y 2=2px (p>0 )焦点的弦,A(x 1 ,y 1)、B (x 2 ,y 2 ) ,直线AB 的倾斜角为θ,则:① x 1x 2=24p , y 1y 2=-p 2; ② |AB|=22sin p θ;③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为900;⑤112||||FA FB P+=. 四、圆锥曲线的统一定义.1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 2. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.3. 当椭圆的焦点位置不明确,而无法确定其标准方程时,可设方程为22x y m n+ =1(m>0,n>0且m ≠n ),这样可以避免讨论和繁杂的运算,椭圆与双曲线的标准方程均可用简单形式 mx 2+ny 2=1(mn ≠0)来表示,所不同的是:若方程表示椭圆,则要求m>0,n>0且m ≠n ; 若方程表示双曲线,则要求mn<0,利用待定系数法求标准方程时,应注意此方法的合理使用,以避免讨论。
圆锥曲线八种解题方法、七种常规题型和性质(有相应例题详解) 总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
一、2020年高考虽然推迟,但是一定要坚持多练习,加油!二、高考分析1、分值、题型、难度设置圆锥曲线是高中数学的重要内容之一,分值约占14﹪,即20分左右,题型一般为二小一大,例如,2005年高考为一道选择题,一道填空题一道解答题。
小题基础灵活,解答题一般在中等以上,一般具有较高的区分度。
考试内容:椭圆、双曲线、抛物线的定义,标准方程,简单的几何性质,椭圆的参数方程。
主要题型:(1)定义及简单几何性质的灵活运用;(2)求曲线方程(含指定圆锥曲线方程及轨迹方程);(3)直线与圆锥曲线的位置关系问题(交点、弦长、中点弦及斜率、对称问题),确定参数的取值范围;(4)在导数、不等式、函数、向量等知识网络交汇点上的问题。
2、命题方向解析几何内容多,范围广,综合度高,其特点是:数形结合,形象思维,规律性强,运算量大,综合性好。
主要考察运算能力,逻辑思维能力,以及分析问题和解决问题的综合能力。
涉及函数、方程、不等式、三角、向量和导数等方面的内容,以及数形结合、分类讨论、等价转化等数学思想方法。
要注意一些立意新,角度好,有创意的题目,特别要关注在向量和解析几何交汇点上的命题趋势,两者通过坐标自然融合,既考查基(2D . 3 +1础知识、基本方法,又平淡之中见功夫,强化区分功能,突出对能力的考查,从不同的思维层次上考察能力,有较好的思维价值。
三、 专题复习2.1 考查直线和圆锥曲线方程等有关基础知识和基本方法,要特别重视圆锥曲线定义的灵活应用,反映思维品质。
例 1.1)如图,在正方体 A B C D - ABCD 的侧1 1 1DC面 AB 内有1AB动点 P 到直线 AB 与直线 B C 距离相等,则动点 1 1P 所在的曲线的形状为: )PD 1A 1B 1C 1AB ABAB AB PPPPA 1(A)B 1A 1(B)B 1A 1(C)B 1 A 1(D) B 1分析:本题主要考查抛物线定义,线面垂直关系及点到直线的距离等概念,情景新,角度好,有创意,考查基础知识和基本方法。
解几综合题1.如图,()A m 和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-,O 为坐标原点,动点P 满足OP OA OB =+.(Ⅰ)求m n ⋅的值;(Ⅱ)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(Ⅲ)若直线l 过点E (2,0)交(Ⅱ)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程.2. 如图,在平面直角坐标系中,已知动点()y x P ,,y PM ⊥轴,垂足为M ,点N 与点P 关于x 轴对称, 4=⋅MN OP(1)求动点P 的轨迹W 的方程(2)若点Q 的坐标为()0,2,A 、B 为W 上的两个动点,且满足QB QA ⊥,点Q 到直线AB 的距离为d ,求d 的最大值3. 已知直线l 过椭圆E:2222x y +=的右焦点F ,且与E 相交于,P Q 两点. ① 设1()2OR OP OQ =+(O 为原点),求点R 的轨迹方程;② 若直线l 的倾斜角为060,求1||PF4. 在双曲线1131222=-x y 的上半支有三点A ,B ,C ,其中B 是第一象限的点,F 为双曲的上焦点.若线段AC 的中点D 在直线y=6上,且|AF|,|BF|,|CF|构成等差数列. (Ⅰ)求点B 的坐标;(Ⅱ)若直线l 经过点D ,且在l 上任取一点P (不同于D 点),都存在实数λ,使得 ||||(CP AP +=λ证明:直线l 必过定点,并求出该定点的坐标。
5. 如图,椭圆两焦点F 1、F 2与短轴两端B 1、B 2正好是正方形的四个顶点,且焦点到椭圆上一点最近距离为.12-(I )求椭圆的标准方程;(II )过D(0,2)的直线与椭圆交于不同的两点M 、N ,且M 在D 、N 之间,设λ=||DN DM ,求λ的取值范围.6. 已知F 1、F 2分别是椭圆)0,0(12222>>=+b a by a x 的左、右焦点,其左准线与x 轴相交于点N ,并且满足,.2||,221121==F F NF F F (1)求此椭圆的方程;(2)设A 、B 是这个椭圆上的两点,并且满足]31,51[,∈=λλ当NB NA 时,求直线AB 的斜率的取值范围.7. 已知O 为坐标原点,点E 、F 的坐标分别为(-1,0)、(1,0),动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .(Ⅰ)求点M 的轨迹W 的方程; (Ⅱ)点0(,)2mP y 在轨迹W 上,直线PF 交轨迹W 于点Q ,且PF FQ λ=,若12λ≤≤,求实数m 的范围.8. 已知点A (-1,0),B (1,-1)和抛物线.x y C 4:2=,O 为坐标原点,过点A 的动直线l 交抛物线C 于M 、P ,直线MB 交抛物线C 于另一点Q ,如图.(I )若△POM 的面积为25,求向量OM 与OP 的夹角; (II )试探求点O 到直线PQ 的距离是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.9. 设不等式组⎩⎨⎧x +y >0,x -y >0表示的平面区域为D .区域D 内的动点P 到直线x +y =0和直线x -y =0的距离之积为1.记点P 的轨迹为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)过点F (2,0)的直线与曲线C 交于A ,B 两点.若以线段AB 为直径的圆与y 轴相切,求线段AB 的长.10. 如图,在△OSF 中,c OF a OS OSF ==︒=∠,,90(c a ,均为正常数),E 、P 是平面OSF内的动点,且满足0=⋅OF SE ,),(R ∈=λλ向量PE c PF a +与PE c PF a -垂 直。
2020高考数学知识再梳理---------圆锥曲线知识梳理:(1)椭圆的标准方程及其性质:(2)双曲线的标准方程及其性质:(3)抛物线的标准方程及其性质:2020高考数学知识再梳理---------圆锥曲线配套练习:1.在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.2.在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标是3,则点M 到此双曲线的右焦点的距离为________.3.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是________.4.设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为________.5. 设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,一个交点的坐标为(15,4),则此双曲线的标准方程是________________.6. 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为____________. 7.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.8. 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =________.9. 椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为2c ,若直线y =2x 与椭圆的一个交点的横坐标为c ,则椭圆的离心率为________.10.在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.11.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,离心率为32,过F 1且垂直于x轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明1kk1+1kk2为定值,并求出这个定值.12. 如图,在平面直角坐标系xOy中,椭圆C∶x2a2+y2b2=1(a>b>0)的离心率为32,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN 相交于点T.求证:点T在椭圆C上.13. 设椭圆E:x2a2+y21-a2=1的焦点在x轴上.(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a变化时,点P在某定直线上.14.已知椭圆C :x 2m 2+y 2=1(常数m >1),P 是曲线C 上的动点,M 是曲线C 的右顶点,定点A 的坐标为(2,0).(1)若M 与A 重合,求曲线C 的焦点坐标; (2)若m =3,求P A 的最大值与最小值;(3)若P A 的最小值为MA ,求实数m 的取值范围.配套练习:1.在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.1.解析 建立关于m 的方程求解∵c 2=m +m 2+4,∴e 2=c 2a 2=m +m 2+4m=5,∴m 2-4m +4=0,∴m =2.答案 22.在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标是3,则点M 到此双曲线的右焦点的距离为________.2.解析 法一 x =3代入x 24-y 212=1,y =±15,不妨设M (3,15),右焦点F (4,0).∴MF =1+15=4.法二 由双曲线第二定义知,M 到右焦点F 的距离与M 到右准线x =a 2c =1的距离比为离心率e =c a =2,∴MF 3-1=2,MF =4.答案 43.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是________.3.解析 由题意知c =3,e =c a =32,所以a =2;b 2=c 2-a 2=9-4=5,故所求双曲线方程为x 24-y 25=1. 答案 x 24-y 25=14.设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为________.4.解析 不妨设F 1,F 2分别为双曲线的左、右焦点,点P 在双曲线的右支上,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a , 求得|PF 1|=4a ,|PF 2|=2a .又在△PF 1F 2中,∠PF 1F 2=30°,所以∠PF 2F 1=90°,求得|F 1F 2|=23a ,故双曲线C 的离心率e =23a 2a = 3.答案35. 设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,一个交点的坐标为(15,4),则此双曲线的标准方程是________________.5.解析 法一 x 227+y 236=1的焦点坐标是(0,±3),设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),根据定义2a =|(15)2+12-(15)2+72|=4,故a =2.又b 2=32-22=5,故所求双曲线方程为y 24-x 25=1. 法二 x 227+y 236=1的焦点坐标是(0,±3),设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则a 2+b 2=9,16a 2-15b 2=1,解得a 2=4,b 2=5,故所求双曲线方程为y 24-x 25=1.法三 设双曲线方程为x 227-λ+y 236-λ=1(27<λ<36),由于双曲线过点(15,4),故1527-λ+1636-λ=1,解得λ1=32,λ2=0(舍去),故所求双曲线方程为y 24-x 25=1.答案 y 24-x 25=1[规律方法] 本例可有三种解法:一是根据双曲线的定义直接求解,二是待定系数法;三是共焦点曲线系方程,其要点是根据题目的条件用含有一个参数的方程表示共焦点的二次曲线系,再根据另外的条件求出参数.6. 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为____________. 6.解析 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由e =22,知c a =22,故b 2a 2=12.由于△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,故a =4.∴b 2=8,∴椭圆C 的方程为x 216+y 28=1.答案 x 216+y 28=17.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.7.解析 由题意可知|F 1F 2|=23,∴c = 3.设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0).∵|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a ,∴|AF 2|=2+a ,|AF 1|=2-a .在Rt △F 1AF 2中,∠F 1AF 2=90°,∴|AF 1|2+|AF 2|2=|F 1F 2|2,即(2-a )2+(2+a )2=(23)2,∴a =2,∴e =c a =32=62.答案62[规律方法] 求解圆锥曲线的离心率,基本思路有两种:一是根据圆锥曲线的定义、方程、性质等分别求出a ,c ,然后根据离心率的定义式求解;二是根据已知条件构造关于a ,c 的方程,多为二次齐次式,然后通过方程的变形转化为离心率e 的方程求解,要灵活利用椭圆、双曲线的定义求解相关参数.8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =________. 9.椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为2c ,若直线y =2x 与椭圆的一个交点的横坐标为c ,则椭圆的离心率为________.8.因为双曲线的离心率e =c a =2,所以b =3a ,所以双曲线的渐近线方程为y =±ba x =±3x ,与抛物线的准线x =-p 2相交于A ⎝⎛⎭⎫-p 2,32p ,B ⎝⎛⎭⎫-p 2,-32p ,所以△AOB 的面积为12×p 2×3p =3,又p >0,所以p =2.9.因为直线与椭圆的一个交点的横坐标为c ,所以这个交点的坐标为⎝⎛⎭⎫c ,b 2a ,则有b 2a=2c ,即有b 2=a 2-c 2=2ac ,e 2+2e -1=0,解得e =2-1(另一个解不符合要求,舍去). 答案 (1)2 (2)2-110.在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.10.解 (1)设F 1(-c,0),F 2(c,0)(c >0). 由题意可得|PF 2|=|F 1F 2|,即(a -c )2+b 2=2c . 整理得2⎝⎛⎭⎫c a 2+c a -1=0, 得c a =12或c a =-1(舍),所以e =12(2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2,直线PF 2方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3(x -c ).消去y 并整理,得5x 2-8cx =0,解得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧x 1=0,y 1=-3c ,⎩⎨⎧x 2=85c ,y 2=335c .不妨设A ⎝⎛⎭⎫85c ,335c ,B ()0,-3c .设点M 的坐标为(x ,y ),则AM →=⎝⎛⎭⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y .于是AM →=⎝⎛⎭⎫8315y -35x ,85y -335x ,BM →=(x ,3x ).由题意知AM →·BM →=-2,即⎝⎛⎭⎫8315y -35x ·x +85y -335x ·3x =-2,化简得18x 2-163xy -15=0.将y =18x 2-15163x 代入c =x -33y ,得c =10x 2+516x >0,所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0).[规律方法] (1)求轨迹方程时,先看轨迹的形状能否预知,若能预先知道轨迹为何种圆锥曲线,则可考虑用定义法求解或用待定系数法求解. (2)讨论轨迹方程的解与轨迹上的点是否对应,要注意字母的取值范围.11.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,离心率为32,过F 1且垂直于x轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2,若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值. 11.解 (1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a ,由题意知2b 2a =1,即a =2b 2.又e =c a =32,所以a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)法一 如图,由题意知|F 1M ||MF 2|=|PF 1||PF 2|,即|PF 1|4-|PF 1|=c +m c -m =3+m 3-m ,整理得m =32(|PF 1|-2). 又a -c <|PF 1|<a +c ,即2-3<|PF 1|<2+ 3. ∴-32<m <32.故m 的取值范围是m ∈⎝⎛⎭⎫-32,32. 法二 由题意知PF 1→·PM →|PF 1→||PM →|=PF 2→·PM→|PF 2→||PM →|,即PF 1→·PM →|PF 1→|=PF 2→·PM →|PF 2→|.设P (x 0,y 0),其中x 20≠4,将向量坐标化得m (4x 20-16)=3x 30-12x 0.所以m =34x 0,而x 0∈(-2,2),所以m ∈⎝⎛⎭⎫-32,32. (3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.所以Δ=0.即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又x 204+y 20=1,所以16y 20k 2+8x 0y 0k +x 20=0.故k =-x 04y 0,由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0所以1kk 1+1kk 2=1k ⎝⎛⎭⎫1k 1+1k 2=⎝⎛⎭⎫-4y 0x 0·⎝⎛⎭⎫2x 0y 0=-8.所以1kk 1+1kk 2为定值,这个定值为-8.12. 如图,在平面直角坐标系xOy 中,椭圆C ∶x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2),设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T .求证:点T 在椭圆C 上. 12.(1)解 由题意知b =22= 2. 因为离心率e =c a =32,所以ba =1-⎝⎛⎭⎫c a 2=12.所以a =2 2.所以椭圆C 的方程为x 28+y 32=1.(2)证明 由题意可设M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0),则直线PM 的方程为y =y 0-1x 0x +1.①直线QN 的方程为y =y 0-2-x 0x +2.②法一 联立①②解得x =x 02y 0-3,y =3y 0-42y 0-3,即T ⎝ ⎛⎭⎪⎫x 02y 0-3,3y 0-42y 0-3由x 208+y 202=1可得x 20=8-4y 20, 因为18⎝⎛⎭⎫x 02y 0-32+12⎝ ⎛⎭⎪⎫3y 0-42y 0-32=x 20+4(3y 0-4)28(2y 0-3)2=8-4y 20+4(3y 0-4)28(2y 0-3)2=32y 20-96y 0+728(2y 0-3)2=8(2y 0-3)28(2y 0-3)2=1.所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上. 法二 设T (x ,y )联立①②解得x 0=x2y -3,y 0=3y -42y -3,因为x 208+y 202=1,所以18⎝⎛⎭⎫x 2y -32+12⎝ ⎛⎭⎪⎫3y -42y -32=1.整理得x 28+(3y -4)22=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y 22=1. 所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上.[规律方法] (1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.13. 设椭圆E :x 2a 2+y 21-a 2=1的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1,F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上. 13.(1)解 因为焦距为1,且焦点在x 轴上,所以2a 2-1=14,解得a 2=58.故椭圆E 的方程为8x 25+8y 23=1.(2)证明 设P (x 0,y 0),F 1(-c,0),F 2(c,0), 其中c =2a 2-1.由题设知x 0≠c ,则直线F 1P 的斜率kF 1P =y 0x 0+c .直线F 2P 的斜率kF 2P =y 0x 0-c .故直线F 2P 的方程为y =y 0x 0-c(x -c ).当x =0时,y =cy 0c -x 0,即点Q 坐标为⎝⎛⎭⎫0,cy 0c -x 0.因此,直线F 1Q 的斜率为kF 1Q =y 0c -x 0.由于F 1P ⊥F 1Q ,所以kF 1P ·kF 1Q =y 0x 0+c ·y 0c -x 0=-1.化简得y 20=x 20-(2a 2-1),①将①代入椭圆E 的方程,由于点P (x 0,y 0)在第一象限. 解得x 0=a 2,y 0=1-a 2. 即点P 在定直线x +y =1上.14.已知椭圆C :x 2m 2+y 2=1(常数m >1),P 是曲线C 上的动点,M 是曲线C 的右顶点,定点A 的坐标为(2,0).(1)若M 与A 重合,求曲线C 的焦点坐标; (2)若m =3,求P A 的最大值与最小值;(3)若P A 的最小值为MA ,求实数m 的取值范围.14.解 (1)由题意知m =2,椭圆方程为x 24+y 2=1,c =4-1=3,∴左、右焦点坐标分别为(-3,0),(3,0). (2)m =3,椭圆方程为x 29+y 2=1,设P (x ,y ),则P A 2=(x -2)2+y 2=(x -2)2+1-x 29=89⎝⎛⎭⎫x -942+12(-3≤x ≤3)∴当x =94时,P A min =22;当x =-3时,P A max =5.(3)设动点P (x ,y ),则P A 2=(x -2)2+y 2=(x -2)2+1-x 2m2=m 2-1m 2⎝⎛⎭⎫x -2m 2m 2-12-4m 2m 2-1+5(-m ≤x ≤m ). ∵当x =m 时,P A 取最小值,且m 2-1m 2>0,∴2m 2m 2-1≥m 且m >1,解得1<m ≤1+ 2.。
高考数学专题复习-完美版圆锥曲线知识点总结1.椭圆的概念椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (大于|F1F2|)的点的轨迹。
这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。
若M为椭圆上任意一点,则有|MF1|+|MF2|=2a。
椭圆的标准方程为:x^2/a^2+y^2/b^2=1(a>b>0,焦点在x轴上)或x^2/b^2+y^2/a^2=1(a>b>0,焦点在y轴上)。
2.椭圆的性质①范围:由标准方程得知,椭圆位于直线x=±a,y=±b所围成的矩形里。
②对称性:椭圆关于x轴、y轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心。
③顶点:椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
同时,线段A1A2、B1B2分别叫做椭圆的长轴和短轴,它们的长分别为2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长。
④离心率:椭圆的焦距与长轴的比e=c/a。
其中,c表示焦距,a表示长半轴长。
椭圆的离心率可以通过长轴和短轴的长度计算得出。
由于长轴大于短轴,因此离心率e的值介于0和1之间。
当离心率接近1时,短轴b的长度会越来越小,导致椭圆变得越扁;反之,当离心率接近0时,短轴b的长度会越来越接近长轴a的长度,此时椭圆会趋向于圆形。
当长轴和短轴的长度相等时,椭圆的两个焦点重合,这时椭圆就变成了圆形,其方程为x+y=a。
双曲线是平面上距离两个定点距离之差绝对值等于常数2a的动点轨迹。
需要注意的是,这里的距离差的绝对值是小于焦距F1F2的。
当距离差等于2a时,得到的是双曲线的一支;当距离差等于-2a时,得到的是双曲线的另一支(含F1的一支)。
当距离差等于0时,得到的是两条射线;当距离差大于2a时,得不到任何图形。
双曲线的焦点是F1和F2,焦距为F1F2.双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1.由此可以看出,双曲线在坐标系中的范围为两条直线x=±a的外侧。
2020年高考文科数学一轮复习大题篇—圆锥曲线综合问题【归类解析】题型一 范围问题【解题指导】 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【例】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 23-y 2=1的离心率互为倒数,且直线x -y -2=0经过椭圆的右顶点.(1)求椭圆C 的标准方程;(2)设不过原点O 的直线与椭圆C 交于M ,N 两点,且直线OM ,MN ,ON 的斜率依次成等比数列,求△OMN 面积的取值范围.【解】 (1)∵双曲线的离心率为233, ∴椭圆的离心率e =c a =32. 又∵直线x -y -2=0经过椭圆的右顶点,∴右顶点为点(2,0),即a =2,c =3,b =1,∴椭圆方程为x 24+y 2=1. (2)由题意可设直线的方程为y =kx +m (k ≠0,m ≠0),M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,并整理得(1+4k 2)x 2+8kmx +4(m 2-1)=0,则x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-11+4k 2, 于是y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.又直线OM ,MN ,ON 的斜率依次成等比数列,故y 1x 1·y 2x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2=k 2, 则-8k 2m 21+4k2+m 2=0. 由m ≠0得k 2=14,解得k =±12. 又由Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,得0<m 2<2,显然m 2≠1(否则x 1x 2=0,x 1,x 2中至少有一个为0,直线OM ,ON 中至少有一个斜率不存在,与已知矛盾).设原点O 到直线的距离为d ,则S △OMN =12|MN |d =12·1+k 2·|x 1-x 2|·|m |1+k 2故由m 的取值范围可得△OMN 面积的取值范围为(0,1).【训练】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围. (1)【证明】 设P (x 0,y 0),A ⎝⎛⎭⎫14y 21,y 1,B ⎝⎛⎭⎫14y 22,y 2. 因为P A ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝⎛⎭⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根.所以y 1+y 2=2y 0,所以PM 垂直于y 轴.(2)【解】 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22y 20-4x 0. 所以△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=()322003244y x -.因为x 20+y 204=1(-1≤x 0<0), 所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],所以△P AB 面积的取值范围是⎣⎡⎦⎤62,15104. 题型二 最值问题1 利用三角函数有界性求最值【解题指导】 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【例】过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是【解】 设直线AB 的倾斜角为θ,可得|AF |=21-cos θ,|BF |=21+cos θ, 则|AF |·|BF |=21-cos θ×21+cos θ=4sin 2θ≥4. 2 数形结合利用几何性质求最值【例】在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,求实数c 的最大值为。
2020高考虽然延迟,但是练习一定要跟上,加油,少年!已知双曲线C 的实半轴长和虚半轴长的乘积为3,C 的两个焦点分别为F 1、F 2,直线L 过F 2且与直线F 1F 2的夹角为ϕ,tg ϕ=221,L 与线段F 1F 2的垂直平分线的交点是P ,线段PF 2与双曲线C 的交点为Q(且|PQ |∶|PF 2=2∶1),求双曲线的方程.解:如图,以直线F 1F 2为x 轴,线段F 1F 2的垂直平分线为y 轴建立坐标系.设双曲线C 的方程为22ax -22b y =1 (a >b >0)设F 1,F 2的坐标分别为(-c,0)、(c,0),其中C=22b a +,则点P 的坐标为(0,-221,c). 由线段的定比分点公式可得Q 点的坐标为(32c,- 221c). 将Q 点坐标代入双曲线方程得229a 4c -223621c b =1,整理得16(a b )4-41(ab )2-21=0 解得(ab )2=3或(ab )2=-167(舍去) 由(a b )2=3和题设ab=3,解得a=1,b=3.故所求双曲线方程为x 2-3y2=1.已知点P 在直线x=2上移动,直线l 通过原点且OP 垂直 ,过点A(1,0)和点P 的直线m 和直线l 交于点Q ,求点Q 的轨迹方程,并指出该轨迹的名称和它 的焦点坐标.解:设点P 的坐标为(2,y 1),则直线OP 的斜率 k OP =2y 1. ∵l ⊥直线OP .∴直线l 的斜率k 1满足k OP ·k 1=-1,即2y 1·k 1=-1,得k 1=-12y .又直线l 过原点,所以l 的方程为y=-12y x. ∵直线m 过点A(1,0),P(2,y 1). ∴m 的方程为y 1x-y-y 1=0 由l 的方程得y 1=-y x 2代入m 的方程得-y x 2-x-y+yx2=0,即2x 2+y 2-2x=0.显然点Q 与点A(1,0)不重合,故x ≠1. 又2x 2+y 2-2x=0可化为41)21(2 x +212y =1 (x ≠1),已知椭圆的焦点为F 1(0,-1)和F 2(0,1),直线 y=4是椭圆的一条准线.(1)求椭圆方程;(2)设点P 在椭圆上,且│PF 1│-│PF 2│=1,求 tan ∠F 1PF 2的值. 解:如图.(1)设所求椭圆方程为22ay +22b x =1,(a > b >0)由F 1(0,-1)和F 2(0,1),知c=1,得a 2=b 2+1, ①由一条准线方程为y=4知,ca 2=4 ②又a 2=b 2+c 2③由①、②、③解得a 2=4,b 2=3.故所求椭圆方程为42y +32x =1.(2)由椭圆定义及a=2有│PF 1│+│PF 2│=4 ① 由题设有│PF 1│-│PF 2│=1 ② 解出│PF 1│=25,│PF 2│=23,又│F 1F 2 │=2. 在△PF 1F 2中,∠F 1PF 2=θ, ∴cos θ=2122122212PF PF F F PF PF ⋅-+=53,从而sin θ=54,tg θ=34,tg ∠F 1PF 2=34. 四、能力训练 (一)选择题1.“点M 的坐标是方程f(x ,y)=0的解”是“点M 在方程f(x ,y)=0曲线上”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分又非必要条件2.抛物线x=-42Y 的焦点坐标是( )A.(0,1)B.(-1,0)C.(0,-161)D.(-161,0) 3.椭圆(1-m)x 2-my 2=1的长轴长是( ) A.m m --112 B. 112--m m C.m m --2 D. mm---12 4.下列各对双曲线中,既有相同离心率又有相同渐近线的是( )A.32x -y 2=1和92y -32x =1B. 32x -y 2=1和y 2-32x =1 C.y 2-32x =1和x 2-32y=1D. 32x -y 2=-1和32y -92x =1 5.抛物线x 2-4y=0上一点P 到焦点的距离为3,那么P 的纵坐标是( )A.3B.2C.25D.-26.已知椭圆22a x +22by =1 (a >b >0)的两 个焦点把夹在两条准线间的线段三等分,那么这个椭圆的离心率是( )A.21 B. 31 C.32 D. 33 7.圆x 2+y 2-2axsin α-2bycos α-a 2cos 2α=0在x 轴上截得的弦长是( )A.2aB.2│a │C.2│a │D.4│a │8.过双曲线的一个焦点,有垂直于实轴的弦PQ ,F ′是另一个焦点,若∠PF ′Q=2π,则双曲线离心率是( )A.2+2B. 2+1C. 2D. 2-1 9.抛物线y 2+4y-4x=0的准线方程是( ) A.x=0 B.y=0 C.x=-2 D.y=-2 10.椭圆的两准线方程分别为x=433,x=-417,一个 焦点坐标为(6,2),则椭圆方程是( )A.161)-(x 2+92)-(y 2=1B.162)(x 2++92)(y 2+=1C.252)-(x 2+92)-(y 2=1D.252)(x 2++92)(y 2+=111.设双曲线22a x -22by =1的两条渐近线含 实轴的夹角为θ,而离心率e ∈[2,2],则θ的取值范围是( )A.[6π,2π]B.[3π,2π]C.[2π,32π] D.[32π,π]12.椭圆92x +42y =1的弦AB 被点(1,1)平分,则 AB 所在的直线方程是( )A.4x-9y-11=0B.4x+9y-13=0C.9x+4y-10=0D.9x-4y-5=013.和x 轴相切,且和圆x 2+y 2=1外切的动圆圆心的轨迹方程是( )A.x 2=2y+1B.x 2=-2y+1C.x 2=2y+1或x 2=-2y+1D.x 2=2│y │+114.如果椭圆a x 2+b y 2=1 (a >b >0)和曲线m x 2+ny 2=1(m >0,n>0)有相同的焦点F 1和F 2 ,P 是这两条曲线的交点,则│PF 1│·│PF 2│的值是( )A.a-mB.41(a-m) C.a 2-m 2 D.a -m15.已知0<a <1<b ,那么曲线a 2x 2-a 2y 2=log a b 是( ) A.焦点在x 轴的双曲线 B.焦点在y 轴的椭圆 C.焦点在x 轴的等轴双曲线 D.焦点在y 轴的等轴双曲线(二)填空题16.直线xsin α+ycos α=m(常量α∈(0,2π)) 被圆x 2+y 2=2所截的弦长为343,则m=________.17.设椭圆13m 2+x -m 2y 2=1的准 线平行于x 轴,则m 的取值范围是________.18.如果方程x 2cos2θ+y 2sin θ=1,表示椭圆,那么θ 角的取值范围是_________.19.设双曲线C :16x 2-9y 2=1椭圆的焦点恰为双 曲线C 实轴上的两个端点,椭圆与双曲线离心率为互为倒数,则此椭圆方程是________.(三)解答题20.已知两圆C 1∶x 2+y 2+4x-4y-5=0 C 2∶x 2+y 2-8x+4y+7=0(1)证明此两圆相切,并求过切点的公切线方程. (2)求过点(2,3)且与两圆相切于上述切点的圆的方程.21.(1)椭圆22a x +22by =1上一点P 与两焦点 F 1F 2连线所成的角∠F 1PF 2=α,求△F 1PF 2的面积;(2)将上题的椭圆变成双曲线22a x -22b y =1 ,求△F 1PF 2的面积.22.抛物线的顶点在原点,它的准线过双曲线22a x -22by =1的一个焦点,并与双曲线的实轴垂直,又双曲线与抛物线的一个交点是(1. 5,6),求抛物线和双曲线的方程.23.已知椭圆252x +212y =1,左、右焦点分别为 F 2、F 1,右准线为L ,问能否在椭圆上求得一点P ,使│PF 1│是P 到L 的距离d 与│PF 2│的比例中项?若能,求出P 点坐标,若不能,说明理由.24.试就k 的取值(k ∈R ,且k ≠4)讨论方程k-42x +(k-2)y 2=1+k 所表 示曲线的形状.25.已知椭圆22x +62y =1中有一内接△PAB ,∠X OP=60°,且k PA +k PB =0(1)求证:直线AB 斜率是定值; (2)求△ABP 的面积的最大值.能力训练参考答案(一)1.C 2.B 3.C 4.D 5.B 6.D 7.B 8.B 9.C 10.C 11.C 12.B 13.D 14.A 15.D(二)16.±36;17.(-31,-41);18.2k π<θ<2k π+4π或2k π+4π<θ<2k π+π(k ∈ Z);19. 252x +92y =1(三)20.解 两圆方程化为:c 1:(x+2)2+(y-2)2=13 C2∶(x-4)2+(y+2)2=13 ,C 1、c 2圆心分别为(-2,2)、(4,-2),半径都是13,圆心距d=2)?(24)?-(-2++=213,即圆心距等于两圆半径之和,故两 圆外切,因连心线斜率为k 1=4-2-22+=-32,解方 程组 x 2+y 2+4x-4y-5=0 x 2+y 2-8x+4y+7=0得切点坐标为(1 ,0),∴公切线方程为y=23(x-1),即3x-2y-3=0,(两圆相外切时,两圆方程相 减得根轴方程,即过切的公切线方程).(2)与两圆相切于点(1,0)的圆圆心必在直线y=-23(x-1)上,且(x-1)2+y 2=(x-2)2+(y-3)2,解上面两方程组成的方程组得圆心坐标为(-4,310),r 2=9325,∴所求圆方程为(x-4)2+(y-310)2=9325,即3x 2+3y 2+24x-20y-2 7=0.21.(1)(2c)2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cosa=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|(1+cosa)∴|PF 1|·|PF 2|=22cos 2c?-4(a?2α⋅,S=21|PF 1||PF 2|sina=b 2tg 2α,(2)(2c)2=(|PF 1|-|PF 2|)2+2|PF 1||PF 2|(1-cos α),|PF 1|·|PF 2|=2sin 22a?-4(c?2⋅⋅,S=b2ctg 2α. 22.双曲线焦距是2b?a?+设抛物线方程为y2=4x 2b a?+;(1.5,6)在其上,∴b?a?+=1故抛物线方程为y 2=4x,又a?5.1-b?6=1,a 2+b 2=1,∴双曲线方程是4x 2-34y?=1; 23.a=5,b=21,c=2,e=32,设若有点P ,使|PF 1|2=d ·|PF 2|, 即21PF PF =2PF d =e 1=25 |PF 1|+|PF 2|=10,25|PF 1|+|PF 2|=10;|PF 2|=720;|PF 1|=25 |PF 2|=750 ;|PF 1|-|PF 2|=730>2c ,∴P 不存在; 24.k <-1或k >4实轴在y 轴上的双曲线;-1<k <2,实轴在x 轴上的双曲线2<k <4,k=3时, 圆k ≠3,即k ∈(2,3)∪(3,4)是长轴为y 轴的椭圆.y=3x25.(1) ⇒ P(1,3 ),2x?+6y?=1 由k PA +k PB =0 L PA ∶y-3=k(x-1) L PB :y-3 =-k(x-1)可求得x A =3k 3-k 32-k?2+ x B =k 2+23 k-3 k AB =3(定值),y B =3336k -k?3-2++k y B=3336k k?3-2+++k(2)|AB | =34162b -,P 到AB 的距离d=2b ,S △PAB =21|AB |·d =21[]36-6)-(b 3122-≤3,S △PAB 最大值是3.。
2020年全国高考数学第46讲圆锥曲线综合考纲解读1.掌握与圆锥曲线有关的最值、定值和参数范围问题.2.会处理动曲线(含直线)过定点的问题.3.会证明与曲线上的动点有关的定值问题.4.会按条件建立目标函数,研究变量的最值及取值范围问题,注意运用数形结合法和几何法求某些量的最值.命题趋势研究从内容上看,高考主要考查两大类问题:一是根据条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质,其热点有:①以客观题的形式考查圆锥曲线的基本概念和性质;②求平面曲线的方程和轨迹;③圆锥曲线的有关元素计算、关系证明或范围确定;④涉及圆锥曲线对称变换、最值或位置关系的有关问题.从形式上看,以解答题为主,难度较大.从能力要求上看,要求学生具备一定的数形结合、分析问题和解决问题及运算能力.知识点精讲一、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下:(1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数.(3)定值----化简得到的函数解析式,消去变量得到定值.求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关;(2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值.二、求最值问题常用的两种方法(1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决,这是几何法.(2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值.求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等,这就是代数法.三、求定值、最值等圆锥曲线综合问题的“三重视”(1)重视定义在解题中的作用(把定义作为解题的着眼点).(2)重视曲线的几何特征特别是平面几何性质与方程的代数特征在解题中的作用.(3)重视根与系数的关系在解题中的作用(涉及弦长、中点要用根与系数的关系).四、求参数的取值范围据已知条件及题目要求等量或不等量关系,再求参数的范围.题型归纳及思路提示题型150 平面向量在解析几何中的应用思路提示解决平面向量在解析几何中的应用要把几何特征转化为向量关系,并把向量用坐标表示.常见的应用有如下两个方面.(1)用向量的数量积解决有关角的问题.直角⇔0a b =r r g ,钝角⇔0a b <r r g (且,a b r r 不反向), 锐角⇔0a b >r r g (且,a b r r不同向).(2)利用向量的坐标表示解决共线问题.一、利用向量的数量积解决有关夹角(锐角、直角、钝角)的问题 其步骤是:先写出向量坐标式,再用向量数量积的坐标公式121222221122cos ,a b x yx y<>=++r r例10.44 过抛物线22(0)x py p =>的焦点F 作直线交抛物线于A ,B 两点,O 为坐标原点.求证:△ABO 的是钝角三角形.变式1 如图10-34所示,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形. (1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.变式2 设A ,B 分别为椭圆22143x y +=的左右顶点,P 为直线4x =上不同于(4,0)的任意一点,若直线AP ,BP 分别与椭圆交于异于A ,B 的点M ,N ,证明:点B 在以MN 为直径的圆内.变式3已知1m >,直线2:02m l x my --=,椭圆222:1x C y m+=,F 1,F 2分别为椭圆C 的左右焦点. (1)当直线l 过右焦点F 2时,求直线l 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,△AF 1F 2和△BF 1F 2和的重心分别是G ,H ;若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.例10.45 在直角坐标系xOy 中,点P 到两点(0,3)-,(0,3)的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点.(1)写出C 的方程; (2)若OA u u u r ⊥OB uuu r,求k 的值.变式1如图10-35所示,椭圆2222:1(0)x y C a b a b+=>>的顶点为A 1,A 2,B 1,B 2,焦点为F 1,F 2,117A B =,112211222B A B A B F B F S S =Y Y .(1)求椭圆C 的方程; (2)设n 为过原点的直线,l 是与n 垂直相交于P 点,与椭圆相交于A ,B 两点的直线,1OP =u u u r,是否存在上述直线l 使0OA OB =u u u r u u u rg成立?若存在求出直线l 的方程;若不存在,请说明理由.变式2如图10-36所示,椭圆2222:1(0)x y C a b a b+=>>的一个焦点是(1,0)F ,O 为坐标原点,设过点F 的直线l交椭圆于A ,B 两点.若直线l 绕点F 任意转动,恒有222OA OB AB +<,求a 的取值范围.二、利用向量的坐标表示解决共线问题向量,a b r r共线的条件是a b λ=r r 或1221x y x y =.例10.46在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P ,Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP uuu r +OQ uuu r 与AB u u u r共线?若存在,求k 的值;若不存在,请说明理由.变式1设椭圆22221(0)x y a b a b+=>>的左右焦点分别为F 1,F 2,离心率22e =,直线2:a l x c =,如图10-37所示,M ,N 是l 上的两个动点,120F M F N =u u u u r u u u u rg. (1)若1225F M F N ==u u u u r u u u u r,求,a b 的值;(2)证明:当MN u u u u r 取最小值时,12F M F N +u u u u r u u u u r 与12F F u u u u r共线.例10.47设A ,B 是椭圆2212x y +=上的两点,并且点(2,0)N -满足NA NB λ=u u u r u u u r ,当11[,]53λ∈时,求直线AB 斜率的取值范围.变式1已知F 1,F 2分别为椭圆22132x y +=的左右焦点,直线1l 过点F 1且垂直于椭圆的长轴,动直线2l 垂直于直线1l ,垂足为D ,线段DF 2的垂直平分线交2l 于点M . (1)求动点M 的轨迹C 的方程;(2)过点F 1作直线交曲线C 于两个不同的点P 和Q ,设11F P FQ λ=u u u r u u u r ,若[2,3]λ∈,求22F P F Q u u u u r u u u u rg的取值范围.变式2过点(1,0)F 的直线交抛物线24y x =于A ,B 两点,交直线:1l x =-于点M ,已知1MA AF λ=u u u r u u u r ,2MB BF λ=u u u r u u u r,求12λλ+的值.题型151 定点问题思路提示(1)直线过定点,由对称性知定点一般在坐标轴上,如直线y kx b =+,若b 为常量,则直线恒过(0,)b 点;若bk为常量,则直线恒过(,0)b k -.(2)一般曲线过定点,把曲线方程变为12(,)(,)0f x y f x y λ+=(λ为参数),解方程组12(,)0(,)0f x y f x y =⎧⎨=⎩即得定点.模型一:三大圆锥曲线(椭圆、双曲线、抛物线)中的顶点直角三角形的斜边所在的直线过定点.例10.48 已知椭圆22143x y +=,直线:l y kx m =+与椭圆交于A ,B 两点(A ,B 不是原点),且以AB 为直径的圆过椭圆的右顶点.求证:直线l 过定点,并求出该定点的坐标.变式1已知椭圆2214x y +=的左顶点为A ,不过点A 的直线:l y kx b =+与椭圆交于不同的两点P ,Q ,当0AP AQ =u u u r u u u rg ,求k 与b 的关系,并证明直线l 过定点.变式2 已知焦点在x 轴上的椭圆C 过点(0,1)Q 为椭圆C 的左顶点. (1)求椭圆C 的标准方程;(2)已知过点6(,0)5-的直线l 与椭圆C 交与A ,B 两点.(Ⅰ)若直线l 垂直于x 轴,求∠AQB 的大小;(Ⅱ)若直线l 与x 轴不垂直,是否存在直线l 使得△QAB 为等腰三角形?如果存在,求出直线l 的方程;如果不存在,请说明理由.例10.49已知抛物线22(0)y px p =>上异于顶点的两动点A ,B 满足以AB 为直径的圆过顶点. 求证:AB 所在的直线过定点,并求出该定点的坐标.变式1 如图10-39所示,已知定点00(,)P x y 在抛物线22y px = (0)p >上,过点P 作两直线12,l l 分别交抛物线于A,B ,且以AB 为直径的圆过点P ,证明:直线AB 过定点,并求出此定点的坐标.图10-39变式2 已知抛物线24y x =,过点(1,2)M 作两直线12,l l 分别与抛物线交于,A B 两点,且12,l l 的斜率12,k k 满足122k k =.求证:直线AB 过定点,并求出此定点的坐标.模型二:三大圆锥曲线(椭圆,双曲线,抛物线)中,若过焦点的弦为AB ,则焦点所在坐标轴上存在唯一定点N ,使得NA NB ⋅u u u r u u u r为定值.例10.50 已知椭圆2222:1(0)x y C ab a b+=>>的右焦点为(1,0)F ,且点(1,2-在椭圆C 上. (1)求椭圆C 的标准方程;(2)已知动直线l 过点F ,且与椭圆C 交于,A B 两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-u u u r u u u r 恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.变式1 已知双曲线222x y -=的左、右焦点分别为12,F F ,过点2F 的动直线与双曲线相交于,A B 两点.在x 轴上是否存在定点C ,使得CA CB ⋅u u u r u u u r为常数?若存在,求出点C 的坐标;若不存在,请说明理由。
一、2020年高考虽然推迟,但是一定要坚持多练习,加油!二、高考分析1、分值、题型、难度设置圆锥曲线是高中数学的重要内容之一,分值约占14﹪,即20分左右,题型一般为二小一大,例如,2005年高考为一道选择题,一道填空题一道解答题。
小题基础灵活,解答题一般在中等以上,一般具有较高的区分度。
考试内容:椭圆、双曲线、抛物线的定义,标准方程,简单的几何性质,椭圆的参数方程。
主要题型:(1)定义及简单几何性质的灵活运用;(2)求曲线方程(含指定圆锥曲线方程及轨迹方程);(3)直线与圆锥曲线的位置关系问题(交点、弦长、中点弦及斜率、对称问题),确定参数的取值范围;(4)在导数、不等式、函数、向量等知识网络交汇点上的问题。
2、命题方向解析几何内容多,范围广,综合度高,其特点是:数形结合,形象思维,规律性强,运算量大,综合性好。
主要考察运算能力,逻辑思维能力,以及分析问题和解决问题的综合能力。
涉及函数、方程、不等式、三角、向量和导数等方面的内容,以及数形结合、分类讨论、等价转化等数学思想方法。
要注意一些立意新,角度好,有创意的题目,特别要关注在向量和解析几何交汇点上的命题趋势,两者通过坐标自然融合,既考查基础知识、基本方法,又平淡之中见功夫,强化区分功能,突出对能力的考查,从不同的思维层次上考察能力,有较好的思维价值。
三、 专题复习2.1考查直线和圆锥曲线方程等有关基础知识和基本方法,要特别重视圆锥曲线定义的灵活应用,反映思维品质。
例1.1)如图,在正方体ABCD D C B A -111的侧面1AB 内有动点P 到直线AB 与直线11C B 距离相等,则动点P 所在的曲线的形状为:( )111A B 1(A)(B)1AB 1A 1B(C)BA B 1(D)分析:本题主要考查抛物线定义,线面垂直关系及点到直线的距离等概念,情景新,角度好,有创意,考查基础知识和基本方法。
∵11C B ⊥面1AB ,1PB ∴即为点P 到直线11C B 的距离,故动点P 的轨迹应为过B B 1中点的抛物线,又点1A 显然在此抛物线上,故选C 。
2)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( )A .324+B .13-C .213+ D .13+2.2 求曲线的方程,考查坐标法的思想和方法,从不同思维层次上反映数学能力。
例2 双曲线032=±y C 以为渐近线且过点)2,3(A 。
(1) 求双曲线C 的方程;(2) 已知动点P 与曲线C 的两个焦点所连线段长的和为定长,且这两条线段夹角的余弦最小值为91-,求动点P 的轨迹方程; (3) 在x 轴正半轴上是否存在一点Q ,使得Q 与P 的轨迹方程上的点的最短距离为1?若存在,求出Q 点坐标;若不存在,说明理由。
分析:本题主要考查双曲线、椭圆的方程,基本不等式及二次函数的最值,利用待定系数法可求出指定圆锥曲线的方程。
本题把最值问题联系起来,体现了知识的整体性和系统性,既考查基础知识和基本方法,又渗透数学思想,突出对能力的考查,从不同的思维层次上反映能力。
(Ⅰ)设双曲线方程为612182332),0(322222=-=⨯-⨯=≠=-k k k y x 则,故.123:22=-y x C(Ⅱ)由题意,P 点轨迹以21,F F 为焦点的椭圆,设方程为:12222=+by a x ,则522=-b a ①记,1m PF =n PF =2,则a n m 2=+,由,121222424cos 222222221-≥-=-=-+=∠ab mn b mn mn b mnc n m PF F 知当n m =即P 为椭圆短轴端点时,21cos PF F ∠有最小值,并且911222-=-a b ②,由①,②可得2,3==b a ,故动点P 的轨迹方程为:14922=+y x 。
(Ⅲ)设),(),0)(0,(y x P a a Q >是以上轨迹上任一点,则14922=+y x ,4295)91(4)()(2222222++-=-+-=+-=∴a ax x x a x y a x PQ ,又][3,3-∈x ,对称轴059>=ax 。
(1)若3590≤<a 即350≤<a ,则当a x 59=时,,154422min =-=a PQ 35215>=∴a ,不合。
(2)若359>a ,即35>a ,则当3=x 时,,1)3(22min =-=a PQ 2=∴a 或4=a 。
故存在点)0,2(Q 或)0,4(Q 满足条件。
2.3 有关直线和圆锥曲线的位置关系问题,主要涉及求参数的值或范围,既考基础,又考能力,突出区分功能,体现思维价值。
例3 过椭圆C :)0(12222>>=+b a b y a x 上动点P 作⊙O :222b y x =+的两条切线PB PA ,,切点为B A , ,若直线AB 与x 轴、y 轴分别交于N M ,两点;(1)求证:2222ONa OMb +为定值; (2)若椭圆C 上存在点'P ,使得由'P 向⊙O 所引两条切线互相垂直,求离心率的取值范围。
分析:本题主要考查直线与圆的方程,以及离心率的概念,立意新,思维活,在考查基础知识的同时突出对理性思维能力的考查。
(1) 设)0(1),,(0022022000≠=+y x by a x y x P 则易知P B A O ,,,四点共圆,并且此圆的方程为00)()(002200=--+=-+-y y x x y x y y y x x x 即,由于AB 为上述圆与已知圆0,200222==+∴=+y b y y x x AB b y x 令的方程为的公共弦,得2x b OM =,令=x 得2y b ON =,故2222022042022202222)1(ba a xb x b y a b x ONa OMb =-=+=+(定值)。
注意 :本小题切点弦AB 的直线方程也可用“设而不求”的方法得出。
(2)由题意,四边形AB OP '为正方形,b OA OP 22'==∴,从而存在点'P 的条件为:以O 为圆心、2为半径的圆与椭圆相交,b a 2≥∴,故⎪⎪⎭⎫⎢⎣⎡∈-==1,22)(12a ba c e 。
例4 已知顶点在原点,焦点在Y 轴上的抛物线C 截直线12-=x y 所得的弦长为102。
(1) 求抛物线C 的方程; (2)过点)41,0(-M ,且斜率)22,22(-∈k 的直线与抛物线C 相交与A 、B 两点,求M 分AB 所成比λ的范围。
分析 本题涉及直线与抛物线的位置关系问题,主要考查一元二次方程与系数关系,两点间距离公式及点M 分AB 所成的比等基础知识和基本方法,考查综合分析和解决问题的能力,具有较好的思维价值。
(1)设ay x C =2:,直线与抛物线C 交于),(),(2211y x Q y x P ,由⎩⎨⎧-==,12,2x y ay x得)12(2-=x a x ,即,.,2,0221212a x x a x x a ax x ==+∴=+- 而2212212)()(y y x x PQ -+-=221)(5x x -=,,40]4)[(521221=-+∴x x x x 即,8442=-a a 解得1-=a 或2=a ,故y x y x C 2:22=-=或。
(2)直线,41:-=kx y AB 把它代入y x 22=得,02122=+-kx x ∵),22,22(-∈k ,0242<-=∆∴k 不合。
把41-=kx y 代入04122=-+-=kx x y x 得,设),(11y x A , ),(22y x B ,则⎪⎪⎩⎪⎪⎨⎧-=-=+>+=∆.41,,0121212x x k x x k (*) 由定比分点公式:0=λλ++121x x ,,21x x λ-=∴代入(*)的⎪⎩⎪⎨⎧-=--=-41)1(222x kx λλ,显然,4)1(,022k =-∴>λλλ又21,22222<∴<<-k k ,于是,22)1(<-λλ即,0142<+-λλ故.3232+<<-λ2.4 重视在导数、向量、函数、不等式等知识交汇点上的命题趋势,既考查相关的知识,又体现知识间的联系和应用,突出对知识的迁移和应用能力的考查。
例5 已知椭圆的中心在原点,离心率为12 ,一个焦点是F (-m,0)(m是大于0的常数). (Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M.若=,求直线l 的斜率.分析:本小题主要考查直线、椭圆和向量等基本知识,以及推理能力和运算能力.(I )设所求椭圆方程是).0(12222>>=+b a by a x由已知,得 ,21,==a c m c 所以m b m a 3,2==. 故所求的椭圆方程是1342222=+my m x(II )设Q (Q Q y x ,),直线),0(),(:km M m x k y l 则点+=当),,0(),0,(,2km M m F QF MQ -=由于时由定比分点坐标公式,得,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m kmm Q km km y m m x Q Q 解得所以在椭圆上又点km kmy m m x QF MQ Q Q -=-=-=--⨯-+=-=21,221)()2(0,2时当.于是.0,134422222==+k mm k m m 解得 故直线l 的斜率是0,62±. 例6 设,)(,02c bx ax x f a ++=>曲线)(x f y =在点))(,(00x f x P 处切线的倾斜角的取值范围为]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围是( )(A)]1,0[a (B ]21,0[a) (C ]21,0[a ) (D) ]21,0[a b - 分析: 本题主要考查导数的求法,倾斜角和斜率的概念,点到直线的距离等知识。
∵ ∴+=,2)('b ax x f 过P 点的切线斜率,20b ax k +=由题意:,10≤≤k 即,1200≤+≤b ax 又.2120,00aa b x a ≤+≤∴>∵c bx ax x f ++=2)(的对称轴为,2a b x -=P ∴到该对称轴的距离为a b x d 20+=]21,0[a∈,故应选B.例7 已知常数0>a ,向量)0,1(),,0(==i a c ,经过原点O 以i c λ2-为方向向量的直线相交于点P ,其中R ∈λ。