LTE杂散干扰验证报告
- 格式:pptx
- 大小:1.61 MB
- 文档页数:7
LTE 干扰日常分析介绍1、概述:对于移动通信网络,保证业务质量的前提是使用干净的频谱,即该频段没有被其他系统使用或干扰。
否如此,会使受干扰系统的性能以与终端用户感受都会产生较大的负面影响。
随着4G LTE 基站的逐步建设、优化,已形成了2/3/4G 基站共存的局面,系统间干扰的概率也大幅提升,在目前已建设的基站中,已发现大量的TD-LTE 基站受到干扰。
这些干扰主要包括两方面:①系统外干扰表现为:2/3G 以与FDD-LTE 小区对TDD-LTE 小区的阻塞、互调和杂散干扰,此外还有其他无线电设备,如手机信号屏蔽器带来的外部同频干扰;②系统内干扰表现为:GPS 跑偏、远端干扰、用户间同频干扰、时隙偏移干扰的一样频段信号干扰。
具体干扰可以分为如下类型:干扰表现为:特殊子帧与上行子帧PRB 的IOT 波动在干扰特点:相同频段小区区域性存在干扰,子帧1&6与2&7全频段存在干扰,干扰小区的IOT按照移动最新提出的干扰要求,TD-LTE 上行100个PRB 检测到的干扰噪声平均值超过-113dBm 即达到存在干扰,需要处理。
2、干扰判断规如此:系统外干扰判断:由于特殊子帧1前四个PRB 与子帧6后四个PRB 为空闲PRB ,正常情况下IOT指标为-117dbm〔我司的IOT提升3dbm〕,即无干扰时为-120dbm。
当子帧1的前4个PRB或子帧6的后4个PRB的IOT至少同时满足3个以与3个以上都大于-113dBm时,判断存在系统外部干扰。
2.1 系统外干扰系统外干扰主要有如下几类为:阻塞、杂散、互调、工程问题以与其他无线电设备的干扰〔如手机信号屏蔽器带来的外部同频干扰〕2.1.1 阻塞干扰判断子帧1和子帧6全部200个PRB中,至少150个PRB的IOT大于-113 dBm;且子帧1的前4个PRB且子帧6的后4个PRB的IOT至少同时满足3个以与3个以上都大于-113dBm。
符合这种条件的时段不小于3个。
LTE 干扰现状、缘由分析及解决方案介绍干扰原理及分类依据干扰产生的起因可以将干扰分为系统内干扰和系统间干扰。
l 系统内干扰:系统内干扰通常为同频干扰。
TD-LTE 系统中,虽然同一个小区内的不同用户不能使用一样频率资源 (多用户 MIMO 除外),但相邻小区可以使用一样的频率资源。
这些在同一系统内使用一样频率资源的设备间将会产生干扰,也称为系统内干扰。
l 系统间干扰:系统间干扰通常为异频干扰。
世上没有完善的无线电放射机和接收机。
科学理论说明抱负滤波器是不行实现的,也就是说无法将信号严格束缚在指定的工作频率内。
因此,放射机在指定信道放射的同时将泄漏局部功率到其他频率,接收机在指定信道接收时也会收到其他频率上的功率,也就产生了系统间干扰。
主要的干扰具体分类如以以下图所示:系统内干扰原理lGPS 失锁干扰:GPS 失锁、星卡故障、GPS 天线故障等缘由导致时钟不同步的A 基站放射信号干扰到了B 基站的上行接收。
l 超远同频干扰:远距离的站点信号经过传播,DwPTS 与被干扰站的UpPTS 对齐,导致干扰站的基站发对被干扰站的基站收的干扰. l 帧失步干扰:帧偏置配置不当、子帧配比不全都等缘由会导致基站间的上下行帧对不齐,导致SiteA 的下行干扰到了SiteB 的上行,形成帧失步干扰。
l 重叠掩盖干扰:A小区和B 小区存在重叠区域(同频邻区必定会存在确定的切换区域),由于两个小区之间的信号不是全都的,不正交,会形成干扰。
l 硬件故障干扰:设备故障是指在设备运行中,设备本身性能下降等造成干扰包括:RRU 故障,RRU 接收链路电路工作特别,产生干扰;天馈系统故障,包括天线通道故障,天线通道RSSI 接收特别等,天馈避雷器老化,质量问题,产生互调信号落入工作带宽内。
系统间干扰原理l 杂散干扰:由于放射机中产生辐射信号重量落入受害系统接收频段内,导致受害接收机的底噪抬升,造成灵敏度损失,称之为杂散干扰。
l 互调/谐波干扰:不同频率的放射信号形成互调/谐波产物。
F频段LTE干扰排查闫博2014年4月27日目录一、概述 (2)二、F频段与其他系统干扰分析 (3)三、F频段TD-LTE干扰排查 (3)四、相关案例 (6)案例一、东风路建行阻塞干扰扫频分析 (6)案例二、GSM二次谐波干扰 (11)案例三:PGC功能验证 (14)一、概述在我国,目前F频段主要用于TD-SCDMA和TD-LTE。
由于频率所处的位置特殊,F频段系统存在于GSM900、GSM1800、PHS等系统间的互干扰,情况较为复杂,如图:二、F频段与其他系统干扰分析系统间干扰可以分为邻频干扰、杂散干扰、阻塞干扰和互调干扰等。
邻频干扰:不同系统工作在相邻频率,由于发射机的邻频信道泄露和接收机邻频信道选择性的性能限制,将会导致邻频信道干扰,因此要求不同系统工作在不同的频率内,且有足够的频率保护带宽;杂散干扰:干扰系统发射机中的功放、滤波器等非线性器件会在其工作带宽以外很宽的的范围内产生辐射的信号,当这些发射机产生的干扰信号落在被干扰接收机的系统带宽内,将会抬高接收机底噪,降低接收机的灵敏度;互调干扰:由于发射机的非线性特点,当多个不同频率的干扰信号通过非线性电路时,将会产生和有用信号相同或者相近的频率组合,形成干扰;阻塞干扰:当强度很大的干扰信号与有用信号同时注入接收机,强干扰信号会使接收机链路的非线性器件饱和,导致失真,严重时将使系统不能正常工作。
目前对F 频段LTE影响阻塞干扰,主要来源于PHS和GSM1800干扰;PHS占用F频段中的1900~1914MHZ,但是实际的带外杂散非常高,并且PHS信号位于F频段接收机带内,无法利用射频滤波器进行抑制,因此对于1880~1900MHZ的TD-LTE带来严重的杂散和阻塞干扰,严重时导致F频段TD-LTE无法起呼和GSM1800对F频段干扰影响最大。
按照要求中国移动和中国联通的GSM下行频率为1805~1850MHZ,由于基站前段滤波器多为1805~1880MHZ共75MHZ,当两系统基站距离较近时,会对TD-LTE基站上行链路造成杂散干扰、阻塞干扰和互调干扰,特别是使用了1865MHZ以上的频率,影响尤为严重;三、F频段TD-LTE干扰排查由于F频段较为复杂,同一基站可能受到多个系统干扰,一般从两个方面进行排查:一方面需要在全网内快速排查潜在的受干扰基站;另一方面需要准确的定位干扰类型以便采取相应方法规避;全网快速排查步骤一:后台上行干扰检测,判定受干扰站点。
TD-L TE干扰及分析处理TD-LTE干扰及分析处理 (1)一、概述 (2)二、干扰的基本原理 (3)1、杂散干扰 (3)2、阻塞干扰 (3)3、交调干扰 (4)4、三阶交调干扰 (4)三、干扰影响程度 (4)四、干扰分析及处理 (4)阻塞干扰 (5)互调干扰 (6)杂散干扰 (8)外部干扰 (11)网内干扰 (13)混合干扰分析和整治 (15)五、小结 (16)一、概述对于移动通信网络,保证业务质量的前提是使用干净的频谱,即该频段没有被其他系统使用或干扰。
否则,会使受干扰系统的性能以及终端用户感受都会产生较大的负面影响。
随着4G LTE基站的逐步建设,目前已形成了2/3/4G基站共存的局面,系统间干扰的概率也大幅提升,在目前已建设的基站总,已发现大量的TD-LTE基站受到干扰。
这些干扰主要包括2/3G小区对TD-LTE小区的阻塞、互调和杂散干扰,此外还有其他无线电设备,如手机信号屏蔽器带来的外部同频干扰,具体如下表:TD-LTE各频段上行容易受到的干扰从上表可以看出,由于F频段与干扰源系统的频率比较接近,因此F频段受到的干扰最多。
二、干扰的基本原理1、杂散干扰由于发射机中的功放、混频器和滤波器等器件的非线性,会在工作频带以外很宽的范围内产生辐射信号分量, 若落在被干扰系统接收机的工作频带内时,会抬高了接收机的底噪,从而减低了接收灵敏度。
2、阻塞干扰当输入信号为小信号,输出与输入成线性关系,当有用信号和强干扰一起加入接收机,系统工作在饱和区,输入输出不再是线性关系。
阻塞干扰是指当强的干扰信号与有用信号同时加入接收机时,强干扰会使接收机链路的非线性器件饱和,产生非线性失真。
3、交调干扰当多个系统共存时,这些系统的不同频点之间可能会产生互调产物;天馈系统需要用到很多器件,包括天线、合路器、功分器、滤波器等,这些器件都是不理想的,当不同频点的信号经过这些器件时,就会发生互调,产生很多干扰信号,其中比较强的是三阶,五阶产物;当接收机收到过强的异系统信号时,也会互调产生较强的干扰信号。
一、问题发现:1.测试人员11:05:52.486在御安路进行测试时,主叫占用涪城御营一队-ZLH2小区(图中站名是解析错误)出现长段连续MOS差;被叫MOS正常。
因此,重点从主叫UE入手,此时,主叫UE 信号-74dBm,SIN30,均正常。
但Volte 丢包率较高,排除系统侧RLC确认模式和PDCP相关参数外,需再次确认无线环境因素。
2.鼎利软件出的MOS图层上,显示的MOS值存在延时。
即在T时刻输出的MOS值,其实际产生的时段是(T-8)~T,但在图层上显示的时段为T~(T+8)。
回看数据,重点从11:05:44到11:05:52的数据开始分析。
如下图所示,从11:05:47开始,主叫UE连续在该小区做了4次RRC Connection Reestablishment,请求重建原因为reestablishmentCause = otherFailure。
但此时该小区rsrp 和sinr都较好,排除无线下行问题。
3.怀疑涪城御营一队-ZLH2小区基站故障或者上行干扰。
通过查看统计,站点无基站故障。
4. 从统计指标看,该小区平均干扰,重建次数和比例,接通率,切换成功率等指标都存在异常,确定基站存在干扰。
二、上站排查干扰情况1、上站勘查、记录天线共站的情况现场勘查发现,涪城御营一队-ZLH-ZLH 基站位御旗路附近一家宾馆7楼楼顶,与电信FDD 、联通FDD 、1800、联通900、移动GSM900、1800共站址、与移动TDS 共模,因此联通1800/联通FDD/联通900基站/电信FDD 、移动900的干扰。
下一步需重点排查是否是共站址的联通或者电信FDD 、1800产生的杂散干扰。
2、记录与附近的电信FDD 的天线隔离度情况移动LTE 天线在18米三角铁塔,LTE 基站位于最底层9米处,GSM900天线在最顶层,1800基站位于中间层,而联通FDD 和1800基站与移动基站共站,电信FDD 天线位于2米处。
TD-LTE干扰排查总结1.概述通过干扰排查宏工具筛选出来的阻塞干扰小区数量以及区域,先判断为大片区域干扰还是零散站点干扰。
所谓大片区域干扰就是全网突然出现大片区域阻塞干扰小区区域干扰特点:干扰时段、强度以及波形图几乎一致,存在一定的规律以及区域性(区域干扰主要有远端干扰、GPS跑偏干扰、时隙不一致干扰);所谓零散站点干扰就是阻塞干扰基站不存在区域性零散站点干扰特点:干扰站点少、干扰不存在一定的规律以及区域性,个别干扰小区有可能存在一定的相似的波形图。
(零散站点干扰主要有:外部干扰、干扰器、工程问题、部分通道故障、设备问题)2.阻塞干扰判断方法区域阻塞干扰主要有远端干扰、GPS跑偏干扰、时隙偏移干扰,零散阻塞干扰主要有:外部干扰、干扰器、工程问题、部分通道故障、设备问题2.1 区域阻塞干扰判断方法如下:2.1.1 远端干扰A.远端干扰的背景TDD无线通信系统中,在某种特定的气候、地形、环境条件下,远端基站下行时隙传输距离超过TDD系统上下行保护时隙(GP)的保护距离,干扰到了本地基站上行时隙。
这就是TDD系统特有的“远距离同频干扰”。
B.远端干扰的表现受干扰的小区存在一定的时段性、规律性但是受到气候、地形、环境条件下因素干扰强度有一定的差距(相比GPS跑偏基站间干扰强度大、影响范围广)C.分析远端处理的流程:A.先通过观察干扰小区时段与干扰图形发现存在一定的时间性、规律性如下图分析:全网阻塞干扰IOT指标时段主要集中在00:00-9:00时段,9点以后,干扰小区恢复到正常,干扰小区数与频域干扰图形变化趋势如下:B. 使用mapinfor 将干扰小区图层绘制出来,看看干扰分部是否存在一定区域性 标注:C. 通过以上方法可以怀疑为远端干扰 ,判断是否为远端干扰最快的方法,可以通过调整天线的下倾角以及方位角可以判断是否为远端干扰以及远-120-115-110-105-100-95-90-85-80-75-70-65-60191725334149576573818997105113121129137145153161169177185193201坐标轴标题子帧1/6干扰指标端的大致方向。
华为TDFI对LTE基站上行干扰排查报告一、干扰的影响及问题发现1、上行干扰的影响当NI大于-110dBm时,上行近点吞吐量小于8Mbps,上行性能中度下降;当NI大于-115dBm时,上行近点吞吐量小于9Mbps,上行性能轻度下降;当NI小于-115dBm,大于底噪时,上行近点吞吐量大于9Mbps,上行性能几乎无下降鉴于上行干扰对LTE网络性能的影响,省移动在温州进行LTE上行干扰整治试点,以摸索相关经验对后期维护提供借鉴。
2、问题发现1月25日在对下吕浦_70143_1,2,3 上行高干扰排查过程中发现,位于温迪路公交南浦农贸站(双屿至火车站方向)的移动4G转wifi热点设备(TDFI)上行干扰值异常偏高,干扰值达到-35左右。
设备安装及测试值见如下图所示:该干扰源与下吕浦基站大体位置如下图所示:(TDFI大体位于下吕浦基站西南70米左右)二、问题分析1、设备基本情况由于设备安装位置较高,仓库找到同类型的设备取证,大体情况如下:设备名称:TD无线特种接入设备(简称TDFI)生产厂家:华为设备类型:model TDFi700_LWIFI输出:n/b/g2、关闭wifi功能测试1月26日通过移动的平台远程关闭此设备的wifi输出功能,网管后台对lte 下吕浦_70143的3个小区进行prb轮询无变化。
3、不同站点设备测试1月26日对不同站点的此类设备进行lte上行扫频测试,发现部分站点上行干扰值存在异常偏高,具体见如下表格所示:4、现场断站测试2月11日现场对部分站点进行断站验证,关闭的站点有划龙桥西2个、南浦二区1个(往火车站),南浦农贸1个(往火车站),同时后台对周边的相关小区下吕浦_70143_1效果示例如下:各小区对比分析具体如下附件:CPE关闭开启对比验证20140211.xlsx闭站4个TDFI(红心)位置情况如下:5、初步结论此型号的lte转wifi设备,部分站点设备存在上行干扰过强导致干扰LTE基站的情况,经初步验证能对周边约250m 范围内的基站造成一定的上行干扰影响。
浙江省LTE干扰排查专项阶段性总结报告目前项目开展的地市分有宁波、湖州、台州、温州,分别对后台统计与ISCP轮询有干扰的小区数据进行预分析后,制定相应的计划开展现场扫频、干扰定位工作。
宁波(鄞州&镇海):后台统计出有干扰小区数324个,已完成排查244个,上站排查占比75%。
其中后台NPI≥-109dBm,有190个小区,ISCP统计≥-109dBm有134个小区;NPI ≥-105dBm,有71个小区,已上站排查有69个,2个小区未排查(原因是无法上站),32个小区扫到有干扰。
温州:后台统计出有干扰小区数有525个,已完成139个,上站排查占比36%,后台降功率验证小区有235个,确认186个小区有杂散或互调干扰。
以上是截止至3月13号我们在温州的上站排查数,不代表温州实际排查数。
未清除干扰小区主要是由于温州的主要干扰是由于TDFI造成的干扰,已交给华为专家处理。
湖州:后台统计出有干扰小区65个,已完成排查65个,上站排查占比100%。
台州:后台统计有干扰小区212个,已完成排查77个,上站排查占比36.32%。
说明:由于宁波LTE系统采用诺西设备,后台无法通过话统直接输出小区干扰情况,只能对全网小区进行Trace Npi的方法进行来分析小区是否有干扰,到目前为主,宁波鄞州与镇海共追踪了779个小区。
项目初期由于设备未到位、诺西后台不能直接输出小区干扰情况、部分小区无法进入排查等原因导致排查进度较慢。
宁波:后台统计出有干扰小区324个,后台无法统计PRB干扰情况,因此未能进行干扰类型预分析,按≥-109dBm排查情况:外场扫频确认有干扰小区96个,已解决小区44个,已制定整改方案小区52个,解决率67.69%,工作成果:干扰小区占比由15.86%降至13.71%。
按≥-105dBm排查情况:有71个小区,已上站排查有69个,2个小区未排查(原因是无法上站),32个小区扫到有干扰,其中:22个小区已解决,4个有二次谐波干扰,6个小区干扰。
转发:LTE常见干扰排查(中国移动)日期:2017-01-12 11:04 浏览:149 评论:0在任何通信系统中,都存在环境背景噪声,我们一般称之为高斯白噪声。
高斯白噪声的功率谱密度可用下面的公式来表达:kT,其中k=1.38×10-23J/0K为波尔兹曼常数,T为绝对温度,绝对温度=摄氏温度+273。
转换为对数形式,即10log(kT)。
在常温下,T=2900K,此时的白噪声功率谱密度=-174dBm/Hz。
我们通常所指的通信系统的底噪就是指的一定带宽内的高斯白噪声的总功率。
比如:假设系统使用带宽为20MHz,那么,20MHz内系统底噪为:-174dBm/Hz+10log20000000Hz=-101dBm/20MHz对于LTE TDD系统单个子载波(15KHz)而言,其底噪为:-174dBm/Hz+10log15000Hz=-132.2dBm/子载波对于单个RB而言,由12个15KHz的子载波构成(共180KHz),那么,单个RB 的底噪为:-174dBm/Hz+10log180000Hz=-121.4dBm/RB而对于一般的接收机来说,还要在上述功率值的基础上加上噪声系数NF。
一般基站的噪声系数是3~4dB。
LTE1.1LTE常见干扰按照干扰门限可划分为4个等级,平常我们主要排查底噪>-110dBmF频段常见干扰:➢DCS1800杂散干扰;➢DSC1800阻塞干扰;➢DCS1800互调干扰;➢GSM900谐波干扰;➢其他干扰(PHS、电信FDD-LTE等);D频段常见干扰:➢广电MMDS;➢CDMA800三次谐波;➢公安机关监控的电源控制箱;1.2干扰波形特征1.2.1DCS1800杂散干扰波形特征杂散干扰波形特征:前40个RB底噪偏高,底噪随RB数逐渐增大而降低。
举例1:cell1\cell2存在杂散干扰举例2:cell2小区存在杂散干扰1.2.2DCS1800阻塞干扰波形特征DCS1800阻塞干扰波形特征:20M带宽内100个RB噪声整体偏高。
LTE基站外部干扰排查1爱优酒店后台干扰情况8月份客户反应爱优酒店手机在室内无信号,无法正常通话;经后台核查,问题区域布有LTE室分系统:郊区爱优酒店-ZLW-1(PCI=23)。
后台提取爱优酒店-ZLW的上行干扰指标,发现干扰较严重,指标如下:后台干扰指标根据后台指标可以看出该站长期存在干扰,需要上站排查长期干扰原因.2爱优酒店-ZLW测试情况分析2.1前台测试2015年8月10日网优前台人员对该酒店进行测试,发现该室分RSRP值极不稳定,电平值不间断的由-60dBm左右骤降为-140dBm,且无法做业务. RSRP电平值图示:经与客户沟通,得知客户使用苹果4G手机,在占用郊区爱优酒店-ZLW-1(PCI=23)小区时,无法拨打电话以及接听电话。
后台将室分小区关闭后,客户通话不畅的问题得到解决。
2.2故障初定位2015年8月11日上午,联合室分厂家协助在现场进行故障初排。
爱优酒店拓扑图爱优酒店为1光口下挂2RRU,具体分布如上图所示。
为排查是否厂家设备存在问题,我司将RRU设备下的分布系统断开,在RRU下直连一个蘑菇头天线,经现场测试,RSRP正常,做业务及通话均未发现异常现象,RSRP图如下:经排查断定ZTE的RRU设备以上节点均无故障,室分信号底噪过高可能为室分厂家分布系统问题所造成,由室分厂家对分布系统进行后续故障排查。
2.3干扰排查8月31号室分厂家再次反映干扰源可能来自ZTE设备,与室分厂家约定9月1号再次上站排查。
我司再次将RRU设备下的分布系统断开,将5994_爱优酒店_1级联的RRU 关掉,只开启5994_爱优酒店_0的主RRU在下面直接上天线,让后台跟踪仍然有干扰存在,底噪波形图如下:第二步将5994_爱优酒店_0的主RRU关掉,将5994_爱优酒店_1级联的RUU 作为主设备放开,接上天线后台监控指标发现底噪在-110dB以下如下图,进一步确定干扰可能来自5994_爱优酒店_0的主RRU测。
2018年1月移动900M与电信800M FDD LTE杂散干扰分析颜军(江苏省邮电规划设计院有限责任公司,江苏南京210000)【摘要】与800M CDMA相比,800M FDD LTE的频宽变为5MHz或10MHz,800M FDD LTE与900M GSM之间的杂散干扰有所变化,两系统之间的隔离距离要求也会变化。
本文主要是分析移动900M GSM与电信800M FDD LTE的杂散干扰隔离度以及隔离距离要求。
【关键词】900M;800M;FDD;杂散干扰【中图分类号】TN929.5【文献标识码】A【文章编号】1006-4222(2018)01-0132-011频段分布电信800M下行频段是870~880MHz,移动900M上行频段是890~909MHz,两者频段间隔只有10MHz,由于发射滤波器的滚降特性(任何滤波器都不可能是理想的阶跃方式),电信800M的下行会对移动900M上行产生干扰。
2干扰类型不同通信系统之间的干扰主要有系统内部的干扰、系统间的干扰以及系统外的干扰。
不同频率系统间的干扰主要是由于发射机和接收机的非完美性造成的,系统间干扰类型主要有互调干扰、杂散干扰和阻塞干扰等。
(1)杂散干扰杂散干扰是一个系统的发射频段外的杂散发射落入到另一个系统接收频段内造成的干扰。
干扰基站在被干扰基站接收频段内产生杂散辐射,并且干扰基站的发送滤波器没有提供足够的带外衰减,会引起接收机噪声基底的增加而导致接收机灵敏度的降低。
(2)互调干扰互调干扰是指由于系统的非线性导致多载频合成产生的互调产物落到相邻系统的上行频段,使接收机信噪比下降的干扰情况。
当两个或多个干扰信号同时加到接收机时,由于非线性的作用,这两个干扰的组合频率有时会恰好接近有用信号频率而顺利通过接收机,其中三阶互调最严重。
(3)阻塞干扰任何接收机都有一定的接收动态范围,在接收功率超过接收机允许的最大功率时会导致接收机饱和、灵敏度恶化,从而降低接收机的增益。
干扰排查典型问题说明及补充的工作要求一、典型问题说明1.统计带宽问题:为了兼顾道路测试与TDS ISCP扫频两种工作场景,每个小区的上行干扰信号都做了统一的带宽要求,即“上行接收干扰功率(dBm/RB)”。
RB单位为180KHz:若是上站现场扫频得到的数据,RBW=200K,可以直接记录现场测试得到的最大信号电平和平均电平。
若是TDS ISCP扫频得到的数据,应该在原始基础上减去10*{log10(1600)-log10(180)}=9dB。
2.表(1)与表(2)混淆规划站点干扰情况祥表(1):记录存在干扰的站点,表中上行接收干扰功率平均值(dBm/RB)>-113dBm或上行接收干扰功率最大值(dBm/RB)>-109dBm;满足其中一个既定义干扰站点。
规划站点干扰情况祥表(2):记录存在不存在干扰的站点,表中上行接收干扰功率平均值(dBm/RB)≤-113dBm或上行接收干扰功率最大值(dBm/RB)≤-109dBm;满足其中一个既定义非干扰站点。
表1与表2需要累积填写,其对应值应予附件2 TD-SCDMA全网ISCP统计表__xx城市数值保持一致。
3.测试方法及测量值属性字段的问题测试方式:最大值/平均值(描述统计方式,具体数值在新增附件2中填写)测量值属性:TDS ISCP/上站测试(上站统计方案)4.反馈附件6为旧表,附件6新表如下:详见附件。
附件六:XX省干扰排查进度表(5.27更新)注意:之前各市分公司上报数据如上述的问题省公司已做修改完成,请各市分公司在今后的数据上报前做好检查,避免再次出现此类问题。
二、干扰排查工作的具体安排1.新增表格的填写:⏹附件2 TD-SCDMA全网ISCP统计表__xx城市,附件2 为所有小区数据,附件2中的信息应予原附件6中的信息对应(6月份附件6信息已在附件中,作为参照依据)。
附件2TD-SCDMA全网ISCP统 ⏹新增“GT共站址信息表”的填写GT共站关联表.xlsx2.加快干扰排查及清除的进度(优先排查:干扰区域、数据热点区域、其它区域)全省部分市分公司已经完成F、D频段的路测扫频工作,请收到路测扫频分析报告的地市先开展干扰区域的排查及清除工作。
1.1.1杂散干扰1.1.1.1杂散干扰定义由于发射机中的功放、混频器和滤波器等非线性器件在工作频带以外很宽的范围内产生辐射信号分量,包括热噪声、谐波、寄生辐射、频率转换产物和互调产物等落入受害系统接收频段内,导致受害接收机的底噪抬升,造成灵敏度损失,称之为杂散干扰。
1.1.1.2OMC频域特征LTE杂散干扰小区PRB波形特点:PRB特征波形前高后低,呈现整体下降的趋势,如下图:1.1.1.3干扰排查流程步骤一、基站的数据库的核查确定是否有共站的DCS1800M基站、OFDM基站等信息,以及相关的天线型号、设备类型以及天面安装规划图,初步确定杂散干扰源。
如果有共站的DCS1800M基站、OFDM 基站,那么它们是杂散干扰源的可能性很强。
步骤二、杂散干扰源的现场排查确定确定有共站的DCS1800M基站、OFDM基站信息后,可以安排进行现场勘查。
确认是否共站的DCS1800M基站、OFDM基站安装隔离度是否存在问题,还可以通过现场关闭共站的DCS1800M基站、OFDM基站电源、加装施扰基站带通滤波器的方法,观察杂散干扰是否消失,最终确定杂散干扰源。
步骤五、整改方案的确定及实施工程、网优、厂家、设计院联合会审、确定整改方案并实施,网优评估实施效果。
1.1.1.4干扰整治措施LTE系统的杂散干扰,主要是F频段的设备受到的杂散干扰。
目前淮安现场发现的杂散干扰源,主要是共站DCS1800M产生的杂散干扰,另外也有少量共站OFDM基站产生的杂散干扰。
1.1.1.4.1DCS1800杂散干扰案例—更换滤波器问题描述:城东花园1根据PRB统计为干扰小区,其PRB特征波形存在明显的前高后低的杂散干扰特征,如下:问题分析:根据基站数据核查,城东花园1为2通道LTE基站设备,并且存在共站的DCS1800设备,城东花园1与DCS1800M小区配置成合路共天馈系统;为确认城东花园1的杂散干扰是否来自1800M小区,现场对1800M小区进行了现场闭站处理,观察干扰是否消失。
案例:专用合路器解决LTE与DCS1800共天馈杂散干扰处理报告LTE与DCS1800共天馈杂散干扰处理分析报告1.杂散干扰理论分析1.1系统内干扰与系统间干扰按照干扰产生的起因可以将干扰分为系统内干扰和系统间干扰。
系统内干扰的产生:系统内干扰通常为同频干扰。
由于数字技术相对于模拟技术的抗干扰能力较强,可以实现同频组网。
比如,TD-SCDMA 系统中,同一个小区内的不同用户使用的是相同的频率资源,它们之间是通过正交码字来进行区分的。
TD-LTE 系统中,虽然同一个小区内不同用户不能使用相同频率资源(多用户MIMO 除外),但相邻小区可以使用相同的频率资源。
这些在同一系统内使用相同频率资源的设备间将会产生干扰,也称为系统内干扰。
系统间干扰的产生:系统间干扰通常为异频干扰。
世上没有完美的无线电发射机和接收机。
科学理论表明理想滤波器是不可实现的,也就是说无法将信号严格束缚在指定的工作频率内。
因此,发射机在指定信道发射的同时将泄漏部分功率到其他频率,接收机在指定信道接收时也会收到其他频率上的功率,也就产生了系统间干扰。
系统间干扰可以分为阻塞干扰、杂散干扰、谐波干扰和互调干扰等类型,产生上述干扰的主要因素包括频率因素、设备因素和工程因素。
1.2杂散干扰产生原因及影响由于发射机中的功放、混频器和滤波器等非线性器件在工作频带以外很宽的范围内产生辐射信号分量,包括热噪声、谐波、寄生辐射、频率转换产物和互调产物等落入受害系统接收频段内,导致受害接收机的底噪抬升,造成灵敏度损失,称之为杂散干扰。
图1-1 杂散干扰示意图当前深圳LTE-F频段受到杂散干扰,主要是由于LTE与DCS1800共站尤其是共天馈时,隔离度不够时产生杂散干扰。
典型特征为前50RB底噪抬升,后50RB底噪正常,如下图,Cell1,cell2杂散干扰。
图 1-2 杂散干扰NI曲线下面是RRU日志分析中的杂散图形,DCS1800杂散干扰,1880MHZ处受到DCS1800高端频点的杂散信号。