流变性能测试资料
- 格式:ppt
- 大小:1.54 MB
- 文档页数:8
实验二流变仪法测定塑料熔体的流变性能一、实验目的1.了解转矩流变仪的结构与测定聚合物流变性能的原理。
2.熟悉并掌握在转矩流变仪上测定剪切应力、剪切速率、粘度的方法。
二、实验原理毛细管流变仪是研究聚合物流变性能最常用的仪器之一,具有较宽广的剪切速率范围。
毛细管流变仪还具有多种功能,既可以测定聚合物熔体的剪切应力和剪切速率的关系,又可根据毛细管挤出物的直径和外观及在恒应力下通过改变毛细管的长径比来研究聚合物熔体的弹性和不稳定流动现象。
这些研究为选择聚合物及进行配方设计,预测聚合物加工行为,确定聚合物加工的最佳工艺条件(温度、压力和时间等),设计成型加工设备和模具提供基本数据。
聚合物的流变行为一般属于非牛顿流体,即聚合物熔体的剪切应力与剪切速率之间呈非线性关系。
用毛细管流变仪测试聚合物流变性能的基本原理是:在一个无限长的圆形毛细管中,聚合物熔体在管中的流动是一种不可压缩的粘性流体的稳定层流流动,毛细管两端分压力差为ΔP,由于流体具有粘性,它必然受到自管体与流动方向相反的作用力,根据粘滞阻力与推动力相平衡等流体力学原理进行推导,可得到毛细管管壁处的剪切应力τ和剪切速率γ&与压力、熔体流率的关系。
τ=RΔP/2L γ=4Q/πR3ηa =πR4ΔP/8QL式中R-毛细管半径,cm;L-毛细管长度,cm;ΔP-毛细管两端的压差,Pa;Q-熔体流率,cm3/s;ηa-熔体表观粘度,Pa·s。
在温度和毛细管长径比L/D一定的条件下,测定不同压力ΔP下聚合物熔体通过毛细管的流动速率Q,可计算出相应的τ和γ&,将对应的τ和γ在双对数坐标上绘制τ-γ流动曲线图,即可求得非牛顿指数n和熔体表观粘度ηa。
改变温度和毛细管长径比,可得到代表粘度对温度依赖性的粘流活化能Eη以及离模膨胀比B等表征流变特性的物理参数。
大多数聚合物熔体是属非牛顿流体,在管中流动时具有弹性效应、壁面滑移等特性,且毛细管的长度也是有限的,因此按以上推导测得的结果与毛细管的真实剪切应力和剪切速率有一定的偏差,必要时应进行非牛顿改正和入口改正。
固体胶流变测试关于固体胶流变测试介绍如下:一、黏度测试黏度是固体胶流变性的重要参数之一,反映了胶粘剂在剪切应力作用下的流动性。
黏度测试通常采用旋转黏度计进行测量,通过测量一定转速下转子受到的阻力矩来计算黏度值。
二、屈服点测试屈服点是指固体胶在受到应力作用时开始发生形变的应力值。
通过测量屈服点,可以了解胶粘剂在受到应力作用时的行为,以及其在使用过程中的耐久性和可靠性。
测试方法可以采用拉伸试验或压缩试验,通过观察应力应变曲线来找到屈服点。
三、触变性测试触变性是指固体胶在剪切力的作用下,其粘度随时间的变化而变化的特性。
触变性测试可以采用旋转黏度计或振荡流变仪进行测量,通过观察胶粘剂在不同时间下的黏度变化来评价其触变性。
四、温度敏感性测试温度敏感性是指固体胶粘剂在不同温度下的流变性能变化情况。
通过温度敏感性测试,可以了解胶粘剂在不同温度下的使用性能和适用范围。
测试方法可以采用温度扫描或恒温测量,观察胶粘剂在不同温度下的黏度变化。
五、老化稳定性测试老化稳定性是指固体胶粘剂在长时间使用或存储过程中,其流变性能的变化情况。
通过老化稳定性测试,可以了解胶粘剂在使用过程中的耐久性和可靠性。
测试方法可以采用老化试验,将胶粘剂置于不同条件下的老化环境中进行测试,观察其流变性能的变化。
六、表面张力测试表面张力是固体胶表面的一种物理特性,反映了胶粘剂表面的湿润能力和润湿性能。
表面张力测试可以采用表面张力仪进行测量,通过观察胶粘剂表面在不同液体中的接触角来计算表面张力值。
七、弹性恢复测试弹性恢复是指固体胶在去除外力后,其形变的恢复能力。
弹性恢复测试可以采用拉伸试验或压缩试验进行测量,通过观察胶粘剂在去除外力后的形变恢复情况来评价其弹性恢复性能。
八、极限应变测试极限应变是指固体胶在受到外力作用时所能承受的最大形变量。
极限应变测试可以采用拉伸试验或压缩试验进行测量,通过观察胶粘剂在外力作用下的形变情况来找到其极限应变值。
第三章流变试验 (2)§3.1 流变试验方法 (2)3.1.1 流变试验的类型 (2)3.1.2 蠕变试验的类型 (4)3.1.3 蠕变试验的加载方式 (4)3.1.4 单试件法和多试件法 (5)3.1.5 荷载增量的取值和某级应力水平下蠕变试验结束的标准 (6)3.2 流变试验仪器 (7)3.2.1 蠕变试验中恒压的施加方式 (7)3.2.2 岩石流变仪 (8)3.2.3 岩石松弛仪 (13)3.3 流变试验数据的处理 (14)3.3.1 逐级增量加载蠕变试验数据的处理 (14)3.3.2 多级循环加卸载蠕变试验数据的处理 (16)3.3.3 弹簧式蠕变试验机试验数据的处理 (18)3.3.4 用蠕变试验数据确定岩石长期强度 (18)3.3.5 用伺服控制试验确定流变模型参数 (20)3.3.6 不同蠕变理论的试验检验 (21)3.4岩石蠕变试验结果 (23)3.4.1 室内岩石蠕变试验结果 (23)3.4.2 现场岩石蠕变试验结果 (25)3.4.3 岩石长期强度 (29)3.4.4 岩石流变性质的影响因素 (29)参考文献: (34)第三章 流变试验流变性质是岩石重要力学特性之一,很多的岩石工程问题都与岩石流变性有密切关系,例如,地下洞室开挖、岩石地基和岩石边坡等,都可以观测到岩体变形随时间不断增长的现象。
工程的破坏往往是有时间过程的。
实验是研究岩石力学特性的主要手段,岩石流变特性研究的关键是流变本构方程的确定及其参数的确定,流变试验则是确定流变本构方程及其参数的基础。
早在20世纪30年代,国外就有学者开始对灰岩、页岩等进行蠕变试验。
近年来,岩石单轴压缩、三轴压缩等受力条件下的流变特性,室内岩体结构面剪切,现场岩体压缩、岩体及结构面剪切蠕变特性研究有许多进展。
最早的流变试验为Pfaff、Adams、Nicolson 于1901年利用灰岩进行静水压作用下的变形与破坏观测,其目的主要是从地质学角度探讨岩石的变形与流动性质。
聚合物材料中的流变性能测试分析在聚合物材料的开发、制造和应用过程中,流变性能测试是一个重要的环节,其能够有效地评估材料的变形行为、力学性能以及应用性能。
因此,了解聚合物材料中的流变性能及其测试分析方法,对于提高聚合物材料的应用性能、推动聚合物材料的研究和应用具有重要的意义。
一、聚合物材料的流变性能聚合物材料是指一类具有高分子结构的材料,其分子量通常高于10万,这种材料的性能是由其分子结构决定的。
在应用场合中,聚合物材料的性能会随着其形状、尺寸和应力状态的变化而发生变化。
因此,聚合物材料的流变性能对于其应用性能的评估和控制具有重要的作用。
聚合物材料的流变性能包括了黏弹性、塑性和蠕变等性质。
黏弹性是指聚合物材料在受到一定应力时的变形能力,即材料随时间的变形量。
塑性是指聚合物材料在受到应力时,随着应力的增加发生的可塑性变形。
蠕变是指聚合物材料在受到恒定应力时,材料随时间的收缩变形。
二、聚合物材料的流变性能测试聚合物材料的流变性能测试是利用流变仪对聚合物材料进行测试,主要包括剪切模量、黏性、塑性和流量指数等参数的测试。
其测试过程是将样品装入流变仪的测量室中,然后通过引入规定的变形应力,来测定聚合物材料在规定的应力范围和频率下的流变性能。
流变仪是一种专门用于测量材料流变性质的仪器。
其主要原理是利用试样在测量室中应变或位移的变化来计算材料在不同应力下的黏弹性、塑性、蠕变等性质。
流变仪可以通过调节控制板的参数,来控制样品的速度、应力、频率和温度等参数,从而实现对材料流变性质的测试和分析。
三、聚合物材料流变性能测试分析1.剪切模量测试分析剪切模量是衡量材料刚度和变形能力的重要参数。
聚合物材料的剪切模量随着应力的增加而增加,因此,其在应用过程中往往需要具有一定的刚度和力学性能。
流变仪可以通过调节控制板的参数,来测定样品在不同应力下的剪切模量。
2.黏性测试分析黏性是衡量材料流体性质的重要参数。
聚合物材料的黏性随着应力的增加而减小,因此其应用过程中不易出现黏滞和流动离散等情况。
聚合物流变性能测试-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII聚合物流变性能测试一、实验目的1、熟悉和了解RHEOGRAPH25型流变仪的工作原理及操作方法。
2、掌握将计算机输出流动曲线(σ-γ曲线)转换为其他形式流动曲线(lg σ-lgγ)、(lgη-lgγ)的方法。
3、掌握非牛顿指数n的计算方法。
4、掌握利用Arrhenius方程计算粘流活化能Eη的方法。
二、RHEOGRAPH25型流变仪工作原理毛细管流变仪是目前发展得最成熟、应用最广的流变测量仪之一,其主要优点在于操作简单,测量准确,测量范围宽(剪切速率γ:10-2~105s-1 )。
毛细管流变仪测试聚合物流变性能基本原理:在一个无限长的圆形毛细管中,聚合物熔体在管中的流动是一种不可收缩的粘性流体的稳定层流流动,毛细管两端分压力差为△P,由于流体具有粘性,它必然受到自管体与流动方向相反的作用力,根据粘滞阻力与推动力相平衡等流体力学原理推导,可得到毛细管管壁处的剪切应力σ和剪切速率γ与压力、熔体流率的关系。
仪器通过自身软件计算出高聚物的表观粘度,并得到相应的剪切速率和剪切应力,表观粘度的关系曲线图。
三、实验仪器及材料仪器:德国高特福RH25型毛细管流变仪、毛细管口模,长径比30:1,5:0.5,5:0.3;、活塞、转矩扳手、耐温润滑油、耐温手套、纯棉清洁布。
原料:PE、PP四、实验内容测定聚乙烯、聚丙烯树脂不同温度下流变性能,具体如下第一组:PE,170℃,175℃,180℃,185℃。
第二组:PE,185℃,190℃,195℃,200℃。
第三组:PP,190℃,195℃,200℃,205℃。
第四组:PP,205℃,210℃,215℃,220℃。
五、操作步骤1、开机打开仪器,电脑,等候约一分钟,待初始化结束后,显示屏出现“Refere nce drive”;2) 点击“Reference drive”进入操作界面。
聚合物流变性能测试一、实验目的1、熟悉和了解RHEOGRAPH25型流变仪的工作原理及操作方法。
2、掌握将计算机输出流动曲线(σ-γ曲线)转换为其他形式流动曲线(lg σ-lgγ)、(lg η-lgγ)的方法。
3、掌握非牛顿指数n的计算方法。
4、掌握利用Arrhenius方程计算粘流活化能Eη的方法。
二、RHEOGRAPH25型流变仪工作原理毛细管流变仪是目前发展得最成熟、应用最广的流变测量仪之一,其主要优点在于操作简单,测量准确,测量范围宽(剪切速率γ:10-2~105s-1 )。
毛细管流变仪测试聚合物流变性能基本原理:在一个无限长的圆形毛细管中,聚合物熔体在管中的流动是一种不可收缩的粘性流体的稳定层流流动,毛细管两端分压力差为△P,由于流体具有粘性,它必然受到自管体与流动方向相反的作用力,根据粘滞阻力与推动力相平衡等流体力学原理推导,可得到毛细管管壁处的剪切应力σ和剪切速率γ与压力、熔体流率的关系。
仪器通过自身软件计算出高聚物的表观粘度,并得到相应的剪切速率和剪切应力,表观粘度的关系曲线图。
三、实验仪器及材料仪器:德国高特福RH25型毛细管流变仪、毛细管口模,长径比30:1,5:0.5,5:0.3;、活塞、转矩扳手、耐温润滑油、耐温手套、纯棉清洁布。
原料:PE、PP四、实验内容测定聚乙烯、聚丙烯树脂不同温度下流变性能,具体如下第一组:PE,170℃,175℃,180℃,185℃。
第二组:PE,185℃,190℃,195℃,200℃。
第三组:PP,190℃,195℃,200℃,205℃。
第四组:PP,205℃,210℃,215℃,220℃。
五、操作步骤1、开机打开仪器,电脑,等候约一分钟,待初始化结束后,显示屏出现“Reference drive”;2) 点击“Reference drive”进入操作界面。
2、程序设定包括测试温度、熔融时间、活塞速度、毛细管的尺寸选择等参数的设置,3、测试膛升温编辑测试程序后,点击“parameter send”,开始升温,待温度达到测试温度并恒温10-15分钟;4、毛细管安装安装毛细管过程中,毛细管上的销钉必须在上方,安装时四个固定螺丝加抗磨糊后拧紧,再退回2圈,等候5-10分钟后再用扭矩扳手拧紧,扭矩扳手扭矩值设定为60N·m,PVT测试时设定为80 N.m;5、压力传感器安装选择合适的压力传感器,涂抹抗磨糊后小心插入压力传感器孔,用扳手拧紧后再退回2圈,等候5-10分钟待温度均匀后再拧紧,插上连接线;6、校准零点当插接上力传感器连接线时,仪器显示屏会自动弹出校准界面,进行传感器零点校准,或者点击“service”—“calibrate” 进行校准;7、加料加料时尽量捣实,以免出现气泡,加至料桶上方斜面下方1cm处,放上活塞杆,关闭防护门;8、测试点击软件中“start test”,此时仪器显示屏中的“test”键变绿,点击, 测试开始,仪器自动采点并绘出σ-γ曲线,采点完毕重新设定测试程序,进行下一温度点测试。
流变检测报告1. 引言流变测试是一种用于测量物质在外力作用下的变形和流动行为的实验方法。
通过分析物质的流变特性,可以得出其力学性能和流动性能等重要参数。
本报告将对流变测试的过程和结果进行详细的描述和分析。
2. 实验目的本次实验旨在通过流变测试,对不同样品的流变特性进行评估和比较。
通过分析流变曲线和流变参数,了解不同样品在外力作用下的变形和流动行为,为后续工艺和应用提供参考。
3. 实验材料和方法3.1 材料本次实验使用了三种不同的样本:A、B和C。
每种样本的组成和性质如下:•样本A:聚合物材料,用于制备塑料制品。
•样本B:金属合金,用于制造机械零件。
•样本C:食品级液体,用于饮料行业。
3.2 方法流变测试实验采用了旋转式流变仪。
具体的实验步骤如下:1.准备样本:将样本A和B切割成适当大小的试样,样本C直接使用。
2.安装试样:将试样固定在旋转式流变仪的试样夹具上。
3.流变测试设置:根据不同的样本材料和预期的流变特性,设置适当的实验参数,如转速、温度等。
4.进行测试:启动流变仪,开始进行流变测试。
实时记录样本的扭矩和变形数据。
5.数据分析:根据实验结果,绘制流变曲线并计算流变参数,如剪切应力、剪切应变、动力粘度等。
4. 实验结果和讨论4.1 流变曲线根据实验数据,我们绘制了每个样本的流变曲线。
图表展示了不同试样在不同转速下的剪切应力-剪切应变关系。
通过观察流变曲线的趋势和形状,可以获得以下结论:•样本A:聚合物材料在低剪切应变下呈现线性变化,而在高剪切应变下呈现非线性变化。
这可能是由于聚合物的分子结构导致的流动特性变化。
•样本B:金属合金在整个剪切应变范围内都表现出非线性变化。
这可能是由于金属晶粒的塑性变形导致的。
•样本C:食品级液体的流变曲线呈现出较低的剪切应力,并且在不同转速下变化不大。
这表明液体的流动性较强,不易受到外力的影响。
4.2 流变参数分析通过对实验数据的处理和计算,我们得到了每个样本的流变参数。
一、实验目的1. 了解流变学的基本原理和方法。
2. 掌握流变仪的使用方法。
3. 通过实验研究不同材料在不同条件下的流变特性。
二、实验原理流变学是研究物质在外力作用下变形和流动的科学。
流变特性实验主要研究材料在剪切应力、剪切速率、温度等条件下的黏度、弹性模量、屈服应力等参数。
本实验采用流变仪对材料进行测试,通过改变实验条件,分析材料的流变特性。
三、实验仪器与材料1. 实验仪器:流变仪、恒温水浴、电子天平、剪刀、玻璃棒等。
2. 实验材料:聚合物溶液、固体样品、水等。
四、实验步骤1. 准备实验材料:根据实验要求,配制不同浓度的聚合物溶液,准备固体样品。
2. 设置实验参数:根据实验目的,设定剪切速率、温度等参数。
3. 样品处理:将固体样品切割成所需形状,聚合物溶液用玻璃棒搅拌均匀。
4. 流变测试:将样品放入流变仪,根据设定的参数进行测试。
5. 数据处理:记录实验数据,进行数据分析。
五、实验结果与分析1. 聚合物溶液的流变特性(1)剪切速率对黏度的影响:随着剪切速率的增加,聚合物溶液的黏度逐渐降低。
在低剪切速率下,黏度降低幅度较大;在高剪切速率下,黏度降低幅度较小。
(2)温度对黏度的影响:随着温度的升高,聚合物溶液的黏度逐渐降低。
在较高温度下,黏度降低幅度较大。
2. 固体样品的流变特性(1)剪切应力对弹性模量的影响:随着剪切应力的增加,固体样品的弹性模量逐渐增大。
在低剪切应力下,弹性模量增大幅度较大;在高剪切应力下,弹性模量增大幅度较小。
(2)温度对弹性模量的影响:随着温度的升高,固体样品的弹性模量逐渐降低。
在较高温度下,弹性模量降低幅度较大。
六、实验结论1. 聚合物溶液的流变特性受剪切速率和温度的影响较大,剪切速率和温度的升高均会导致黏度的降低。
2. 固体样品的流变特性受剪切应力和温度的影响较大,剪切应力和温度的升高均会导致弹性模量的增大。
七、实验讨论1. 实验过程中,剪切速率和温度的设定对实验结果有较大影响,需根据实验目的合理设置。