第三章离散傅里叶变换(DFT)
- 格式:ppt
- 大小:2.87 MB
- 文档页数:5
第三章离散傅里叶变换DFT: Discrete Fourier Transform第三章学习目标z理解傅里叶变换的几种形式z掌握离散傅里叶变换(DFT)及性质,圆周移位、共轭对称性,掌握圆周卷积、线性卷积及两者之间的关系z掌握频域抽样理论z掌握DFT的应用引言DFT要解决两个问题:一是频谱的离散化;二是算法的快速计算(FFT)。
这两个问题都是为了使计算机能够实时处理信号。
Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换可以得出一般的规律:一个域的离散对应另一个域的周期延拓;一个域的连续必定对应另一个域的非周期。
−jwndw e jwn 时域离散、非周期频域连续、周期z 时域周期化→频域离散化z 时域离散化→频域周期化离散连续周期性非周期性引言Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换离散时间、离散频率—周期序列的傅里叶级数由DTFT到DFS离散时间、离散频率的傅立叶级数(DFS)由上述分析可知,对DTFT,要想在频域上离散化,那么在时域上必须作周期延拓。
对长度为M的有限长序列x(n),以N为周期延拓(N≥M)。
注意:周期序列的离散傅里叶级数(DFS)只对有限长序列作周期延拓或周期序列成立。
……四种傅里叶变换形式的归纳时间函数频率函数连续和非周期非周期和连续连续和周期(T0)非周期和离散(Ω=2π/T)离散(T)和非周期周期(Ωs=2π/T)和连续离散(T)和周期(T0)周期(Ωs=2π/T)和离散(Ω=2π/T)在进行DFS 分析时,时域、频域序列都是无限长的周期序列周期序列实际上只有有限个序列值有意义长度为N 的有限长序列可以看成周期为N 的周期序列的一个周期(主值序列)借助DFS 变换对,取时域、频域的主值序列可以得到一个新的变换—DFT ,即有限长序列的离散傅里叶变换3.1 离散傅里叶变换(DFT )的定义及物理意义——有限长序列的离散频域表示x(n)的N 点DFT 是¾x(n)的z 变换在单位圆上的N 点等间隔抽样;¾x(n)的DTFT 在区间[0,2π)上的N 点等间隔抽样。
第三章离散傅立叶变换(DFT)3.1 引言有限长序列在数字信号处理是很重要的一种序列,当然可以用Z变换和傅里叶变换来研究它,但是,可以导出反映它的"有限长"特点的一种有用工具是离散傅里叶变换(DFT)。
离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数字信号处理的算法中起着核心的作用。
有限长序列的离散傅里叶变换(DFT)和周期序列的离散傅里叶级数(DFS)本质上是一样的。
为了更好地理解DFT,需要先讨论周期序列的离散傅里叶级数DFS。
而为了讨论离散傅里叶级数及离散傅里叶变换,我们首先来回顾并讨论傅里叶变换的几种可能形式。
(连续时间信号:如果在讨论的时间间隔内,除若干不连续点之外,对于任意时间值都可给出确定的函数值,此信号就称为连续时间信号。
)一、连续时间、连续频率——连续傅立叶变换(FT)设x(t)为连续时间非周期信号,傅里叶变换关系如下图所示:可以看出时域连续函数造成频域是非周期的谱,而时域的非周期造成频域是连续的谱。
二、连续时间,离散频率------傅 里 叶 级 数设f(t)代表一个周期为T 1的周期性连续时间函数,f(t)可展成傅里叶级数,其傅里叶级数的系数为n F ,f(t)和n F 组成变换对,表示为:tjn n n e F t f 1)(Ω∞-∞=∑=(112Ω=πT )dte tf T F TT t jn n ⎰-Ω-=221111)(1注意符号:如果是周期性的采样脉冲信号p(t),周期用T 表示(采样间隔)。
采样脉冲信号的频率为Ts π2=Ω可以看出时域连续函数造成频域是非周期的谱,而时域的周期造成频域是离散的谱三、离散时间,连续频率------序列的傅里叶变换正变换:DTFT[x(n)]=()()j nj n X e x n eωω∞-=-∞=∑反变换:DTFT-11[()]()()2j n j j X e x n X e e d πωωωπωπ-==⎰)(ωj e X 级数收敛条件为|()j nn x n eω∞-=-∞∑|=∞<∑∞-∞=n n x )(可以看出时域离散函数造成频域是周期的谱,而时域的非周期造成频域是连续的谱四、离散时间,离散频率------离散傅里叶变换上面讨论的三种傅里叶变换对,都不适用在计算机上运算,因为至少在一个域(时域或频域)中,函数是连续的。