f (τ )δ (τ − t0 )dτ
f (τ )δ (τ − t0 )dτ
7
第一和三项为零, 第一和三项为零,对中间一项应用中值定理得
∫
∞
即可。 上的某个值, 其中 ξ 为区间 (t0 − ε ,t0 + ε ) 上的某个值,令 ε → 0 即可。 (4) 连续分布的质量、电荷或持续力也可用 连续分布的质量、 划分为许多小区间段,某个 [τ ,τ 划分为许多小区间段,
ρl ( x)dx = ∫
m dx = m l
∞
∞
−∞
4
如果不求积分,而先求极限, 如果不求积分,而先求极限,则有
m x 0 ρ ( x) = lim ρ l ( x) = lim rect ( ) = l →0 l →0 l l ∞
( x ≠ 0) ( x = 0)
对于质点、点电荷、瞬时力这类集中于空间某一点或时间的 对于质点、点电荷、瞬时力这类集中于空间某一点或时间的 质点 某个瞬时时刻的抽象模型, 某个瞬时时刻的抽象模型,物理学中引入 δ 函数描述
3
(一)
δ
函数
质量m均匀分布在长为 的线段 质量 均匀分布在长为l的线段 均匀分布在长为 的线段[-l/2,l/2]上,则线密度 ρ l (x ) 上
0 ρl ( x)= m / l
(|x| > l/ 2) (|x| ≤ l/ 2)
l 2 l − 2
m x ρl ( x) = rect ( ) l l
∫∫∫
1 δ (r − c)e − ik ⋅r dxdydz r
化成球坐标计算,以k的方向作为球坐标系的极轴方向 化成球坐标计算, 的方向作为球坐标系的极轴方向
∞ π 2π 1 1 1 δ (r − c) = δ (r − c)e −ikr cosθ ⋅ r 2 sin θdrdθdϕ 3 ∫r = 0 ∫ = 0 ∫ = 0 r θ ϕ r (2π ) ∞ π 1 = δ (r − c)e −ikr cosθ rd (− cosθ )dr (2π )2 ∫r =0 ∫θ =0 ∞ 1 1 = δ (r − c) (eikr − e −ikr )dr ik (2π )2 ∫r =0 1 1 ikc −ikc = (e − e ) 2 11 (2π ) ik