第三章向量空间
- 格式:doc
- 大小:212.50 KB
- 文档页数:3
线性代数教学教案第三章 向量组及其线性组合授课序号01,n a 组成的有序数组称为2n a ⎪⎪⎪⎭维向量写成),,n a个分量,其中T,…来表示,n a 是复数时,维复向量,当12,,,n a a a 是实数时,本书所讨论的向量都是实向量0⎪⎪⎪⎭或()0,0,,00=.2n a ⎪⎪⎪⎭称为向量2n a ⎪⎪⎪⎭的负向量,记为α. 向量的运算:由于向量可看成行矩阵或列矩阵,因此我们可用矩阵的运算来定义向量的运算,也就是:122,n n a a b ⎛⎫⎛⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭β,k ∈,则有1122n n a b a b a b +⎛⎫ ⎪+ ⎪= ⎪ ⎪+⎝⎭β; (2)2n k ka ⎪⎪⎪⎭α;我们称这两种运算为向量的线性运算)1221122,,n n n n b ba a ab a b a b b ⎛⎫⎪ ⎪=+++ ⎪ ⎪⎝⎭;()111212212221212,,,n n n n n n n n a b a b a b a b a ba b b b b a a b a b a b ⎛⎫⎪⎪ ⎪=⎪ ⎪⎪⎪⎭⎝⎭. 二、向量组及其线性组合::由若干个维数相同的向量构成的集合,称为向量组. :给定n 维向量组,,,n ααα,对于任意一组数,,,n k k k ,表达式+n n k k α,n α和一个,n k ,使得++n n k =βα,,,n α线性表示,或者说向量β是向量组,n α的一个线性组合量组12,,,n ααα(唯一)线性表分必要条件是+n n x =α有(唯一)解.三、向量组的等价:由向量组B 线性表示:,,m αα是m ,,s β是s 维向量组成的向量组. 中每一个向量,)s β均可由向量组,m α线性表,s β可由向量组:A 12,,,m ααα线性表示.A 与向量组可以相互线性表示,则称向量组A 与向量组2,,,m αα与向量组:B 2,,,s βββ. 令矩阵),m A α,),s β,则向量组B 可由向量组线性表示的充分必要条件是矩阵方程=B向量组A 与向量组等价的充分必要条件是矩阵方程=BY A四、主要例题:1211222221122n n n n m m mn n ma x a x a x a x a xb +++++=中第()121,2,,i i i mi a ai n a ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭α,维列向量2m b ⎪⎪⎪⎭, n n x β+=α12122212n n m m mn a a a a a ⎫⎪⎪⎪⎪⎭,将矩阵A 与列向量组和行向量组对应2100010,,,001n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭e e ,将任一向量2n a ⎪⎪⎪⎭由12,,n e e e 线性表示536⎫⎪⎪⎪-⎭及向量组123101,2,11⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭βββ,试问α能否由12,ββ123-⎫⎛⎫⎛⎫授课序号02,m α,如果存在一组不全为零的数,m k ,使得m m k +α,则称向量组,m α线性相关.线性无关:若当且仅当0m k ==时,才有112m m k k k ++=0ααα,m α线性无关.m 个n 维向量构成的向量组12,,,m ααα线性相关的充分必要条件是齐次线性方程组1122m m k k k +++=0ααα有非零解;线性无关的充分必要条件是上述齐次线性方程组只有零解0m k k k ===(,m m α线性相关的充分必要条件是存在某一个向量(1j ≤α2线性相关的充分必要条件是它们的分量对应成比例是向量组A 的部分组线性无关,则其部分组,m α是m 个,m α线性无关,而向量组,,m αβ线性相关,则向量,m α线性表示,且表示式是唯一的如果向量组1,,s ααα可由向量组,t β线性表示,并且s >,s α线性如果向量组12,,,s ααα可由向量组2,,t β线性表示,并且向量组,s α线性无关,则2,,s α与向量组,t β均线性无关,并且这两个向量组等价,则s t =.2322,2⎛⎫ ⎪= ⎪ ⎪α,存在一组不全为零的数20,,,001n ⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎭⎝⎭⎝⎭e e ,对任意一组数12120001001n n n n k k k k k k k ⎛⎫⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+=+++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭e ,0n k ==时,才有1122n n k k k +++=0e e e ,所以向量组1,,n e e e 线性无关证明:任一含有零向量的向量组必定线性相关.221,11⎫⎛⎫⎛⎫⎪ =⎪ ⎪ -⎭⎝α,判断向量组12,,αα授课序号03,r α满足条件:)向量组1,,r ααα线性无关;)对于A 中任意的向量β,向量组,,r αβ线性相关,则称向量组12,,r ααα为向量组的一个极大线性无关组,简称极大无关组向量组A 的任意一个极大无关组所含向量的个数,称为这个向量组的秩,记为等价的向量组有相同的秩二、矩阵秩的概念及求法:rB ,则RA B ,n α为列构作矩阵),,n α,对矩阵的阶梯数给出矩阵的秩,从而给出向量组1,,n ααα的秩),n β,,n α与向量组,n β有相同的线性相关性,从而可以根据向量组,n β的极大无关组给出向量组12,,,n ααα的极大无关组,并给出不属于极大无关组的向量由极大无关组线性表示的表示20,,,001n ⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎭⎝⎭⎝⎭e e 线性无关,所以该向量组的极大无关组就是它3145,1227⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭α,向量1α与2α的分量不对应成比例,。
3.1.4 空间向量的直角坐标运算1.了解空间向量坐标的定义.2.掌握空间向量的坐标运算.3.会利用向量的坐标关系,判定两个向量共线或垂直.4.会计算向量的长度及两向量的夹角.1.空间向量的坐标表示(1)单位正交基底.建立空间直角坐标系Oxyz,分别沿x轴,y轴,z轴的正方向引________向量i,j,k,这三个互相________的单位向量构成空间向量的一个基底{i,j,k},这个基底叫做单位正交基底.单位向量i,j,k都叫做________.【做一做1-1】设{e1,e2,e3}是空间向量的一个单位正交基底,则|e1|+|e2|+|e3|=__________.(2)空间向量的坐标表示.在空间直角坐标系中,已知任一向量a,根据空间向量分解定理,存在______实数组(a1,a2,a3),使a=a1i+a2j+a3k,a1i,a2j,a3k分别为向量a在i,j,k方向上的分向量,有序实数组__________叫做向量a在此直角坐标系中的坐标.上式可简记作a=__________.【做一做1-2】向量0的坐标为__________.向量的坐标与点的坐标表示方法不同,如向量a=(x,y,z),点A(x,y,z).2.空间向量的直角坐标运算(1)设a=(a1,a2,a3),b=(b1,b2,b3),则容易得到a+b=____________;a-b=____________;λa=______________;a·b=____________.(2)向量在空间直角坐标系中的坐标的求法:设A(x1,y1,z1),B(x2,y2,z2),则AB=OB-OA=(x2,y2,z2)-(x1,y1,z1)=(x2-x1,y2-y1,z2-z1).【做一做2】设a=(1,2,3),b=(1,1,1),则2a+b=__________.3.空间向量平行和垂直的条件设a=(a1,a2,a3),b=(b1,b2,b3),则(1)a∥b(b≠0)⇔__________⇔__________,当b1,b2,b3都不为0时,a∥b⇔__________;(2)a⊥b⇔__________⇔__________.【做一做3】设a=(1,2,3),b=(1,-1,x),a⊥b,则x=__________.4.两个向量夹角与向量长度的坐标计算公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a|=____________,|b|=____________,cos〈a,b〉=a·b|a||b|=________________________. 设A(x1,y1,z1),B(x2,y2,z2),则|AB|=____________.【做一做4】向量a =(2,-1,-1),b =(1,-1,0)的夹角余弦值为__________,||a -b =__________.(1)空间向量的坐标是空间向量的一种形式.在坐标形式下的模长公式,夹角公式,向量平行和垂直的条件与在普通基底下相同,仅仅是形式不同;(2)空间向量在坐标形式下同样可以用来求距离(长度),夹角,证明垂直和平行关系等.如何理解空间向量的坐标及其运算?剖析:(1)注意空间向量的坐标与向量终点的坐标的区别与联系.向量的坐标是其终点与起点坐标的差量.只有以原点为起点的向量,向量的坐标才等于向量终点的坐标.(2)空间向量的坐标运算和平面向量基本一致,只是多了一个竖坐标. (3)坐标形式下向量的计算就是指坐标的运算.题型一 空间向量的坐标运算【例1】设向量a =(3,5,-4),b =(2,1,8),计算3a -2b ,(a +b )·(a -b ). 分析:利用空间向量的坐标运算先求3a,2b ,a +b ,a -b ;再进行相关运算. 反思:空间向量的坐标运算首先进行数乘运算然后再进行加减运算,最后进行数量积运算,先算括号内的后算括号外的.题型二 空间向量的平行与垂直问题【例2】设向量a =(1,x,1-x ),b =(1-x 2,-3x ,x +1),求满足下列条件时,实数x 的值.(1)a ∥b ;(2)a ⊥b .分析:解答本题可先由a ∥b ,a ⊥b 分别建立x 的方程,再解方程即可. 反思:要熟练掌握向量平行和垂直的条件,借助此条件可将立体几何中的平行垂直问题转化为向量的坐标运算.在应用坐标形式下的平行条件时,一定注意结论成立的前提条件,在条件不明确时,要分类讨论.在解答本题时易出现由a ∥b ⇔1-x 21=-3x x =x +11-x ⇔⎩⎪⎨⎪⎧1-x 2=-3x +11-x=-3⇔x =2的错误,导致此错误的原因是忘记了这个结论成立的前提条件是1,x,1-x 都不是0.题型三 空间向量的夹角及长度公式的应用【例3】已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5),求以AB ,AC 为邻边的平行四边形面积.分析:已知三点A ,B ,C 的坐标,先求AB ,AC ,|AB |,|AC |,AB ·AC ,再求cos 〈AB ,AC 〉,sin 〈AB ,AC 〉,从而得到结论.反思:运用空间向量的坐标运算解决立体几何问题的基本思路是: ①建立空间坐标系;②求出相关点的坐标和向量坐标; ③结合公式进行计算;④将计算的向量结果转化为几何结论.1.若A (2,-4,-1),B (-1,5,1),C (3,-4,1),令a =CA ,b =CB ,则a +b 对应的坐标为( )A .(5,-9,2)B .(-5,9,-2)C .(5,9,-2)D .(5,-9,-2)2.下面各组向量不平行的是( ) A .a =(1,0,0),b =(-3,0,0) B .c =(0,1,0),d =(1,0,1) C .e =(0,1,-1),f =(0,-1,1) D .g =(1,0,0),h =(0,0,0) 3.(2010·广东高考,理10)已知a =(1,1,x ),b =(1,2,1),c =(1,1,1)且(c -a )·2b =-2,则x 的值为( )A .3B .4C .2D .1 4.若A (2,0,1),B (3,4,-2),则|AB |=__________.5.向量a =(2,-3,3),b =(1,0,0),则cos 〈a ,b 〉=__________. 6.已知向量a =(-2,2,0),b =(-2,0,2),求向量n 使n ⊥a 且n ⊥b . 答案:基础知识·梳理1.(1)单位 垂直 坐标向量 【做一做1-1】3(2)唯一 (a 1,a 2,a 3) (a 1,a 2,a 3) 【做一做1-2】(0,0,0)2.(1)(a 1+b 1,a 2+b 2,a 3+b 3) (a 1-b 1,a 2-b 2,a 3-b 3) (λa 1,λa 2,λa 3) a 1b 1+a 2b 2+a 3b 3【做一做2】(3,5,7)3.(1)a =λb a 1=λb 1,a 2=λb 2,a 3=λb 3 a 1b 1=a 2b 2=a 3b 3(2)a ·b =0 a 1b 1+a 2b 2+a 3b 3=0 【做一做3】134.a ·a =a 21+a 22+a 23 b ·b =b 21+b 22+b 23a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 23x 2-x 12+y 2-y 12+z 2-z 12【做一做4】322 典型例题·领悟【例1】解:3a -2b =3(3,5,-4)-2(2,1,8)=(9,15,-12)-(4,2,16)=(9-4,15-2,-12-16)=(5,13,-28);a +b =(3,5,-4)+(2,1,8)=(3+2,5+1,-4+8)=(5,6,4);a -b =(3,5,-4)-(2,1,8)=(3-2,5-1,-4-8)=(1,4,-12),(a +b )·(a -b )=(5,6,4)·(1,4,-12)=5×1+6×4+4×(-12)=5+24-48=-19.【例2】解:(1)①当x =0时,a =(1,0,1),b =(1,0,1),a =b ,满足a ∥b . ②当x =1时,a =(1,1,0),b =(0,-3,2),不满足a ∥b , ∴x ≠1.③当x ≠0,x ≠1时,由a ∥b ⇔1-x 21=-3x x =x +11-x ⇔⎩⎪⎨⎪⎧1-x 2=-3,x +11-x=-3⇔x =2.综上所述,当x =0,或x =2时,a ∥b .(2)a ⊥b ⇔a ·b =0,∴(1,x,1-x )·(1-x 2,-3x ,x +1)=0⇔1-x 2-3x 2+1-x 2=0,解得x =±105. ∴当x =±105时,a ⊥b . 【例3】解:∵A (0,2,3),B (-2,1,6),C (1,-1,5), ∴AB =(-2,1,6)-(0,2,3)=(-2,-1,3),AC =(1,-1,5)-(0,2,3)=(1,-3,2).∴|AB |=-2+-2+32=14,|AC |=12+-2+22=14,AB ·AC =(-2,-1,3)·(1,-3,2)=-2+3+6=7.∴cos 〈AB ,AC 〉=A B →·A C →|AB →||AC →|=12,∴sin 〈AB ,AC 〉=32, 以AB ,AC 为邻边的平行四边形的面积S =|AB →||AC →|sin 〈AB ,AC 〉=7 3.随堂练习·巩固1.B a =CA →=(2,-4,-1)-(3,-4,1)=(-1,0,-2),b =CB →=(-1,5,1)-(3,-4,1)=(-4,9,0),故a +b =(-5,9,-2).2.B A 项中b =-3a ,a ∥b ,C 项中f =-e ,f ∥e ,D 项中h =0, ∴h ∥g .3.C ∵(c -a )·2b =(0,0,1-x )·(2,4,2)=-2, ∴2(1-x )=-2,x =2. 4.26 |AB →|=-2+-2+-2-2=26.5.12 cos 〈a ,b 〉=a ·b |a ||b | =2×1+0+022+-2+3212+02+02=12. 6.解:设n =(x ,y ,z ),则n ·a =(x ,y ,z )·(-2,2,0)=-2x +2y =0, n ·b =(x ,y ,z )·(-2,0,2)=-2x +2z =0.解方程组⎩⎪⎨⎪⎧-2x +2y =0,-2x +2z =0,可得y =x ,z =x .于是向量n =(x ,x ,x )=x (1,1,1),x ∈R .。
空间向量及其运算知识点1. 空间向量的有关概念1空间向量:在空间中,具有大小和方向的量叫做空间向量.2单位向量:模为1的向量称为单位向量3相等向量:方向相同且模相等的向量.4共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量.5共面向量:平行于同一个平面的向量.2.空间向量的加法、减法与数乘运算向量的加减法满足平行四边形法则和三角形法则向量加法的多边形法则:首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量112231n n n OA OA A A A A A A ⋯-=++++.运算律:①加法交换律:a +b =b +a ②加法结合律:a +b +c =a +b +c ③数乘分配律:λa +b =λa +λb.3.共线向量、共面向量定理和空间向量基本定理1共线向量定理对空间任意两个向量a ,bb ≠0,a ∥b 的充要条件是存在实数λ,使得a =λb . AB 上的充要条件是:存在实数λ,使得AP AB λ= ①或对空间任意一点O,有OP OA AB λ=+ ②或对空间任意一点O ,有OP xOA yOB =+其中x +y =1 ③推论③推导过程:()(1)OP OA AB OA AO OB OA OB λλλλ=+=++=-+2共面向量定理如果两个向量a ,b 不共线,那么p 与a ,b 共面的充要条件是存在唯一有序实数对x,y 使p =xa +ybABC 内的充要条件是存在唯一有序实数对x,y 使AP xAB yAC =+, 或对空间任意一点O ,有OP OA xAB yAC =++或对空间任意一点O ,有OP xOA yOB zOC =++,其中x +y +z =1推论③推导过程:(1)OP OA xAB yAC x y OA xOB yOC =++=--++3空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c基底:把{a ,b ,c }叫做空间的一个基底,空间任何三个不共面的向量都可以构成空间的一个基底.4. 空间向量的数量积及运算律1数量积及相关概念①两向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作错误!=a ,错误!=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=错误!,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积:已知空间两个非零向量a ,b ,向量a ,b 的数量积记作a·b ,且a·b =|a||b |cos 〈a ,b 〉.2空间向量数量积的运算律: ①结合律:λa ·b =λa·b ; ②交换律:a·b =b·a ; ③分配律:a·b +c =a·b +a·c .5. 空间向量的坐标表示及应用设a =a 1,a 2,a 3,b =b 1,b 2,b 31数量积的坐标运算:a·b =a 1b 1+a 2b 2+a 3b 3.2共线与垂直的坐标表示:a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3 λ∈R ,a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0a ,b 均为非零向量.3模、夹角和距离公式:|a |=错误!=错误!,cos 〈a ,b 〉=错误!=错误! .设Aa 1,b 1,c 1,Ba 2,b 2,c 2,则d AB =|错误!|=错误!.6. 用空间向量解决几何问题的一般步骤:1适当的选取基底{a ,b ,c };2用a ,b ,c 表示相关向量;3通过运算完成证明或计算问题.题型一 空间向量的线性运算用已知向量来表示未知向量,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,表示为其他向量的和与差的形式,进而寻找这些向量与基向量的关系.例1:三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量错误!,错误!,错误!表示错误!,错误!.解析:错误!=错误!+错误!=错误!错误!+错误!错误!=错误!错误!+错误!错误!-错误!=错误!错误!+错误!错误!错误!+错误!-错误!=-错误!错误!+错误!错误!+错误!错误!.错误!=错误!+错误!=错误!错误!-错误!错误!+错误!错误!+错误!错误!=错误!错误!+错误!错误!+错误!错误!.例2:如图所示,ABCD -A 1B 1C 1D 1中,ABCD 是平行四边形.若错误!=错误!错误!,错误!=2错误!,且1=x +y +z EF AB AD AA ,试求x 、y 、z 的值..解 连接AF ,错误!=错误!+错误!. ∵错误!=-错误!错误!=-错误!错误!+错误!错误!=错误!+错误!=错误!-错误!=错误!-错误!错误!=错误!-错误!错误!+错误!=12133AD A A -∴错误!=错误!+错误!=1111333AD AA AB +-题型二 共线定理应用向量共线问题:充分利用空间向量运算法则,用空间中的向量表示a 与b ,化简得出a =λb ,从而得出a ∥b ,即a 与b 共线.点共线问题:证明点共线问题可转化为证明向量共线问题,如证明A 、B 、C 三点共线,即证明错误!与错误!共线. 例3:如图所示,四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断错误!与错误!是否共线∵111111()()222222CE CB BEMN MC CB BN AC CB BA BE AC BA CB BE CB BE =+=++=+++=+++=+ ∴错误!=2错误!,∴错误!∥错误!,即错误!与错误!共线.例4:如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且错误!=2ED 1,F 在对角线A 1C 上,且错误!=错误!错误!.求证:E ,F ,B 三点共线.证明: 设错误!=a ,错误!=b ,错误!=c .∴错误!=2错误!=错误!错误!=错误!b ,错误!=错误!错误!=错误!错误!=错误!错误!-错误!=错误!错误!+错误!-错误!=错误!a +错误!b -错误!c∴E 错误!=错误!-错误!=错误!a -错误!b -错误!c =错误!错误!, 错误!=错误!+错误!+错误!=-错误!b -c +a =a -错误!b -c ,∴错误!=错误!错误!.所以E ,F ,B 三点共线.题型三 共面定理应用点共面问题:证明点共面问题可转化为证明向量共面问题,如要证明P 、A 、B 、C 四点共面,只要能证明错误!=x 错误!+y 错误!,或对空间任一点O,有错误!=错误!+x 错误!+y 错误!或错误!=x 错误!+y 错误!+z 错误!x +y +z =1即可例5:已知A 、B 、C 三点不共线,对于平面ABC 外一点O ,若错误!=错误! 错误!+错误!错误!+错误!错误!,则点P 是否与A 、B 、C 一定共面 试说明理由.解析:∵212212212 (+)(+)(+)=+++553553553OP OA OB OC OP PA OP PB OP PC OP PA PB PC =++=++ ∴错误!=错误!错误!+错误!错误!,故A 、B 、C 、P 四点共面.例6:如图所示,已知P 是平行四边形ABCD 所在平面外一点,连结PA 、PB 、PC 、PD,点E 、F 、G 、H 分别为△PAB 、△PBC 、△PCD 、△PDA 的重心,应用向量共面定理证明:E 、F 、G 、H 四点共面.证明:分别延长PE、PF、PG、PH交对边于M、N、Q、R.∵ E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点顺次连结M、N、Q、R,所得四边形为平行四边形,且有错误!=错误!错误!,错误!=错误!错误!,错误!=错误!错误!,错误!=错误!错误!.∴错误!=错误!-错误!=错误!错误!-错误!错误!=错误!错误!=错误!错误!+错误!=错误!错误!-错误!+错误!错误!-错误!=错误!错误!错误!-错误!错误!+错误!错误!错误!-错误!错误!=错误!+错误!. ∴由共面向量定理得E、F、G、H四点共面.例7:正方体ABCD-A1B1C1D1中,E,F分别是BB1和A1D1的中点,求证向量错误!,错误!,错误!是共面向量.证明:如图所示,错误!=错误!+错误!+错误!=错误!错误!-错误!+错误!错误!=错误!错误!+错误!-错误!=错误!错误!-错误!.由向量共面的充要条件知错误!,错误!,错误!是共面向量.题型四空间向量数量积的应用例8:①如图所示,平行六面体ABCD—A1B1C1D1中,以顶点A为端点的三条棱长都为1,且两两夹角为60°.1求AC1的长;2求BD1与AC夹角的余弦值.解析:1记错误!=a,错误!=b,错误!=c,则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,∴a·b=b·c=c·a=错误!.|错误!|2=a+b+c2=a2+b2+c2+2a·b+b·c+c·a=1+1+1+2×错误!=6,∴|错误!|=错误!,即AC1的长为错误!.2错误!=b+c-a,错误!=a+b,∴|错误!|=错误!,|错误!|=错误!,错误!·错误!=b+c-a·a+b=b2-a2+a·c+b·c=1.∴cos〈错误!,错误!〉=错误!=错误!.∴AC与BD1夹角的余弦值为错误!.②已知空间四边形ABCD的每条边和对角线的长都等于a,点E、F分别是BC、AD的中点,则错误!·错误!的值为A.a2 a2 a2 a2解析:设错误!=a,错误!=b,错误!=c,则|a|=|b|=|c|=a,且a,b,c三向量两两夹角为60°.错误!=错误!a+b,错误!=错误!c,∴错误!·错误!=错误!a+b·错误!c=错误!a·c+b·c=错误!a2cos60°+a2cos60°=错误!a2.题型五空间向量坐标运算例9:如图所示,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos〈错误!,错误!〉=错误!,若以DA,DC,DP 所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为A.1,1,1 D.1,1,2设PD=a a>0,则A2,0,0,B2,2,0,P0,0,a,E错误!,∴错误!=0,0,a,错误!=错误!,cos〈错误!,错误!〉=错误!,∴错误!=a错误!·错误!,∴a=2.∴E的坐标为1,1,1.例10:已知a=2,-1,3,b=-1,4,-2,c=7,5,λ.若a,b,c三向量共面,则实数λ=________________解析:由题意得c=t a+μb=2t-μ,-t+4μ,3t-2μ,∴错误!∴错误!例11:已知△ABC的顶点A1,1,1,B2,2,2,C3,2,4,试求△ABC的面积错误!=1,1,1,错误!=2,1,3,|错误!|=错误!,|错误!|=错误!,错误!·错误!=2+1+3=6,∴cos A=cos〈错误!,错误!〉=错误!=错误!.∴sin A=错误!=错误!.∴S△ABC=错误!|错误!|·|错误!|·sin A=错误!×错误!×错误!×错误!=错误!.例12:已知a=λ+1,0,2,b=6,2μ-1,2λ,若a∥b,则λ与μ的值可以是A.2,错误!B.-错误!,错误!C.-3,2 D.2,2解析由题意知:错误!解得错误!或错误!例13:已知空间中三点A-2,0,2,B-1,1,2,C-3,0,4,设a=错误!,b=错误!.,若ka+b与ka-2b互相垂直,求实数k 的值.方法一∵k a+b=k-1,k,2.k a-2b=k+2,k,-4,且k a+b与k a-2b互相垂直,∴k-1,k,2·k+2,k,-4=k-1k+2+k2-8=0,∴k=2或-错误!,方法二由2知|a|=错误!,|b|=错误!,a·b=-1,∴k a+b·k a-2b=k2a2-k a·b-2b2=2k2+k-10=0,得k=2或-错误!.例14:已知空间三点A0,2,3,B-2,1,6,C1,-1,5.1求以错误!,错误!为边的平行四边形的面积;2若|a|=错误!,且a分别与错误!,错误!垂直,求向量a的坐标.解1cos〈错误!,错误!〉=错误!=错误!=错误!=错误!.∴sin〈错误!,错误!〉=错误!,∴以错误!,错误!为边的平行四边形的面积为S=2×错误!|错误!|·|错误!|·sin〈错误!,错误!〉=14×错误!=7错误!.(2)设a=x,y,z,由题意得错误!,解得错误!或错误!,例15:如图所示,在正方体ABCD—A1B1C1D1中,E、F分别在A1D、AC上,且A1E=错误!A1D,AF=错误!AC,则A.EF至多与A1D、AC之一垂直B.EF与A1D、AC都垂直C.EF与BD1相交D.EF与BD1异面解析:设AB=1,以D为原点,DA所在直线为x轴,DC所在直线为y轴,DD1所在直线为z轴建立空间直角坐标系,则A11,0,1,D0,0,0,A1,0,0,C0,1,0,E错误!,F错误!,B1,1,0,D10,0,1,错误!=-1,0,-1,错误!=-1,1,0,错误!=错误!,错误!=-1,-1,1,错误!=-错误!错误!,错误!·错误!=错误!·错误!=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.例16:已知O0,0,0,A1,2,3,B2,1,2,P1,1,2,点Q在直线OP上运动,当错误!·错误!取最小值时,点Q的坐标是__________.解析:设错误!=λ错误!=λ,λ,2λ,则错误!=1-λ,2-λ,3-2λ,错误!=2-λ,1-λ,2-2λ.∴错误!·错误!=1-λ2-λ+2-λ1-λ+3-2λ2-2λ=6λ2-16λ+10=6λ-错误!2-错误!.∴当λ=错误!时,错误!·错误!取最小值为-错误!.此时,错误!=错误!,错误!,错误!,综合练习一、选择题1、下列命题:其中不正确...的所有命题的序号为__________.①若A、B、C、D是空间任意四点,则有错误!+错误!+错误!+错误!=0;②|a|-|b|=|a+b|是a、b共线的充要条件;③若a、b共线,则a与b所在直线平行;④对空间任意一点O与不共线的三点A、B、C,若错误!=x错误!+y错误!+z错误!x、y、z∈R,则P、A、B、C四点共面.⑤设命题p:a,b,c是三个非零向量;命题q:{a,b,c}为空间的一个基底,则命题p是命题q的充要条件解析:选②③④⑤,①中四点恰好围成一封闭图形,正确;②中当a、b同向时,应有|a|+|b|=|a+b|;③中a、b 所在直线可能重合;④中需满足x+y+z=1,才有P、A、B、C四点共面;⑤只有不共面的三个非零向量才能作为空间的一个基底,应改为必要不充分条件2、有下列命题:其中真命题的个数是①若p=x a+y b,则p与a,b共面;②若p与a,b共面,则p=x a+y b;③若错误!=x错误!+y错误!,则P,M,A、B共面;④若P,M,A,B共面,则错误!=x错误!+y错误!.A.1 B.2 C.3 D.4解析其中①③为真命题.②中,若a,b共线,则p≠x a+y b;3、已知A1,0,0,B0,-1,1,错误!+λ错误!与错误!的夹角为120°,则λ的值为A.±错误!错误!C.-错误!D.±错误!解析:错误!+λ错误!=1,-λ,λ,cos120°=错误!=-错误!,得λ=±错误!.经检验λ=错误!不合题意,舍去,∴λ=-错误!.4、如图所示,已知P A⊥平面ABC,∠ABC=120°,P A=AB=BC=6,则PC等于A.6错误!B.6 C.12 D.144解析错误!2=错误!+错误!+错误!2=错误!2+错误!2+错误!2+2错误!·错误!=36+36+36+2×36cos 60°=144∴|错误!|=12证明设错误!=a,错误!=b,错误!=c,则错误!=错误!+错误!=错误!+错误!错误!=-a+错误!a+b+c=-错误!a+错误!b+错误!c,错误!=错误!+错误!=错误!+错误!错误!+错误!=-a+错误!b+错误!c=错误!错误!. ∴错误!∥错误!,即B、G、N三点共线.5、正方体ABCD—A1B1C1D1的棱长为a,点M在AC1上且错误!=错误!错误!,N为B1B的中点,则|错误!|为a a a a解析以D为原点建立如图所示的空间直角坐标系Dxyz,则Aa,0,0,C10,a,a,N错误!.设Mx,y,z.∵点M在AC1上且错误!=错误!错误!,∴x-a,y,z=错误!-x,a-y,a-z∴x=错误!a,y=错误!,z=错误!.∴M错误!,∴|错误!|=错误!=错误!a.6、如图所示,已知空间四边形OABC,OB=OC,且∠AOB=∠AOC=错误!,则cos〈错误!,错误!〉的值为A.0解析设错误!=a,错误!=b,错误!=c,由已知条件〈a,b〉=〈a,c〉=错误!,且|b|=|c|,错误!·错误!=a·c-b=a·c-a·b=错误!|a||c|-错误!|a||b|=0,∴cos〈错误!,错误!〉=0.7、如图所示,在平行六面体ABCD—A1B1C1D1中,M为A1C1与B1D1的交点.若错误!=a,错误!=b,错误!=c,则下列向量中与错误!相等的向量是A.-错误!a+错误!b+c 错误!a+错误!b+c C.-错误!a-错误!b+c 错误!a-错误! b+c解析错误!=错误!+错误!=错误!+错误!错误!-错误!=c+错误!b-a=-错误!a+错误!b +c.8、平行六面体ABCD-A1B1C1D1中,向量错误!,错误!,错误!两两的夹角均为60°,且|错误!|=1,|错误!|=2,|错误!|=3,则|错误!|等于A.5 B.6 C.4 D.8设错误!=a,错误!=b,错误!=c,则错误!=a+b+c,错误!2=a2+b2+c2+2a·b+2b·c+2c·a=25,|错误!|=5.9、在下列条件中,使M与A、B、C一定共面的是=3错误!-2错误!-错误!B.错误!+错误!+错误!+错误!=0 C.错误!+错误!+错误!=0 D.错误!=错误!错误!-错误!+错误!错误!解析:C中错误!=-错误!-错误!.故M、A、B、C四点共面.二、填空题10、同时垂直于a=2,2,1和b=4,5,3的单位向量是____________________.解析设与a=2,2,1和b=4,5,3同时垂直b单位向量是c=p,q,r,则错误!解得错误!或错误!所求向量为错误!或错误!.11.若向量a=1,λ,2,b=2,-1,2且a与b的夹角的余弦值为错误!,则λ=________.解析由已知得错误!=错误!=错误!,∴8错误!=36-λ,解得λ=-2或λ=错误!.12.在空间直角坐标系中,以点A4,1,9、B10,-1,6、Cx,4,3为顶点的△ABC是以BC为斜边的等腰直角三角形,则实数x的值为________.解析由题意知错误!·错误!=0,|错误!|=|错误!|,可解得x=2.13.已知a+3b与7a-5b垂直,且a-4b与7a-2b垂直,则〈a,b〉=________.解析由条件知a+3b·7a-5b=7|a|2+16a·b-15|b|2=0,及a-4b·7a-2b=7|a|2+8|b|2-30a·b=0.两式相减,得46a·b=23|b|2,∴a·b=错误!|b|2.代入上面两个式子中的任意一个,即可得到|a|=|b|.∴cos〈a,b〉=错误!=错误!=错误!.∴〈a,b〉=60°.14. 如图所示,已知二面角α—l—β的平面角为θ错误!,AB⊥BC,BC⊥CD,AB在平面β内,BC在l上,CD在平面α内,若AB=BC=CD=1,则AD的长为________.解析:错误!2=错误!+错误!+错误!2=错误!2+错误!2+错误!2+2错误!·错误!+2错误!·错误!+2错误!·错误!=1+1+1+2cosπ-θ=3-2cos θ.15.已知a=1-t,1-t,t,b=2,t,t,则|b-a|的最小值为________.解析b-a=1+t,2t-1,0,∴|b-a|=错误!=错误!,∴当t=错误!时,|b-a|取得最小值错误!.三、解答题16、如图所示,在各个面都是平行四边形的四棱柱ABCD—A1B1C1D1中,P是CA1的中点,M是CD1的中点,N是C1D1的中点,点Q在CA1上,且CQ∶QA1=4∶1,设错误!=a,错误!=b,错误!=c,用基底{a,b,c}表示以下向量:1错误!;2错误!;3错误!;4错误!.1错误!=错误!错误!+错误!=错误!错误!+错误!+错误!=错误!a+b+c.2错误!=错误!错误!+错误!=错误!错误!+2错误!+错误!=错误!a+2b+c.3错误!=错误!错误!+错误!=错误!错误!+错误!+错误!+错误!+错误!=错误!错误!+2错误!+2错误!=错误!a+2b+2c=错误!a+b+c.4错误!=错误!+错误!=错误!+错误!错误!-错误!=错误!错误!+错误!错误!=错误!错误!+错误!错误!+错误!错误!=错误!a+错误!b+错误!c17、如图,已知M、N分别为四面体ABCD的面BCD与面ACD的重心,且G为AM上一点,且GM∶GA=1∶3.求证:B、G、N三点共线.18.13分直三棱柱ABC—A′B′C′中,AC=BC=AA′,∠ACB=90°,D、E分别为AB、BB′的中点.1求证:CE⊥A′D;2求异面直线CE与AC′所成角的余弦值.1证明:设错误!=a,错误!=b,错误!=c,根据题意,|a|=|b|=|c|且a·b=b·c=c·a=0.∴错误!=b+错误!c,错误!=-c+错误!b-错误!a.∴错误!·错误!=-错误!c2+错误!b2=0,∴错误!⊥错误!,即CE⊥A′D.2错误!=-a+c,∴|错误!|=错误!|a|,|错误!|=错误!|a|.错误!·错误!=-a+c·错误!=错误!c2=错误!|a|2, ∴cos〈错误!,错误!〉=错误!=错误!.即异面直线CE与AC′所成角的余弦值为错误!.。
第三章 向量空间一、单项选择题1.设A ,B 分别为m ×n 和m ×k 矩阵,向量组(I )是由A 的列向量构成的向量组,向量组(Ⅱ)是由(A ,B )的列向量构成的向量组,则必有( )A .若(I )线性无关,则(Ⅱ)线性无关B .若(I)线性无关,则(Ⅱ)线性相关C .若(Ⅱ)线性无关,则(I )线性无关D .若(Ⅱ)线性无关,则(I )线性相关2.设4321,,,αααα是一个4维向量组,若已知4α可以表为321,,ααα的线性组合,且表示法惟一,则向量组4321,,,αααα的秩为( )A .1B .2C .3D .43.设向量组4321,,,αααα线性相关,则向量组中( )A .必有一个向量可以表为其余向量的线性组合B .必有两个向量可以表为其余向量的线性组合C .必有三个向量可以表为其余向量的线性组合D .每一个向量都可以表为其余向量的线性组合4.设有向量组A :α1,α2,α3,α4,其中α1,α2,α3线性无关,则( )A 。
α1,α3线性无关 B.α1,α2,α3,α4线性无关C.α1,α2,α3,α4线性相关D.α2,α3,α4线性相关5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( )A .s ααα,,,21 中没有线性相关的部分组B .s ααα,,,21 中至少有一个非零向量C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4)。
如果|A |=2,则|—2A |=()A.-32B.-4C 。
4 D.327。
设α1,α2,α3,α4 是三维实向量,则( )A. α1,α2,α3,α4一定线性无关B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关 D 。
α1,α2,α3一定线性无关8.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( )A.1 B 。