当前位置:文档之家› 数字图像处理练习题大全

数字图像处理练习题大全

数字图像处理练习题大全
数字图像处理练习题大全

一、选择题

1、两幅图像进行相减,可以( ) 。

A 、获得图像的轮廓

B 、突出两幅图像的差异

C 、使得图像更清晰

D 、消除噪声 2、在变换编码中,比较理想的变换是( )

(A) DFT (B )WHT (C )DCT (D )KLT

3、对灰度值为127进行灰度码分解,结果用二进制表示为( ) (A )01000000 (B )01111111 (C ) (D )

4、关于邻接和连接说法正确的是( ) (A )连接不一定邻接。

(B )在二值图像中,任意相邻的两个象素都是连接的。

(C )在灰度图像中,相邻的两个象素的灰度值为80、83,则它们是连接的。

(D )邻接不一定连接。

5、下面图像中,象素P 、Q 之间的距离,描述正确的是( )

(A )棋盘距离为3 (B )城区距离为5 (C )欧氏距离为5 (D )棋盘距离为7

6、平移变换矩阵为( )

[

(A )??

???????

???10

00

100010001000Z Y X (B )?????

?

??????10

000000000z y x

S S S

(C)

?

?

?

?

?

?

?

?

?

?

?

?

-

1

cos

sin

sin

cos

1

α

α

α

α

(D)

?

?

?

?

?

?

?

?

?

?

?

?-

1

cos

sin

1

sin

cos

β

β

β

β

7、下列哪种变换可以保持角度不变()

(A)仿射变换(B)欧氏变换(C)刚体变换(D)相似变换

8、以下哪种灰度映射可以使图像黑白反色()

(A)(B)(C)(D)

9、频域的低通滤波相当于空域的()

!

(A)对比度增强(B)锐化滤波(C)模板卷积(D)平滑滤波10、图像中,两个之间的Minkowski距离[]w w

w

w

t

y

s

x

q

p

D/1

)

,

(-

+

-

=

当w取何值时,P和Q点到O的Minkowski距离相等。()

A、w=1

B、w=2

C、w=5

D、w = ∞

<

二、判断题(正确的打√,错误的打×。)

1、信源编码的平均长度大于或等于信号的熵。()

2、算术编码结果为小数。()

3、在变换编码中,子图像尺寸的选择一般为3×3,4×4。()

4、对于1024×1024图像,若分割成8×8的图像块,对每个图像块进行DCT变换,并取4个系数用于隐藏信息,则这个图像可以隐藏信息的比特数为16384()

5、逻辑运算一般只用于二值图像。()

6、象素的欧氏距离一般大于城区距离。()

7、一个BMP位图文件可以存放多幅图像。()

$

8、PAL制电视机可以显示自然界中所有的颜色。()

9、图像的细节部分为低频部分。()

10、图像增强有空域和变换域两类。()

三、真彩色图像处理有哪些策略描述单分量真彩色增强的原理。

四、已知某通信采用A、B、C、D、E、F进行通信,它们概率分别为,,,,,。(1)画图对BACCF进行算术编码。(2)发送BACCF时,要发送哪些数据(3)画图对(1)中的算术编码进行解码。

五、什么是图像混合请用以下图像阐述图像单幅迭代混合、多幅迭代混合隐

藏的原理。并说明为什么多幅迭代隐藏保密效果比单幅迭代的效果好

(

(a)载体图像)

,

(y

x

g (b)载体图像)

,

(y

x

f (c)隐藏图象)

,

(y

x

s

六、Walsh变换公式为

[]

∑∑∏

-

=

-

=

-

=

+-

-

-

-

-

=

1

1

1

)

(

)

(

)

(

)

(1

1

)1

(

)

,

(

1

)

,

(

N

x

N

y

n

i

v

b

y

b

u

b

x

b i

n

i

i

n

i

y

x

f

N

v

u

W

基本函数为

[]

∏-

=

+--

-

-

-

=

1

)

(

)

(

)

(

)

(1

1

)1

(

)

,

,

,

(

n

i

v

b

y

b

u

b

x

b i

n

i

i

n

i

v

u

y

x

h

,其中N

n

2

log

=

(1)计算N=4,3

,0

,1

,2=

=

=

=y

x

v

u时基本函数的值。(2)N=4时Walsh变换的基本函数的图示如下图I,试计算图II经过Walsh变换后A、B、C、D四个位置的频谱值。注:根据图I写出计算过程。

数字图像处理大作业

大作业指导书 题目:数字图像处理 院(系):物联网工程学院 专业: 计算机 班级:计算机1401-1406 指导老师: 学号: 姓名: 设计时间: 2016-2017学年 1学期

摘要 (3) 一、简介 (3) 二、斑点数据模型 .参数估计与解释 (4) 三、水平集框架 (5) 1.能量泛函映射 (5) 2.水平集传播模型 (6) 3.随机评估方法 (7) 四、实验结果 (8) 五、总结 (11)

基于水平集方法和G0模型的SAR图像分割 Abstract(摘要) 这篇文章提出了一种分割SAR图像的方法,探索利用SAR数据中的统计特性将图像分区域。我们假设为SAR图像分割分配参数,并与水平集模型相结合。分布属于G分布中的一种,处于数据建模的目的,它们已经成功的被用于振幅SAR图像中不同区域的建模。这种统计数据模型是驱动能量泛函执行区域映射的基础,被引用到水平集传播数值方案中,将SAR 图像分为均匀、异构和极其异构区域。此外,我们引入了一个基于随机距离和模型的评估过程,用于量化我们方法的鲁棒性和准确性。实验结果表明,我们的算法对合成和真实SAR 数据都具有准确性。+ 简介 1、Induction(简介) 合成孔径雷达系统是一种成像装置,采用相干照明比如激光和超声波,并会受到斑点噪声的影响。在SAR图像处理过程中,返回的是斑点噪声和雷达切面建模在一起的结果。这个积性模型(文献[1])因包含大量的真实SAR数据,并且在获取过程中斑点噪声被建模为固有的一部分而被广泛应用。因此,SAR图像应用区域边界和目标检测变得更加困难,可能需要斑点去除。因此,斑点去除是必需的,有效的方法可以在文献[2][3][4][5][6][7][8][9][10]中找到。 对于SAR图像分割,水平集方法构成一类基于哈密顿-雅克比公式的重要算法。水平集方法允许有效的分割标准公式,从文献[12]中讨论的传播函数项可以得到。经典方法有着昂贵的计算成本,但现在的水平集的实现配置了有趣的低成本的替换。 水平集方法的一个重要方面,比如传播模型,可以用来设计SAR图像的分割算法。这个传播函数能够依据伽马和伽马平方根法则将斑点统计进行整合,函数已经被广泛地应用于SAR图像中的均质区域分割。Ayed等基于伽马分布任意建模,设计方案将SAR图像分成多个均质区域。尽管多区分割问题已经解决,该方案人需要一定数量的区域作为输入。Shuai 和Sun在文献[16]中提出对这个方法进行了改进,他们使用了一个有效的传播前收敛判断。Marques等引入了一个类似于含有斑点噪声图像中目标检测的框架,将基于本地区域的斑点噪声统计融合进去。这些作者采用伽马平方根对均质区域进行建模并用一个自适应窗口方案检测本地的同质性。 最近,新的SAR数据模型比如K,G,显示出了优势。经典法则受限于均质区域特性的描述,而最近的法则展现出了在数据建模中更有吸引力的特性。法则允许同构、异构和高度异构幅度SAR数据的建模。这个分布族提供了一组参数,可以描述SAR图像中的不同区域。分布的参数信息,可以被广泛的应用于设计SAR图像处理和分类技术。在文献[21]中,Mejail 等人介绍了SAR监督数据分类器,它基于其参数映射并实现了有趣的结果。Gambini等人在文献[22]中使用这个分布的一个参数来量化SAR数据的粗糙度,通过活动轮廓和B样条差值来检测边缘。然而,这种技术需要一个初始分割步骤,并受拓扑限制。一般来说,活动轮廓方法不能解决不连续区域分割的问题。 本文介绍了一种新的水平集算法来实现SAR图像中均质、异构和极其异构区域分割的目标。由于分布能够描述SAR图像的同质性和规模,我们的方法采用分布对斑点数据进行建模。这些分布参数基于每一个域点进行估计,通过这些信息,我们可以在水平集分割框架内得到一个能量泛函来驱动向前传播(front propagation)。该泛函以最大化不同区域平均能量间的差异作为结束。最终水平集阶段以能量带作为依据得到SAR图像的分割结果。

数字图像处理实验指导书-河北工业大学2014实验一

数字图像处理 实验指导书 河北工业大学 计算机科学与软件学院

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像类型转换。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化称为采样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: 亮度图像(Intensity images) 二值图像(Binary images) 索引图像(Indexed images) RGB图像(RGB images) (1) 亮度图像 一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。若图像是double类,则像素取值就是浮点数。规定双精度型归一化亮度图像的取值范围是[0,1] (2) 二值图像 一幅二值图像是一个取值只有0和1的逻辑数组。 (3) 索引图像 索引颜色通常也称为映射颜色,在这种模式下,颜色都是预先定义的,并且可供选用的一组颜色也很有限,索引颜色的图像最多只能显示256种颜色。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成该图像具体颜色的索引值就被读入程序里,然后根据索引值找到最终的颜色。(4) RGB图像 一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色相

数字图像处理四个实验报告,带有源程序

数字图像处理 实验指导书 学院:通信与电子工程学院 专业:电子信息工程 班级: 学号: 姓名: XX理工大学

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。 图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: 亮度图像(Intensity images) 二值图像(Binary images) 索引图像(Indexed images) RGB图像(RGB images)

数字图像处理(双语)期中考试试卷答案

考试试卷(答案) 试卷编号: ( )卷课程编号:课程名称:数字图像处理(双语)考试形式:适用班级:姓名:学号:班级: 学院:信息工程学院专业:电子系各专业考试日期: 一二三四五六七八九十总 分 累分人签名 题分 2 2 2 2 2 000001 00 得 分 考生注意事项:1、本试卷共5页,请查看试卷中是否有缺页或破损。如有立即举手报告以便更换。 2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。 一、基础知识填空题(1,2为单项选择,每空3分,3,4为多项选择,每 空2分,共20分), 1 1、When you enter a dark room on a bright day, it takes some time to see well enough, this is the visual process or visual phenomenon of A. (Brightness adaptation.) B. (Brightness discrimination.) C. (Optical illusion.) D. (Simultaneous contrast.) 2、The visible spectrum consists of electromagnetic spectrum nearly in the range of wavelength: A. (10 – 400 nm) B. (0.01 – 10 nm) C. (400 –700 nm) D. (700 –1500 nm) 3、For V = {1}, the subsets S1 and S2 are A. (m-connected) B. (8-connected ) C. (4-connected) D. (None of these 3) 4、Two pixels p and q are at the locations shown in the figure, their Euclidean, city-block and chessboard distances are

数字图像处理大作业.doc

-------------精选文档 ----------------- 1、下图是一用于干涉原理进行测试的干涉场图像,要求判读条纹的间距,请 给出图像处理的方案并说明每一步的作用及其对其它处理步骤可能产生的影响。 解:步骤与思路: ○1.进行模糊处理,消除噪声 ○2.边缘检测,进行图像增强处理 ○3.二值化图像,再进行边缘检测,能够得到很清晰的边界。 ○4.采用横向标号法,根据值为1 像素在标号中的相邻位置可以确定间距 I=imread('xz mjt.bmp'); I1=medfilt2(I);%对图像中值滤波 imshow(I1); [m,n]=size(I1); for i=1:m for j=1:n if(I1(i,j)<100)% 阈值为 100 I1(i,j)=255; else I1(i,j)=0;%进行二值化

-------------精选文档 ----------------- end end end figure; imshow(I1); Y1=zeros(1,25); y2=y1; c=y2; i=100; for j=1:1200 if (I1(i,j)==255&&I1(i,j+1)==0) Y1=j+1; end if (I1(i,j)==0&&I1(i,j+1)==255) Y2=j; end end for i=1:25 c=Y2(i)-Y1(i) end c%找出每两个条纹之间的距离

2.现有 8 个待编码的符号 m0,,m7, 它们的概率分别为 0.11,0.02,0.08,0.04,0.39,0.05,0.06,0.25,利用哈夫曼编码求出这一组符号的编码并画出哈夫曼树。 3.请以图像分割方法为主题,结合具体处理实例,采用期刊论文格式,撰写一篇小论文。

数字图像处理实验指导书

实验一 Matlab图像处理工具箱的初步练习 一、实验目的和任务 1、初步了解与掌握MA TLAB语言的基本用法; 2、掌握MA TLAB语言中图象数据与信息的读取方法; 3、掌握在MA TLAB语言中图像类型的转换。 二、实验仪器、设备及材料 1、计算机 2、MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox) 3、实验所需要的图片 三、实验原理 将数字图像的RGB表示转换为YUV表示; Y=0.30R+0.59G+0.11B U=0.70R-0.59G-0.11B V=-0.30R-0.59G+0.89B 四、实验步骤 1、阅读资料并熟悉MatLab的基本操作 2、读取MATLAB中的图象数据 3、显示MATLAB中的图象文件。用MATLAB在自建的文件夹中建立m文件,在这个文件的程序中,将MA TLAB目录下work文件夹中的tree.tif 图象文件读出,用到imread,imfinfo等命令,观察一下图象数据,了解一下数字图象在MA TLAB中的处理就是处理一个矩阵的本质。 4、将3中的图象显示出来(用imshow)。 5、对MA TLAB目录下work文件夹中的flowers.tif进行真彩色图像、索引色图像、灰度图像、二值图像之间的相互变换,并显示。 6、进行真彩色图像RGB(lenacolor.jpg)、YIQ图像、HSV图像、YcbCr图像的相互转换,并显示。 五、实验报告要求 1、描述实验的基本步骤; 2、用图片给出步骤4、5、6中取得的实验结果; 六、实验所需图片

lenacolor.jpg 七、实验注意事项 1、学生应提前预习 2、请大家在E盘建一个目录(matlab),在每次启动时都要将这个目录加入到MATLAB的搜索路径中,添加的方法为File----Set Path----Tool---Add Path 八、思考题 1、图像之间转换的基础是什么,为什么可以实现相互的转换 九、附录 MATLAB简介 (1) MATLAB全称是Matrix Laboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。实际上MATLAB中的绝大多数的运算都是通过矩阵这一形式进行的。这一特点也就决定了MA TLAB在处理数字图像上的独特优势。理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。二维图像进行均匀采样,就可以得到一幅离散化成M×N样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的了。而MATLAB的长处就是处理矩阵运算,因此用MA TLAB处理数字图像非常的方便。MATLAB支持五种图像类型,即索引图像、灰度图像、二值图像、RGB图像和多帧图像阵列;支持BMP、GIF、HDF、JPEG、PCX、PNG、TIFF、XWD、CUR、ICO等图像文件格式的读,写和显示。MATLAB对图像的处理功能主要集中在它的图像处理工具箱(Image Processing Toolbox)中。图像处理工具箱是由一系列支持图像处理操作的函数组成,可以进行诸如几何操作、线性滤波和滤波器设计、图像变换、图像分析与图像增强、二值图像操作以及形态学处理等图像处理操作。 1、MATLAB中图象数据的读取 A、imread imread函数用于读入各种图象文件,其一般的用法为 [X,MAP]=imread(‘filename’,‘fmt’) 其中,X,MAP分别为读出的图象数据和颜色表数据,fmt为图象的格式,filename为读取的图象文件(可以加上文件的路径)。 例:[X,MAP]=imread(’flowers.tif’,’tif’);

数字图像处理实验指导书模板

《数字图像处理》实验指导书 编写: 罗建军 海南大学三亚学院 10月

目录 一、概述 ....................................................................... 错误!未定义书签。 二、建立程序框架 ....................................................... 错误!未定义书签。 三、建立图像类 ........................................................... 错误!未定义书签。 四、定义图像文档实现图像读/写.............................. 错误!未定义书签。 五、实现图像显示 ....................................................... 错误!未定义书签。 六、建立图像处理类................................................... 错误!未定义书签。 七、实现颜色处理功能............................................... 错误!未定义书签。 (一) 亮度处理................................................................. 错误!未定义书签。 (二) 对比度处理............................................................. 错误!未定义书签。 (三) 色阶处理................................................................. 错误!未定义书签。 (四) 伽马变换................................................................. 错误!未定义书签。 (五) 饱和度处理............................................................. 错误!未定义书签。 (六) 色调处理................................................................. 错误!未定义书签。 八、实现几何变换功能............................................... 错误!未定义书签。 (一) 图像缩放................................................................. 错误!未定义书签。 (二) 旋转......................................................................... 错误!未定义书签。 (三) 水平镜像................................................................. 错误!未定义书签。 (四) 垂直镜像................................................................. 错误!未定义书签。 (五) 右转90度................................................................. 错误!未定义书签。 (六) 左转90度................................................................. 错误!未定义书签。 (七) 旋转180度............................................................... 错误!未定义书签。 九、实现平滑锐化功能............................................... 错误!未定义书签。 十、图像处理扩展编程............................................... 错误!未定义书签。

数字图像处理大作业

1、下图是一用于干涉原理进行测试的干涉场图像,要求判读条纹的间距,请给 出图像处理的方案并说明每一步的作用及其对其它处理步骤可能产生的影响。 解:步骤与思路: ○1.进行模糊处理,消除噪声 ○2.边缘检测,进行图像增强处理 ○3.二值化图像,再进行边缘检测,能够得到很清晰的边界。 ○4.采用横向标号法,根据值为1像素在标号中的相邻位置可以确定间距 I=imread('xz mjt.bmp'); I1=medfilt2(I); %对图像中值滤波 imshow(I1); [m,n]=size(I1); for i=1:m for j=1:n if(I1(i,j)<100) %阈值为100 I1(i,j)=255; else I1(i,j)=0; %进行二值化 end end end figure; imshow(I1);

Y1=zeros(1,25); y2=y1; c=y2; i=100; for j=1:1200 if (I1(i,j)==255&&I1(i,j+1)==0) Y1=j+1; end if (I1(i,j)==0&&I1(i,j+1)==255) Y2=j; end end for i=1:25 c=Y2(i)-Y1(i) end c %找出每两个条纹之间的距离

2. 现有8个待编码的符号m0,……,m7,它们的概率分别为0.11,0.02,0.08,0.04,0.39,0.05,0.06,0.25,利用哈夫曼编码求出这一组符号的编码并画出哈夫曼树。 3. 请以图像分割方法为主题,结合具体处理实例,采用期刊论文格式,撰写一篇小论文。

数字图像处理程序

数字图像处理程序

数字图像处理实验 图像处理实验(一)直方图 灰度变换是图像增强的一种重要手段,使图像对比度扩展,图像更加清晰,特 征更加明显。 灰度级的直方图给出了一幅图像概貌的描述,通过修改灰度直方图来得到图像 增强。 1、灰度直方图 (1)计算出一幅灰度图像的直方图 clear close all I=imread('004.bmp'); imhist(I) title('实验一(1)直方图'); (2)对灰度图像进行简单的灰度线形变换, figure subplot(2,2,1) imshow(I); title('试验2-灰度线性变换'); subplot(2,2,2) histeq(I); (3)看其直方图的对应变化和图像对比度的变化。 原图像 f(m,n) 的灰度范围 [a,b] 线形变换为图像 g(m,n),灰度范围[a’,b’]公式:g(m,n)=a’+(b’-a’)* f(m,n) /(b-a) figure subplot(2,2,1) imshow(I) J=imadjust(I,[0.3,0.7],[0,1],1); title(' 实验一(3)用g(m,n)=a’+(b’-a’)* f(m,n) /(b-a)进行变换 '); subplot(2,2,2) imshow(J) subplot(2,2,3) imshow(I) J=imadjust(I,[0.5 0.8],[0,1],1); subplot(2,2,4) imshow(J) (4) 图像二值化(选取一个域值,(5) 将图像变为黑白图像) figure subplot(2,2,1)

数字图像处理期末(00002)

数字图像处理期末复习题3

二、名词解释( 每小题5分,本题共20 分) 1、数字图像:指由被称作像素的小块区域组成的二维矩阵。将物理图像行列划分后,每个小块区域称为像素(pixel)。 数字图像处理:指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种预想目的的技术. 2、8-连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。 3、灰度直方图:指反映一幅图像各灰度级像元出现的频率。 4、中值滤波:指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。 像素的邻域 邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。即{(x=p,y=q)}p、q为任意整数。 像素的四邻域 像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1) 三、简答题( 每小题10分,本题共30 分): 1. 举例说明直方图均衡化的基本步骤。 直方图均衡化是通过灰度变换将一幅图象转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。 直方图均衡化变换:设灰度变换s=f(r)为斜率有限的非减连续可微函数,它将输入图象Ii(x,y)转换为输出图象Io(x,y),输入图象的直方图为Hi(r),输出图象的直方图为Ho(s),则根据直方图的含义,经过灰度变换后对应的小面积元相等:Ho(s)ds=Hi(r)dr 直方图修正的例子 假设有一幅图像,共有6 4(6 4个象素,8个灰度级,进行直方图均衡化处理。 根据公式可得:s2=0.19+0.25+0.2l=0.65,s3=0.19+0.25+0.2l+0.16=0.8l,s4=0.89,s5=0.95,s6=0.98,s7=1.00 由于这里只取8个等间距的灰度级,变换后的s值也只能选择最靠近的一个灰度级的值。因此,根据上述计算值可近似地选取: S0≈1/7,s 1≈3/7,s2≈5/7,s3≈6/7,s4≈6/7,s5≈1,s6≈l,s7≈1。 可见,新图像将只有5个不同的灰度等级,于是我们可以重新定义其符号: S0’=l/7,s1’=3/7,s2’=5/7,s3’=6/7,s4’=l。 因为由rO=0经变换映射到sO=1/7,所以有n0=790个象素取sO这个灰度值;由rl=3/7映射到sl=3/7,所以有1 02 3个象素取s 1这一灰度值;依次类推,有850个象素取s2=5/7这一灰度值;由于r3和r4均映射到s3=6/7这一灰度值,所以有656+329=98 5个象素都取这一灰度值;同理,有245+1 22+81=448个象素都取s4=1这一灰度值。上述值除以n=4096,便可以得到新的直方图。 2. 简述JPEG的压缩过程,并说明压缩的有关步骤中分别减少了哪种冗余? 答:分块->颜色空间转换->零偏置转换->DCT变换->量化->符号编码。颜色空间转换,减少了心理视觉冗余;零偏置转换,减少了编码冗余;量化减少了心理视觉冗余;符号编码由于是霍夫曼编码加行程编码,因此即减少了编码冗余(霍夫曼编码)又减少了像素冗余(行程编码)。 JPEG2000的过程:图像分片、直流电平(DC)位移,分量变换,离散小波变换、量化,熵编码。 3、Canny边缘检测器 答:Canny边缘检测器是使用函数edge的最有效边缘检测器。该方法总结如下:1、图像使用带有指定标准偏差σ的高斯滤波器来平滑,从而可以减少噪声。2、在每一点处计算局部梯度g(x,y)=[G2x+G2y]1/2 和边缘方向α(x,y)=arctan(Gy/Gx)。边缘点定义为梯度方向上其强度局部最大的点。3、第2条中确定的边缘点会导致梯度幅度图像中出现脊。然后,算法追踪所有脊的顶部,并将所有不在脊的顶部的像素设为零,以便在输出中给出一条细线,这就是众所周知的非最大值抑制处理。脊像素使用两个阈值T1和T2做阈值处理,其中T1

(完整版)数字图像处理大作业

数字图像处理 1.图像工程的三个层次是指哪三个层次?各个层次对应的输入、输出对象分别是什么? ①图像处理 特点:输入是图像,输出也是图像,即图像之间进行的变换。 ②图像分割 特点:输入是图像,输出是数据。 ③图像识别 特点:以客观世界为中心,借助知识、经验等来把握整个客观世界。“输入是数据,输出是理解。 2.常用的颜色模型有哪些(列举三种以上)?并分别说明颜色模型各分量代表的意义。 ①RGB(红、绿、蓝)模型 ②CMY(青、品红、黄)模型 ③HSI(色调、饱和度、亮度)模型 3.什么是图像的采样?什么是图像的量化? 1.采样 采样的实质就是要用多少点来描述一幅图像,采样结果质量的高低就是用前面所说的图像分辨率来衡量。简单来讲,对二维空间上连续的图像在水平和垂直方向上等间距地分割成矩形网状结构,所形成的微小方格称为像素点。一副图像就被采样成有限个像素点构成的集合。例如:一副640*480分辨率的图像,表示这幅图像是由640*480=307200个像素点组成。 2.量化 量化是指要使用多大范围的数值来表示图像采样之后的每一个点。量化的结果是图像能够容纳的颜色总数,它反映了采样的质量。 针对数字图像而言: 采样决定了图像的空间分辨率,换句话说,空间分辨率是图像中可分辨的最小细节。 量化决定了图像的灰度级,即指在灰度级别中可分辨的最小变化。 数字图像处理(第三次课)

调用图像格式转换函数实现彩色图像、灰度图像、二值图像、索引图像之间的转换。 图像的类型转换: 对于索引图像进行滤波时,必须把它转换为RGB图像,否则对图像的下标进行滤波,得到的结果是毫无意义的; 2.用MATLAB完成灰度图像直方图统计代码设计。

数字图像处理实验指导书

实验一数字图像处理编程基础 一、实验目的 1. 了解MATLAB图像处理工具箱; 2. 掌握MATLAB的基本应用方法; 3. 掌握MATLAB图像存储/图像数据类型/图像类型; 4. 掌握图像文件的读/写/信息查询; 5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法; 6. 编程实现图像类型间的转换。 二、实验原理 略。 三、实验内容 1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。 2. 运行图像处理程序,并保存处理结果图像。 四、分析思考 归纳总结Matlab各个基本指令。 Dither 采用“抖动”方法从RGB 图像创建索引图像 grayslice 从灰度图像通过阈值处理创建索引图像 gray2ind 从灰度图像创建索引图像 ind2gray 从索引图像创建灰度图像 rgb2ind 从RGB 图像创建索引图像 ind2rgb 从索引图像创建RGB 图像 rgb2gray 从RGB 图像创建灰度图像

实验二 图像几何变换实验 一、实验目的 1.学习几种常见的图像几何变换,并通过实验体会几何变换的效果; 2.掌握图像平移、剪切、缩放、旋转、镜像等几何变换的算法原理及编程实现; 3.掌握matlab 编程环境中基本的图像处理函数。 二、实验原理 1. 初始坐标为(,)x y 的点经过平移00(,)x y ,坐标变为(',')x y ,两点之间的关系为:00 ''x x x y y y =+??=+?,以矩阵形式表示为: 00'10'01100 11x x x y y y ????????????=?????????????????? 2. 图像的镜像变换是以图象垂直中轴线或水平中轴线交换图像的变换,分为垂直镜像变换和水平镜像变换,两者的矩阵形式分别为: '100'01010011x x y y -????????????=?????????????????? '100'01010011x x y y ????????????=-?????????????????? 3. 图像缩小和放大变换矩阵相同: '00'0010011X y x S x y S y ????????????=?????????????????? 当1x S ≤,1y S ≤时,图像缩小;当1x S ≥,1y S ≥时,图像放大。 4. 图像旋转定义为以图像中某一点为原点以逆时针或顺时针方

数字图像处理实验报告

数字图像处理实验报告

实验一数字图像处理编程基础 一、实验目的 1. 了解MA TLAB图像处理工具箱; 2. 掌握MA TLAB的基本应用方法; 3. 掌握MA TLAB图像存储/图像数据类型/图像类型; 4. 掌握图像文件的读/写/信息查询; 5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法; 6. 编程实现图像类型间的转换。 二、实验内容 1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。 2. 运行图像处理程序,并保存处理结果图像。 三、源代码 I=imread('cameraman.tif') imshow(I); subplot(221), title('图像1'); imwrite('cameraman.tif') M=imread('pout.tif') imview(M) subplot(222), imshow(M); title('图像2'); imread('pout.bmp') N=imread('eight.tif') imview(N) subplot(223), imshow(N); title('图像3'); V=imread('circuit.tif') imview(V) subplot(224), imshow(V); title('图像4');

N=imread('C:\Users\Administrator\Desktop\1.jpg') imshow(N); I=rgb2gary(GRB) [X.map]=gary2ind(N,2) RGB=ind2 rgb(X,map) [X.map]=gary2ind(I,2) I=ind2 gary(X,map) I=imread('C:\Users\dell\Desktop\111.jpg'); subplot(231),imshow(I); title('原图'); M=rgb2gray(I); subplot(232),imshow(M); [X,map]=gray2ind(M,100); subplot(233),imshow(X); RGB=ind2rgb(X,map); subplot(234),imshow(X); [X,map]=rbg2ind(I); subplot(235),imshow(X); 四、实验效果

数字图像处理大作业要点

数字图像处理实验报告 学院:信息学院 专业:电科1004班 姓名: 学号: 辅导老师: 完成日期: 2013年6月29日 空域图像增强 实验要求:

(1)选择若干图像(两幅以上),完成直方图均衡化。 (2)选择若干图像(两幅以上),对图像文件分别进行均值滤波、中值滤波和拉 普拉斯锐化滤波操作。 (3)添加噪声,重复上述过程观察处理结果。 实验原理: (1)图像增强是图像处理的基本内容之一,图像增强是指按特定的需要突出一幅 图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用,比原始图像更合适。处理的结果使图像更适应于人的视觉特性或机器的识别系统。图像增强主要可分为三类:频域图像增强方法、小波域图像增强方法、空域图像增强方法。 (2)空域图像增强主要包括:直方图均衡化、平滑滤波和锐化滤波等方法。 (3)直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。 这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。 这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。 (4)平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另 一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。 (5)均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板, 该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。再用模板中的全体像素的平均值来代替原来像素值。均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。 线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度个g(x,y),即个g(x,y)=1/m ∑f(x,y) m为该模板中包含当前像素在内的像素总个数。 (6)中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技 术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。二维中值滤波输出为g(x,y)=med{f(x-k,y-l),(k,l∈W)} ,其中,f(x,y),g(x,y)分别为原始图像和处理后图像。W为二维模板,通常为2*2,3*3区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。 (7)拉式算子是一个刻画图像灰度的二阶商算子,它是点、线、边界提取算子, 亦称为边界提取算子。通常图像和对他实施拉式算子后的结果组合后产生一个锐化图像。拉式算子用来改善因扩散效应的模糊特别有效,因为它符合降制模型。 拉普拉斯算子也是最简单的各向同性微分算子,具有旋转不变性。一个二维

用matlab数字图像处理四个实验

数字图像处理 实验指导书

目录 实验一MATLAB数字图像处理初步实验二图像的代数运算 实验三图像增强-空间滤波 实验四图像分割 3

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。 图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: ?亮度图像(Intensity images)

数字图像处理实验

学院计算机与通信工程学院专业生物医学工程专业 班级51111 学号5111133 姓名杨静 指导教师贾朔 2014年04月21日

实验一图像的基本运算 一、实验目的: 1、掌握图像处理中的点运算、代数运算、逻辑运算和几何运算及应用。 2、掌握各种运算对于图像处理中的效果。 二、实验内容: 1、(1)选择一幅图像lena8.jpg,设置输入/输出变换的灰度级范围,a=0.2,b=0.6,c=0.1,d=0.9. (2)设置非线性扩展函数的参数c=2. (3)采用灰度级倒置变换函数s=255-r进行图像变换 (4)设置二值化图像的阈值,分别为level=0.4,level=0.7 解:参考程序如下: I=imread('C:\lena8.jpg'); figure; subplot(2,3,1); imshow(I); title('原图'); J=imadjust(I,[0.3;0.6],[0.1;0.9]); %设置灰度变换的范围 subplot(2,3,2); imshow(J); title('线性扩展'); I1=double(I); %将图像转换为double类型 I2=I1/255; %归一化此图像 C=2; K=C*log(1+I2); %求图像的对数变换 subplot(2,3,3); imshow(K); title('非线性扩展'); M=im2bw(I,0.5); M=~M; %M=255-I; %将此图像取反 %Figure subplot(2,3,4); imshow(M); title('灰度倒置'); N1=im2bw(I,0.4); %将此图像二值化,阈值为0.4 N2=im2bw(I,0.7); %将此图像二值化,阈值为0.7 subplot(2,3,5); imshow(N1); title('二值化阈值0.4'); subplot(2,3,6); imshow(N2); title('二值化阈值0.7');

数字图像处理大作业

[HW5][24]SA11009045_张海滨 大作业 1、行模糊、锐化、和直方图均衡化。 程序: I=imread('E:\研一\数字图像处理\作业\HW5\DSC00003.JPG'); figure,imshow(I),title('原始图像'); I1=rgb2gray(I); I1=imresize(I1,0.5); figure,imshow(I1),title('灰度图像'); h=ones(5,5)/25; I2=imfilter(I1,h); figure,imshow(I2),title('模糊处理'); J=double(I1); h1=fspecial('laplacian'); I3=filter2(h1,J); figure,imshow(I3),title('锐化处理'); I4 = histeq(I1,256); figure,imhist(I1),title('原图像直方图'); figure,imshow(I4),title('均衡化处理'); figure,imhist(I4),title('均衡化后直方图'); 进行运算的结果为: 原始图像

此为进行处理的原始图像。进行图像灰度化并把图像的大小进行调整为原来的一半,得到图像: 对图像分别进行均值滤波器模糊、拉普拉斯算子锐化处理,得到的结果如下图:

方图如下所示。

2、边缘检测,程序: I=imread('F:\研一\数字图像处理\作业\HW5\DSC00003.JPG'); I1=rgb2gray(I); I1=imresize(I1,0.5); J=double(I1); H=[0 1 0;1 -4 1;0 1 0]; J=conv2(J,H,'same'); J=I1-J; subplot(1,2,1); imshow(I1),title('灰度图像'); subplot(1,2,2); imshow(J),title('Laplace算子边缘检测'); G1 = [-1 -2 -1;0 0 0;1 2 1]; G2 = G1'; Iedge=I1; I2x = filter2(G1,Iedge); I2y = filter2(G2,Iedge); I2=abs(I2x+I2y); I22 = mat2gray(I2);

相关主题
文本预览
相关文档 最新文档