线性系统理论--考试资料
- 格式:pdf
- 大小:5.73 MB
- 文档页数:12
《线性系统理论基础》复习提纲第1章线性系统的状态空间描述1、基本概念状态(向量)状态空间状态轨迹状态空间模型(表示)状态方程、输出方程系统矩阵、控制矩阵、前馈矩阵、输出矩阵状态结构(方框)图线性系统时不变(定常)系统、时变系统连续时间系统、离散时间系统 状态线性变换矩阵的特征值、矩阵的特征向量 对角线标准型、约当标准型 模态标准型 正则型矩阵 范德蒙矩阵 传递函数矩阵2、知识要点%%知识点1:根据物理规律建立状态空间模型♦ 简单机械系统 ♦简单电气系统参考例题:例2.1.1,例2.1.2(P8)%%知识点2:微分方程模型转化为状态空间模型♦微分方程中不含输入导数项给定 ()(1)110n n n y a ya y a y bu --++++=&L ,选取状态向量12(1)n n x y x y x y -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦&M M , 则有状态方程: 1122011010010n n n x x x x u x a a a x b -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦&&M O M M M&L输出方程: []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x y M Λ21001 例2.1.3 (注意:方框图在没有要求时可以不画出) ♦微分方程中包含输入函数导数项,且m n <给定()(1)()(1)110110n n m m n m m ya y a y a yb u b u b u b u ----++++=++++&&L L ,m n <,将其转化为()(1)110()(1)110n n n m m m m y a y a y a y u y b yb y b y b y ----⎧++++=⎪⎨=++++⎪⎩&%%%%L &%%%%L ,选取状态向量12(1)n n x yx y x y-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦%&%M M %,则有状态方程 120110100101n n x x u x a a a -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦&&M O M M &L 输出方程 12011[,,,,0,,0]m n m n x x y b b b x --⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦L L 123M例2.1.4 ♦ 微分方程中包含输入函数导数项,且n m =若()(1)()(1)110110n n n n n n n ya y a y a yb u b u b u b u ----++++=++++&&L L ,让n y y b u =-%,则转化为如下微分方程的形式()(1)(1)(1)110111100()()()n n n n n n n n n y a y a y a y b a b u b a b u b a b u -----++++=-++-+-%%%%&L L 。
R C 2《线性系统理论》试卷及答案1、(20分)如图所示RLC 网络,若e(t )为系统输入变量r (t),电阻R 2两端的电压为输出量y(t),选定状态变量为 x 1(t)=v 1(t ),x 2(t )=v 2(t),x 3(t)=i (t)要求列写出系统的状态空间描述。
2、(15分)求出下面的输入输出描述的一个状态空间描述。
y (4)+4y (3)+3y (2)+7y (1)+3y=u (3)+ 2u (1)+ 3u3、(15分)计算下列线性系统的传递函数。
[]210X 13101X y -⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦=4、(10分)分析下列系统的能控性.0111X X u a b •⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦5、(10分)分析下列系统的能观性。
[]1110a X X y Xb •⎡⎤==-⎢⎥⎣⎦6、(15分)判断下列系统的原点平衡状态x e 是否大范围渐近稳定。
12221123x x x x x x==--7、(15分)已知系统的状态方程为221012000401X X u •--⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦试确定一个状态反馈阵K,使闭环极点配置为λ1*=—2、λ2*=-3、λ3*=—4.答案:1、(20分)如图所示RLC 网络,若e (t )为系统输入变量r (t ),电阻R 2两端的电压为输出量y (t ),选定状态变量为 x 1(t)=v 1(t),x 2(t )=v 2(t ),x 3(t)=i (t )要求列写出系统的状态空间描述。
2、(15分)求出下面的输入输出描述的一个状态空间描述。
列出向量表示形式解出解出解出r x x x L R x x x rx LR x x x xx x C R x x x C xC x r x R x L L LL⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--=-=+=+==++1321113211311132122222112211333113000xy x xLy (4)+4y (3)+3y (2)+7y (1)+3y=u (3)+ 2u (1)+ 3u[]得出了状态空间表达式列出向量表示形式,就求导,有选取状态变量令有令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=++=⎪⎪⎩⎪⎪⎨⎧+----=========⎩⎨⎧++==++++++++=++++++===43211025233375y ~y ~x y ~x y ~...y ~x y ~x y ~3y ~2y ~y ~3y ~7y ~3y ~4y ~u 3734p 1y ~3734p 32p y d/dtp 4214321(4)43(2)22(1)1(3)4(1)21(1)(3)(1)(2)(3)(4)2342343x x x x x x x y u x x x x x x x x y u p p p u p p p p(完整word 版)《线性系统理论》试卷及答案3、(15分)计算下列线性系统的传递函数.[]Xy u X 10103112X =⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=[][][]计算得出传递函数⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-------=-=⎥⎦⎤⎢⎣⎡-------=⎥⎦⎤⎢⎣⎡--=--==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--==⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=----1021131)3)(2(110)()(21131)3)(2(13112)()()(1010311210103112X 1111s s s s B A Is C s G s s s s s s A Is BA Is C s G CB A Xy u X(完整word 版)《线性系统理论》试卷及答案4、(10分)分析下列系统的能控性。
《线性系统理论》课程练习题《线性系统理论》课程练习题姓名___________ 学号__________ 专业__________ 1. 根据下列单输入单输出线性定常系统的微分方程或传递函数描述:(1)(3)(2)(1)(2)(1)23532 y y y y u u u +++=++(2)332287 (s)524s sgs s s++=+++列写其状态空间表达式.2.关于矩阵指数函数的性质与计算:(1) 列举矩阵指数函数Ate的基本性质(至少5条);(2) 若已知22222222t t t tAtt t t te e e eee e e e----------= ?--,试计算矩阵A.3.给定一个连续时间线性定常系统,设其约当规范形为2100021002040200731000311030412 02010010011042011001x x uy x=+ ? ? ? ?- ? ?- ? ?-= ? ???试判断其能控性与能观性.4.关于连续时间定常系统的稳定性判据:(1) 描述下列连续时间定常系统的特征值判据与李亚谱诺夫判据;0,(0),0x A x x x t ==≥ (2) 判别下列自治系统平衡状态的渐近稳定性.1123x x -??= ?-??5. 关于极点配置定理与算法:(1) 简述单输入n 维连续时间定常系统的极点配置定理;(2) 描述单输入连续时间定常系统的状态反馈极点配置算法.。
1、已知线性定常系统状态方程为:Ax x =.其中,⎥⎦⎤⎢⎣⎡-=2310A (1)采用线性变换化A 为对角型;32231det )det(2-+=⎥⎦⎤⎢⎣⎡+--=-s s s s A SI 特征值:1,321=-=λλ鉴于系统矩阵是能控规范型,且特征值互异,故取变化矩阵⎥⎦⎤⎢⎣⎡-=1311P ⎥⎦⎤⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=--13,41434141 11AP P A P 故有则(2)求出状态转移矩阵)(t Φ;⎥⎦⎤⎢⎣⎡+--=-231)(s sA SI⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++-++--++--++=⎥⎦⎤⎢⎣⎡+-+=--=--141343143343141341143341312)1)(3(1)()()(1s s s s s s s s s s s s A SI A SI adj A SI (主对换,负变号)()[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+-+=-=Φ∴------t t tt t t tt e e e e e e e e A SI L t 4143434341414341)(333311 (3)初始状态T x ]10[)0(=时,写出系统齐次状态方程)(t x 。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-=Φ==--t t t t Ate e e e X t X e t X 41434141)0()()0()(332、已知系统方程为:[]x y u x x 110,121201112201=⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⋅(1)写出对偶系统的状态空间描述;;(2)写出原系统的能控矩阵c Q 、能观矩阵o Q ;(3)写出对偶系统的能控矩阵c Q 、能观矩阵o Q ;(4)运用对偶原理,判断原系统及其对偶系统的状态能控、能观测性。
原系统 :能控性: 能观测性:rank( )=3=n即原系统属于完全能控和完全能观系统。
对偶系统 : 根据对偶原理完全能控 完全能观测 完全能观测 完全能控推出,对偶系统属于完全能控和完全能观系统。
空军工程大学2012年博士研究生入学试题考试科目:线性系统理论(A卷)科目代码 3002 说明:答题时必须答在配发的空白答题纸上,答题可不抄题,但必须写清题号,写在试题上不给分; 考生不得在试题及试卷上做任何其它标记,否则试卷作废,试题必须同试卷一起交回。
一、(20分每题2分)判断题(√正确或×错误)1、单输入输出系统的状态变量描述非唯一,则系统的输出函数y(t)也非唯一。
2、状态反馈不改变系统的可观测性。
3、线性系统经非奇异线性变换后,其输出函数一定和原来的相同。
4、线性系统经非奇异线性变换后,其特征值一定和原来的系统相同。
5、若系统状态可控,则系统的输出可控。
6、一个线性系统Ⅰ和它的对偶系统Ⅱ,若线性系统Ⅰ可控,则它的对偶系统Ⅱ可控。
7、矩阵(sI-A)的逆矩阵必存在。
8、传递函数方法求出的系统响应,一定和状态方程方法求出的系统响应相同。
9、若系统在经典意义下稳定,则系统是Lyapunov稳定,BIBO稳定。
10、连续时间线性定常系统经过时间离散化之后,其可控、可观性保持不变。
二、(15分)写出如图系统状态空间表达式,并计算系统的极点(特征值)。
三、(20分)已知齐次状态方程xAx = ,其状态转移矩阵为 22222()222t tt t t t t t e e e e t e ee e φ--------⎡⎤--=⎢⎥-+-+⎣⎦,要求 1、计算系统矩阵A ; 2、计算系统特征值,确定系统是否内部稳定?3、设初态[](0)11T x =-,计算t=1s 时的状态x(1) ;4、若阵[]01T B =,[]10C =,计算系统的传递函数()()Y s U s 。
四、(15分)已知系统的动态方程为[]11122233301000010,5504631x x x x x u y x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+ =⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦1、 分析该系统的能控性和能观性;2、 若系统不完全能控或不完全能观,做相应的能控性或能观性分解。
一、给定多项式矩阵如下:22121()12s s s s D s s s ⎡⎤⎢⎥⎢⎥⎣⎦++++=++ 1. 计算矩阵的行次数,判断系统是否行既约?2. 计算矩阵的列次数,判断系统是否列既约?3. 寻找单模矩阵,将多项式矩阵()D s 化为史密斯型。
方法1、 进行初等变换成二、设系统的传递函数矩阵为右MFD 1()()N s D s -,其中:210()21s D s s s s ⎡⎤⎢⎥⎢⎥⎣⎦-=+-+,()11N s s s ⎡⎤⎣⎦=-+ 试判断{}(),()N s D s 是否右互质;如果不是右互质,试通过初等运算找出其最大右公因子。
最大右公因子进行列变换可得()0R s ⎡⎤⎢⎥⎣⎦三、给定()G s 的一个左MFD 为:121010()1121s s G s s s s -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-+=+-+ 试判断这个MFD 是否是最小阶的;如果不是,求出其最小阶MFD 。
四、确定下列传递函数矩阵的一个不可简约左MFD:2110()1022s ss G s s s s s ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦+=+++五、给定系统的传递函数矩阵为223(1)(2)(1)(2)()31(1)(2)(2)s s s s s s G s s s s s s ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦+++++=+++++ 试计算出相应的评价值,并写出其史密斯--麦克米伦型。
六、给定传递函数矩阵如下:22221156()125343s s s s s G s s s s s ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦+-++=++++ 试定出其零、极点,并计算出其结构指数。
七、给定系统的传递函数矩阵如下:22211154()143712s s s s G s s s s s ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦+-++=++++ 试求出一个控制器型实现。
八、确定下列传递函数矩阵()G s 的一个不可简约的PMD22141()14332s s s s G s s s s s ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦++-=++++九、给定系统的传递函数矩阵如下:12243011()22121s s s s G s s s s s -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦++-+=+++试设计一个状态反馈K,使得状态反馈系数的极点为:12λ*=-, 23λ*=-, 4,542j λ*=-±。
辽宁科技大学工程硕士研究生期末考试试题用纸共1页第1页
2012–2013学年度第1学期工程硕士研究生
线性系统理论与设计课程期末考试试题
(考试方式:开卷)
1、(15分)简述“线性系统理论与设计”和“自动控制原理”的区
别;
2、(15分)简述系统运动分析的核心问题;
3、(10分)简述本课与你现实工作的关系;
4、(20分)简述线性系统理论稳定性分析的关键问题;
5、(20分)简述系统的能控性、能观性实质问题;
6、(20分)用公式表示状态反馈和状态观测器的设计;
注:请同学整理后,打印上交答卷。
教学院长:陈雪波出题教师:陈雪波。
1.为什么要对连续系统进行离散化?离散化有哪些方法?它们各自的特点是什么?因为连续系统在电脑上无法实现,只能把连续系统离散化,而离散华是将连续变化的模拟量信号,转换成数字量(脉冲)信号,但是这里的离散化是非常密集的,在误差允许的范围内,可以非常的逼近原函数.这样就能用数字电子计算机(电脑)进行计算或处理。
1.前向差分法S平面左半平面得极点可能映射到Z平面单位圆外,这种方式所得到得离散滤波器可能不稳定2.后向差分法变换计算简单;S平面得左半平面映射到Z平面得单位圆内部一个小圆内因此如果D(s)稳定则变换后的D(z)也稳定;离散滤波器得过程特性及频率特性同原连续滤波器比较有一定得失真,需要较小得采样周期T。
3.双线性变换法如果D(s)稳定,则相应得D(z)也稳定;D(s)不稳定,则相应的D(z)也不稳定;所得D(z)的频率响应应在低频段与D(s)得频率响应相近,而在高频段相对于D(S)得频率响应有严重畸变。
4.脉冲响应不变法D(z)和D(s)有相同得单位脉冲响应序列;若D(z)稳定,则D(s)也稳定;D(z)存在着频率失真。
该法特别适用于频率特性为锐截止型的连续滤波器的离散化。
主要应用于连续控制器D(s)具有部分分式结构或能较容易地分解为并联结构,以及D(s)具有陡衰减特性,且为有限带宽得场合。
这时采样频率足够高,可减少频率混叠影响,从而保证D(z)得频率特性接近原连续控制器D(s)。
5.阶跃响应不变法若D(s)稳定,则相应的D(z)也稳定;D(z)和D(s)得阶跃响应序列相同;6.零极点匹配法需要先求出连续传递函数得全部零极点,计算复杂;能够保持变换前后特征频率处得增益不变;不改变系统得稳定区域,变换前后G(z)和G(s)的稳定特性不变2.多输入/多输出系统能控性和能观测性与系统传递函数矩阵的关系如何?在单输入单输出系统中,能控且能观测得充分必要条件是传递矩阵G (s )的分母与分子之间不发生因子相消。
【关键字】理论1-1 证明:由矩阵可知A的特征多项式为若是A的特征值,则所以是属于的特征向量。
1-7 解:由于,可知当时,,所以系统不具有因果性。
又由于,所以系统是时不变的。
1-8 解:容易验证该系统满足齐次性与可加性,所以此系统是线性的。
由于而,故,所以系统是时变的。
又因为而,故,所以系统具有因果性。
1-11 解:由题设可知,随变化的图如下所示。
随变化的图如下所示。
从上述两图及所描述的系统,分析如下:当,且即时,有;当时,;当时,有;当时,有;当时,有;综上所示,该松弛系统在上述输入而激励的输出为:1-15 解:由上述齐次方程,可得两线性无关的解向量为:,所以即其基本矩阵为;状态转移矩阵为:1-17 证明:由题设我们可知故,得证。
1-19 证明:由题设可知:由上式可推出又由及习题1-17的结论可推出由以上两个结论,我们可得到 所以得证。
即 得证。
1-20 解:设其等价变换为,则可知: 由于P 是非奇异矩阵,所以。
1-24 解:易知,其中为严格真有理函数矩阵,进行下列计算: ,则所以因此,可得一个实现如下: 其模拟图如下所示。
1-25 证明:由题设知同理可知若要使得两系统零状态等价,则要满足,即满足 ,得证。
2-2 解: a,由题设可知:[]315 1 7- 1 1 1-7- 1 1 1- 1 0 1 1- 10 0 1 B A AB B 2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=rank rank ,所以系统可控; 30 2 2 8- 14- 8-1- 3- 2-4 4 2 1 2 1 1- 10 2=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡rank CA CA C rank ,所以系统可观。
b,[]x c c c y u x x 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=•由题设可知:[]30 1 0 1 1 0 1 0 1 1 01 A B 2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==rank B rank rankB ,所以系统可控; (1)若0321===c c c ,则系统不可观;(2)若321c c c ,,中至少有一个不等于零,则3 2 CA CA C 321132113212≠⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c c c c c c c c c c c rank rank ,所以系统不可观; 总之,该系统不可观。
线性系统参考题(三)一、线性系统的脉冲响应为()t t g t e e -=-。
该系统是一个完全能控系统,它的状态方程有三个极点,其中一个是-2。
(1)求出该系统的传递函数; (2)求出该系统的最小实现;(3)求出该系统的三阶能控标准型,这一实现与原系统的状态方程有何关系?为什么? (4)求出该系统的三阶能观标准型,这一实现与原系统的状态方程有何关系?为什么?二、系统状态方程如下:0011[10]x x y x⎡⎤=⎢⎥-⎣⎦= (1)判断该系统的能观性。
(2)能否设计一个观测器渐近估计系统的状态(即当时间趋向无穷时,估计误差趋向零)? (3)求出系统矩阵的特征向量;(4)若系统的厨师状态分别为0(0)1x α⎡⎤=⎢⎥⎣⎦和1(0)1x β⎡⎤=⎢⎥⎣⎦,求出相应的系统响应并说明这两个响应的特点;(5)已知系统的初始状态为1(0)1x β⎡⎤=⎢⎥⎣⎦,是否可通过测量输出完全确定系统的状态信息?三、系统的传递函数矩阵如下:2211(1)()102s s G s s ⎡⎤+⎢⎥+⎢⎥=⎢⎥⎢⎥+⎣⎦ (1)求出该系统的零点和它们相应的左右方向向量; (2)求出该系统的最小实现;(3)对于该系统是否有不为零的输入能使得输出恒等于零?若是,则写出相应的输入信号,并给出能使输出信号为零的条件;(4)在什么样的输入信号下,系统的输出不为零,但是输出的终值为零?四、考虑线性系统010*********[101]xx u y x⎡⎤⎡⎤⎢⎥⎢⎥=--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦=其中u 是控制信号,y 是系统的输出。
(1)判断该系统的能控、能观性;(2)设计一状态反馈使得系统传递函数有一对稳定的复数根,其实部为-5,2;(3)分析在初始状态不为零时,确定系统输出性能的关键因数是什么? (5)设计一个基于状态观测器的反馈系统;(5)画出相应的系统结构图。
参考答案一、解:(1)112()[()]11(1)(1)G s L g t s s s s ==-=-+-+(2)我们可以采用基于分式分解的约当形实现11()11G s s s =--+可直接得出状态空间描述:[]11221210101111xx u x x x y x ⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤=⎢⎥⎣⎦此实现为系统最小实现。