信号与系统实验报告
- 格式:doc
- 大小:1.82 MB
- 文档页数:17
信号与系统软件实验实验报告一、实验目的本次信号与系统软件实验的主要目的是通过使用相关软件工具,深入理解和掌握信号与系统的基本概念、原理和分析方法,并通过实际操作和实验结果的观察与分析,提高对信号处理和系统性能的认识和应用能力。
二、实验环境本次实验使用的软件工具为_____,运行环境为_____操作系统。
计算机配置为_____处理器,_____内存,_____硬盘。
三、实验内容1、信号的表示与运算生成常见的连续时间信号,如正弦信号、余弦信号、方波信号、锯齿波信号等,并观察其波形和特征参数。
对生成的信号进行加、减、乘、除等运算,分析运算结果的波形和频谱变化。
2、系统的时域分析构建简单的线性时不变系统,如一阶惯性系统、二阶振荡系统等。
输入不同类型的信号,如阶跃信号、冲激信号等,观察系统的输出响应,并分析系统的稳定性、瞬态性能和稳态性能。
3、系统的频域分析对给定的系统进行频率响应分析,计算系统的幅频特性和相频特性。
通过改变系统的参数,观察频率响应的变化规律,并分析系统对不同频率信号的滤波特性。
4、信号的采样与重构对连续时间信号进行采样,研究采样频率对信号重构的影响。
采用不同的重构方法,如零阶保持重构、一阶线性重构等,比较重构信号与原始信号的误差。
四、实验步骤1、打开实验软件,熟悉软件的操作界面和功能菜单。
2、按照实验内容的要求,依次进行各项实验操作。
在信号表示与运算实验中,通过软件提供的函数生成所需的信号,并使用绘图功能显示信号的波形。
然后,利用软件的计算功能进行信号运算,并观察运算结果的波形。
对于系统时域分析实验,首先在软件中构建指定的系统模型,然后输入相应的激励信号,使用仿真功能获取系统的输出响应。
通过观察输出响应的波形,分析系统的性能指标,如上升时间、调节时间、超调量等。
在系统频域分析实验中,利用软件的频率响应分析工具,计算系统的幅频特性和相频特性曲线。
通过调整系统的参数,如增益、时间常数等,观察频率响应曲线的变化情况,并总结规律。
信号与系统实验实验三:信号的卷积(第三次实验)【实验目的】1. 理解卷积的物理意义;2. 掌握运用计算机进行卷积运算的原理和方法;3. 熟悉卷积运算函数conv的应用;【实验内容】给定如下因果线性时不变系统:y[n]+0.71y[n-1]-0.46y[n-2]-0.62y[n-3=0.9x[n]-0.45x[n-1]+0.35x[n-2]+0.002x[n-3](1)不用impz函数,使用filter命令,求出以上系统的单位冲激响应h[n]的前20个样本;代码如下:clear all;N=[0:19];num=[0.9 -0.45 0.35 0.002];den=[1 0.71 -0.46 -0.62];h=filter(num,den,N);stem(N,h);xlabel('ʱ¼äÐòºÅ');ylabel('Õñ·ù');title('µ¥Î»³å¼¤ÏìÓ¦');grid;图像如下:(2)得到h[n]后,给定x[n],计算卷积输出y[n];并用滤波器h[n]对输入x[n]滤波,求得y1[n];代码如下:clear all;N=[0:19];num=[0.9 -0.45 0.35 0.002];den=[1 0.71 -0.46 -0.62];h=filter(num,den,N);x=[1 -2 3 -4 3 2 1];y=conv(h,x);n=0:25;subplot(2,1,1);stem(n,y);xlabel('时间序号n');ylabel('振幅');title('用卷积得到的输出');grid;x1=[x zeros(1,19)];y1=filter(h,1,x1);subplot(2,1,2);stem(n,y1);xlabel('时间序号n ');ylabel('振幅');title('用滤波得到的输出');grid;图像如下:(3)y[n]和)y1[n]有差别吗?为什么要对x[n]进行补零得到的x1[n]来作为输入来产生y1[n]?(4)思考:设计实验,证明下列结论① 单位冲激信号卷积:)()(*)(t f t f t =δ)()(*)(00t t f t f t t -=-δ代码如下:clc;clear all ;n=[0:20];d=(n==0);f=sin(n);f1=conv(d,f);subplot(3,1,1);f1=f1(1:21);stem(n,f1);title('¦Ä[n]*f[n]');grid;subplot(3,1,2);stem(n,f);title('f[n]');grid;subplot(3,1,3);stem(n,f-f1);title('¦Ä[n]*f[n]-f[n]');grid;图像如下:② 卷积交换律:)(*)()(*)()(1221t f t f t f t f t f ==代码如下:clc;clear all;n=0:30;f1=sin(n);f2=cos(n);y1=conv(f1,f2);y1=y1(1:31);y2=conv(f2,f1);y2=y2(1:31); subplot(3,1,1); stem(n,y1);title('f1*f2'); grid;subplot(3,1,2); stem(n,y2);title('f2*f1'); grid;subplot(3,1,3);y3=(y1-y2)>10^-14; stem(n,y3);grid;图像如下:③卷积分配律:)(*)()(*)()]()([*)(3121321t f t f t f t f t f t f t f +=+代码如下:clc;clear all ;n=1:50;f1=(-1).^n;f2=cos(n);f3=sin(n);y1=conv(f1,(f2+f3));y1=y1(1:50);y2=conv(f1,f2)+conv(f1,f3);y2=y2(1:50);subplot(3,1,1);stem(n,y1);title('f1*[f2+f3]');grid;subplot(3,1,2);stem(n,y2);title('f1*f2+f1*f3');grid;subplot(3,1,3);y3=(y1-y2)>10^-14;stem(n,y3);title('f1*[f2+f3]-f1*f2+f1*f3');grid;图像如下:【实验分析】:1.y[n]和)y1[n]有差别吗?为什么要对x[n]进行补零得到的x1[n]来作为输入来产生y1[n]?答:y[n]和)y1[n]是对同一个系统输入的响应,该系统是因果线性时不变系统,所以y[n]和)y1[n]没有差别;由于y[n]和)y1[n]没有差别,滤波器h[n]对x[n]滤波得到的y1[n]和用卷积计算得到的y[n]是同一个信号;2.卷积分配率程序代码中f1的n时间序号长度n为[1:50],f2的n时间序号长度为[1:50],所以输出完整信号的长度为99,而程序中输出长度仅50,说明这只是信号的部分波形。
MATLAB信号与系统实验报告19472[五篇范文]第一篇:MATLAB信号与系统实验报告19472信号与系统实验陈诉(5)MATLAB 综合实验项目二连续系统的频域阐发目的:周期信号输入连续系统的响应可用傅里叶级数阐发。
由于盘算历程啰嗦,最适适用MATLAB 盘算。
通过编程实现对输入信号、输出信号的频谱和时域响应的盘算,认识盘算机在系统阐发中的作用。
任务:线性连续系统的系统函数为11)(+=ωωjj H,输入信号为周期矩形波如图 1 所示,用MATLAB 阐发系统的输入频谱、输出频谱以及系统的时域响应。
-3-2-1 0 1 2 300.511.52Time(sec)图 1要领:1、确定周期信号 f(t)的频谱nF&。
基波频率Ω。
2、确定系统函数 )(Ω jn H。
3、盘算输出信号的频谱n nF jn H Y&&)(Ω=4、系统的时域响应∑∞-∞=Ω=nt jnn eY t y&)(MATLAB 盘算为y=Y_n*exp(j*w0*n“*t);要求(画出 3 幅图):1、在一幅图中画输入信号f(t)和输入信号幅度频谱|F(jω)|。
用两个子图画出。
2、画出系统函数的幅度频谱|H(jω)|。
3、在一幅图中画输出信号y(t)和输出信号幅度频谱|Y(jω)|。
用两个子图画出。
解:(1)阐发盘算:输入信号的频谱为(n)输入信号最小周期为=2,脉冲宽度,基波频率Ω=2π/ =π,所以(n)系统函数为因此输出信号的频谱为系统响应为(2)步伐:t=linspace(-3,3,300);tau_T=1/4;%n0=-20;n1=20;n=n0:n1;%盘算谐波次数20F_n=tau_T*Sa(tau_T*pi*n);f=2*(rectpuls(t+1.75,0.5)+rectpuls(t-0.25,0.5)+rectpuls(t-2.25,0.5));figure(1),subplot(2,1,1),line(t,f,”linewidth“,2);%输入信号的波形 axis([-3,3,-0.1,2.1]);grid onxlabel(”Time(sec)“,”fontsize“,8),title(”输入信号“,”fontweight“,”bold“)%设定字体巨细,文本字符的粗细text(-0.4,0.8,”f(t)“)subplot(2,1,2),stem(n,abs(F_n),”.“);%输入信号的幅度频谱xlabel(”n“,”fontsize“,8),title(”输入信号的幅度频谱“,”fontweight“,”bold“)text(-4.0,0.2,”|Fn|“)H_n=1./(i*n*pi+1);figure(2),stem(n,abs(H_n),”.“);%系统函数的幅度频谱xlabel(”n“,”fontsize“,8),title(”系统函数的幅度频谱“,”fontweight“,”bold“)text(-2.5,0.5,”|Hn|“)Y_n=H_n.*F_n;y=Y_n*exp(i*pi*n”*t);figure(3),subplot(2,1,1),line(t,y,“linewidth”,2);%输出信号的波形 axis([-3,3,0,0.5]);grid onxlabel(“Time(sec)”,“fontsize”,8),title(“输出信号”,“fontweight”,“bold”)text(-0.4,0.3,“y(t)”)subplot(2,1,2),stem(n,abs(Y_n),“.”);%输出信号的幅度频谱xlabel(“n”,“fontsize”,8),title(“输出信号的幅度频谱”,“fontweight”,“bold”)text(-4.0,0.2,“|Yn|”)(3)波形:-3-2-1 0 1 2 300.511.52Time(sec)输入信号f(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输入信号的幅度频谱|Fn|-20-15-10-5 0 5 10 15 2000.10.20.30.40.50.60.70.80.91n系统函数的幅度频谱|Hn|-3-2-1 0 1 2 300.10.20.30.4Time(sec)输出信号y(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输出信号的幅度频谱|Yn| 项目三连续系统的复频域阐发目的:周期信号输入连续系统的响应也可用拉氏变更阐发。
《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。
具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。
2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。
3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。
4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。
二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。
2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。
3、计算机及相关软件:用于进行数据处理和分析。
三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。
连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。
常见的信号类型包括正弦信号、方波信号、脉冲信号等。
2、线性时不变系统线性时不变系统具有叠加性和时不变性。
叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。
3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。
对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。
2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。
3、在示波器上观察并记录不同信号的波形、频率和幅度。
信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。
2.通过软件工具绘制不同信号的时域和频域图像。
3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。
三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。
2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。
3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。
4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。
四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。
通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。
此外,通过滤波器的处理,我也了解了滤波对信号的影响。
通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。
信号与系统实验报告实验一连续时间信号1.1表示信号的基本MATLAB函数1.2连续时间负指数信号1、对下面信号创建符号表达式x(t)=sin(2πt/T)cos(2πt/T)。
对于T=6,8和16,利用ezplot 画出0<=t<=32内的信号。
什么是x(t)的基波周期?x1=sym('sin(2*pi*t/T)');x2=sym('cos(2*pi*t/T)');x=x1*x2x4=subs(x,4,'T');ezplot(x4,[0,32]);x8=subs(x,8,'T');ezplot(x8,[0,32]);x16=subs(x,16,'T');ezplot(x16,[0,32]);T=4 T=8T=162、对下面信号创建一个符号表达式x(t)=exp(-at)cos(2πt)。
对于a=1/2,1/4,1/8,利用ezplot确定td,td为|x(t)|最后跨过0.1的时间,将td定义为该信号消失的时间。
利用ezplot对每一个a值确定在该信号消失之前,有多少个完整的余弦周期出现,周期数目是否正比于品质因素Q=(2π/T)/2a?x1=sym('exp(-a*t)');x2=sym('cos(2*pi*t)');x=x1*x2;xa1=subs(x,1/2,'a');ezplot(xa1);xa2=subs(x,1/4,'a');ezplot(xa2);xa3=subs(x,1/8,'a');ezplot(xa3);a=1/2 a=1/4a=1/83、将信号x(t)=exp(j2πt/16)+exp(j2πt/8)的符号表达式存入x中。
函数ezplot不能直接画出x(t),因为x*(t)是一个复数信号,实部和虚部分量必须要提取出来,然后分别画出他们。
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。
二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。
它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。
2.实验线路检查无误后,打开实验箱右侧总电源开关。
3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。
4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。
信号与系统实验报告信号与系统实验报告姓名: 学号:软件部分:表示信号与系统的MATLAB 函数、工具箱一、实验项目名称:表示信号、系统的MATLAB 函数、工具箱 二、实验目的与任务:目的:1、加深对常用离散信号的理解;2、熟悉表示信号的基本MATLAB 函数。
任务:基本MATLAB 函数产生离散信号;基本信号之间的简单运算;判断信号周期。
三、实验原理:利用MATLAB 强大的数值处理工具来实现信号的分析和处理,首先就是要学会应用MATLAB 函数来构成信号。
四、实验内容及步骤:常见的基本信号可以简要归纳如下: 实验内容(一)、编制程序产生上述5种信号(长度可输入确定),并绘出其图形。
其中5种信号分别为单位抽样序列、单位阶跃序列、正弦序列、指数序列和复正弦序列。
实验内容(二)、在[0,31]出下列图像1223[]sin()cos()44[]cos ()4[]sin()cos()48nnx n nx n n nx n πππππ===五、项目需用仪器设备名称:计算机、MATLAB 软件。
六、所需主要元器件及耗材:无七、实验程序及数据函数程序图片单位冲击函数x=zeros(1,10); x(1)=1;stem(x)单位阶跃函数x=ones(1,30); plot(x)正弦序列n=0:30-1;x=sin(2*pi*n/10);stem(x)x=cos(1/4*pi*n).*cos(1/4*pi*n) ;stem(x)复正弦序列n=0:29;x=exp(j*5*n); stem(x)指数序列n=0:10; x=2.^n; stem(x)函数 程序图片1223[]sin()cos()44[]cos ()4[]sin()cos()48n nx n nx n n nx n πππππ=== n=0:30; x=sin(1/4*pi*n).*cos(1/4*pi*n); stem(x) x=cos(1/4*pi*n).*cos(1/4*pi*n);stem(x)x=sin(1/4*pi*n).*cos(1/8*pi*n);stem(x)实验项目六:离散系统的冲激响应、卷积和一、实验项目名称:离散系统的冲激响应、卷积和 二、实验目的与任务:目的:加深对离散系统冲激响应、卷积和分析方法的理解。
任务:利用MATLAB 函数conv 、filter 计算卷积及系统输出。
三、实验原理:在离散时间情况下,最重要的是线性时不变(LTI )系统。
线性时不变系统的输入输出关系可通过冲激响应][n h 表示∑∞-∞=-=*=k k n h k x n h n x n y ][][][][][其中*表示卷积运算,MATLAB 提供了求卷积函数conv ,即y =conv(x,h)这里假设x [n ]和h [n ]都是有限长序列。
如果x [n ]仅在1-+≤≤x x x N n n n 区间内为非零,而h [n ]仅在1-+≤≤h h h N n n n 上为非零,那么y [n ]就仅在2)()(-+++≤≤+h x h x h x N N n n n n n内为非零值。
同时也表明conv 只需要在上述区间内计算y [n ]的1-+h x N N 个样本值。
需要注意的是,conv 并不产生存储在y 中的y [n ]样本的序号,而这个序号是有意义的,因为x 和h 的区间都不是conv 的输入区间,这样就应负责保持这些序号之间的联系。
filter 命令计算线性常系数差分方程表征的因果LTI 系统在某一给定输入时的输出。
具体地说,考虑一个满足下列差分方程的LTI 系统:∑∑==-=-Mm m Nk km n x b k n y a][][式中x [n ]是系统输入,y [n ]是系统输出。
若x x [n ]的一个MATLAB 向量,而向量a 和b 包含系数k a 和k b ,那么y=filter(b,a,x)就会得出满足下面差分方程的因果LTI 系统的输出:∑∑==-+=-+Mm N k m n x m b k n y k a 0][)1(][)1(四、实验内容及步骤实验内容(一)、考虑有限长信号1,05[]0,n x n n ≤≤⎧=⎨⎩其余,05[]0,n n h n n ≤≤⎧=⎨⎩其余(a)。
(b) 接下来利用conv的非零样本值,并将这些样本存入向量y 中。
构造一个标号向量ny ,对应向量y 样本的序号。
用stem(ny,y)画出这一结果。
验证其结果与(a )是否一致。
实验内容(二)、对以下差分方程描述的系统1.]2[2]1[][5.0][-+-+=n x n x n x n y2.][2]1[8.0][n x n y n y +-=3.]1[2]1[8.0][-=--n x n y n y分别利用filter 计算出输入信号][][n nu n x =在41≤≤n 区间内的响应y [n ]。
五、项目需用仪器设备名称:计算机、MATLAB 软件。
六、所需主要元器件及耗材:无 七、实验程序及数据函数 程序 图形1,05[]0,n x n n ≤≤⎧=⎨⎩其余 ,05[]0,n n h n n ≤≤⎧=⎨⎩其余 y[n]=x[n]*h[n] x=[1 1 1 1 1 1];h=[0 1 2 3 4 5];c=conv(x,h);M=length(c)-1;n=0:1:M;stem(n,c,'fill');grid on;xlabel('Time indexn');函数程序 图片]2[2]1[][5.0][-+-+=n x n x n x n yb=[0.5 1 2];a=[1 0 0]; y=filter(b,a,x);Figure(1); stem(y);][2]1[8.0][nxnyny+-=b=[2 0 0];a=[1 -0.80];y=filter(b,a,x);figure(1);stem(y);]1[2]1[8.0][-=--nxnyny b=[0 2 0]; a=[1 -0.8 0];y=filter(b, a,x);figure(1); stem(y);八、实验结论y=filter(p,d,x)用来实现差分方程,d表示差分方程输出y的系数,p表示输入x的系数,而x表示输入序列。
输出结果长度数等于x的长度。
y=conv(x,h)是用来实现卷级的,对x序列和h序列进行卷积,输出的结果个数等于x的长度与h的长度之和减去1。
硬件部分:实验项目三:连续系统的幅频特性一、实验项目名称:连续系统的幅频特性测量二、实验目的与任务:目的:使学生对系统的频率特性有深入了解。
任务:记录不同频率正弦波通过低通、带通滤波器的响应波形,测量其幅度,拟合出频率响应的幅度特性;分析两个滤波器的截止频率。
三、实验原理:正弦波信号)cos()(0t A t x ω=输入连续LTI 系统,输出)(t y 仍为正弦波信号。
)(cos()()(000ωωωj H t j H A t y ∠+=)通过测量输入)(t x 、输出)(t y 的正弦波信号幅度,计算输入、输出的正弦波信号幅度比值,可以得到系统的幅频特性在0ω处的测量值)(0ωj H 。
改变0ω可以测出不同频率处的系统幅频特性。
四、实验内容及步骤打开SSP.EXE ,选择“实验三”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。
实验内容(一)、低通滤波器的幅频特性测量 实验步骤:1、 按实验箱键盘“3”选择“正弦波”,再按“+”或“-”依次选择频率。
2、 连接接口区的“输入信号1”和“输出信号”。
点击按钮,观察输入正弦波。
将正弦波频率值和幅度值(Vpp/2, Vpp 为峰-峰值)记录于表中。
3、 按下图连接各模块。
)(ωj H )(x )(t y接口区输入信号1输入信号2输出信号采样信号备用备用低通滤波器U11输入S11输出S124、 点击,观察输入正弦波通过连续系统的响应波形;适当调整X 、Y 轴的分辨率。
将输出正弦波的幅度值(Vpp/2, Vpp 为峰-峰值)记录于表中。
5、 重复步骤1~4,依次改变正弦波的频率,记录输入正弦波的幅度值和响应波形的幅度值于表1中。
实验内容(二)、带通滤波器的幅频特性测量 实验步骤:重复实验内容(一)的实验步骤1~5。
注意在第3步按下图连接各模块。
接口区输入信号1输入信号2输出信号采样信号备用备用高通滤波器U21输入S31输出S32低通滤波器U11输入S11输出S12将输入正弦波频率值、幅度值和响应波形的幅度值记录于表2中。
五、项目需用仪器设备名称:数字信号处理实验箱、信号与系统实验板的低通滤波器模块U11、高通滤波器模块U21、PC 机端信号与系统实验软件、+5V 电源六、所需主要元器件及耗材:连接线、计算机串口连接线 七、实验数据:八、实验结论:实验内容(一)中,随着频率的升高,输出幅度逐渐减小。
实验内容(二)中,明显有一个通频带,所以当信号从小变大的时候,输出幅度是先逐渐增大,后又逐渐减小。
九、心得体会在两个实验内容中,明显可以看出幅频特性的不同。
第一个是起着低通滤波器的作用,第二个则是带通滤波器。
因为高通滤波器是只让达到一定值的频率通过,低通滤波器是只让小于一定值的频率通过。
所以当低通滤波器和高通滤波器串联的时候,就只能使这两个滤波器共有的通频范围通过,故起到了带通滤波器的作用。
实验项目四:连续信号的采样和恢复一、实验项目名称:连续信号的采样和恢复二、实验目的与任务目的:1、使学生通过采样保持电路理解采样原理。
2、使学生理解采样信号的恢复。
任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。
三、实验原理:实际采样和恢复系统如下图所示。
Ts πω2=2/)2/sin(τωτωτs s k k k T a =()s x t t⊗()x t )(t P T ()S x t t()x t 0......)(t P T tτT1)(ωj H r )(t y采样脉冲: 其中,T <<τ采样后的信号:∑∞-∞=-=−→←k s S FS k j X T j X t x )((1)()(ωωω 当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的信号)(t x S 恢复原始信号)(t x 。
四、实验内容及步骤打开SSP.EXE ,选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。
实验内容(一)、采样定理验证 实验步骤:1、连接接口区的“输入信号1”和“输出信号”。
2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz ”。
按“F4”键把采样脉冲设为10kHz 。