Matlab 图像处理基本操作
- 格式:doc
- 大小:465.50 KB
- 文档页数:11
MATLAB图像处理基础教程第一章:MATLAB图像处理简介MATLAB(Matrix Laboratory)是一种强大的数值计算和数据可视化软件,广泛应用于各个领域,包括图像处理。
图像处理是一门研究如何对数字图像进行分析、增强、重建和压缩的学科。
本教程将引导读者逐步了解MATLAB图像处理的基本概念和技术。
第二章:MATLAB图像的读取与显示在MATLAB中,可以使用imread函数读取不同格式的图像文件,并使用imshow函数显示图像。
此外,还可以使用imfinfo函数获取图像的详细信息,如分辨率、颜色空间和位深度等。
第三章:图像的灰度处理灰度处理是一种常见的图像预处理方法。
通过将彩色图像转换为灰度图像,可以减少图像的数据量,简化图像处理的复杂性。
在MATLAB中,可以使用rgb2gray函数将彩色图像转换为灰度图像,并使用imhist函数查看灰度图像的直方图。
第四章:图像的滤波处理滤波是一种常用的图像处理操作,用于对图像进行平滑、增强或去噪。
MATLAB提供了各种滤波函数,如均值滤波、中值滤波和高斯滤波等。
可以根据具体需求选择合适的滤波方法,并使用imfilter函数进行滤波处理。
第五章:图像的二值化处理图像的二值化是将图像转换为黑白两色的过程,常用于物体检测、识别和分割等应用。
在MATLAB中,可以使用im2bw函数将灰度图像转换为二值图像,并可以调整阈值来控制二值化的效果。
第六章:图像的几何变换几何变换是一种常见的图像处理操作,用于对图像进行旋转、缩放、平移和翻转等操作。
MATLAB提供了imrotate、imresize、imtranslate和flip函数等实现各种几何变换。
通过组合这些函数,可以实现复杂的图像变换。
第七章:图像的特征提取图像的特征提取是图像处理中的重要步骤,用于从图像中提取出具有代表性的信息。
在MATLAB中,可以使用各种特征提取函数,如imgradient、imhistogram和imcontour等。
使用Matlab进行图像识别的基本方法引言随着计算机视觉的快速发展,图像识别技术正在不断成熟和应用于各个领域。
作为一种强大的科学计算工具,Matlab在图像处理和识别方面发挥着重要作用。
本文将介绍使用Matlab进行图像识别的基本方法,包括图像预处理、特征提取和分类器训练等方面。
一、图像预处理图像预处理是图像识别的首要步骤,可以提升图像质量和减少噪声的影响。
在Matlab中,我们可以使用一系列的函数和工具箱来进行图像预处理。
常见的图像预处理方法包括灰度化、平滑滤波、边缘检测等。
1. 灰度化灰度化是将彩色图像转换为灰度图像的过程。
在Matlab中,我们可以使用rgb2gray函数将RGB图像转化为灰度图像。
该函数将RGB图像的红、绿、蓝三个分量按一定的权重进行加权平均,得到一个表示灰度的单通道图像。
2. 平滑滤波平滑滤波可以去除图像中的噪声,提升图像的质量。
Matlab中提供了多种平滑滤波函数,如均值滤波、中值滤波和高斯滤波。
用户可以根据实际需求选择合适的滤波方法。
3. 边缘检测边缘检测是图像预处理中常用的技术之一。
Matlab中有多种边缘检测算法可供选择,如Sobel算子、Canny算子和Laplacian算子等。
用户可以根据具体情况选择适合的边缘检测方法。
二、特征提取特征提取是图像识别的关键步骤,是将图像中的信息转化为可供分类器识别的特征向量。
在Matlab中,我们可以使用各种特征提取算法和工具箱来提取特征。
常用的特征包括颜色直方图、纹理特征和形状特征。
1. 颜色直方图颜色直方图是一种常用的图像特征,可以反映图像中不同颜色的分布情况。
在Matlab中,我们可以使用imhist函数计算图像的颜色直方图。
通过统计图像中每个颜色值的像素个数,我们可以得到一个表示颜色分布的特征向量。
2. 纹理特征纹理特征是用来描述图像中的纹理信息的特征。
在Matlab中,我们可以使用局部二值模式(Local Binary Patterns, LBP)和灰度共生矩阵(Gray Level Co-occurrence Matrix, GLCM)等方法来提取纹理特征。
利用Matlab进行图像处理的常用方法概述:图像处理是数字信号处理的一个重要分支,也是计算机视觉领域的核心内容之一。
随着计算机技术的不断发展,利用Matlab进行图像处理的方法变得越来越重要。
本文将介绍一些常用的Matlab图像处理方法,包括图像的读取与显示、图像的预处理、图像的滤波处理、基本的图像增强方法以及图像的分割与检测等。
一、图像的读取与显示在Matlab中,可以使用imread函数直接读取图像。
通过指定图像的路径,我们可以将图像读取为一个矩阵,并且可以选择性地将其转换为灰度图像或彩色图像。
对于灰度图像,可以使用imshow函数将其显示出来,也可以使用imwrite函数将其保存为指定格式的图像文件。
对于彩色图像,可以使用imshow函数直接显示,也可以使用imwrite函数保存为指定格式的图像文件。
此外,还可以使用impixel函数获取图像中指定像素点的RGB值。
二、图像的预处理图像的预处理是指在进一步处理之前对图像进行调整和修复以消除图像中的噪声和不良的影响。
常用的图像预处理方法包括图像的平滑处理、图像增强和图像修复等。
1. 图像平滑处理:常用的图像平滑方法有均值滤波、中值滤波和高斯滤波等。
其中,均值滤波将每个像素点的值替换为其周围像素点的平均值,中值滤波将每个像素点的值替换为其周围像素点的中值,高斯滤波则通过加权平均的方式平滑图像。
2. 图像增强:图像增强是指通过一些方法提高图像的质量和信息内容。
常用的图像增强方法包括直方图均衡化、对比度拉伸和锐化等。
直方图均衡化通过调整图像的灰度分布,以提高图像的对比度和细节。
对比度拉伸是通过将图像的像素值线性拉伸到整个灰度范围内,以增强图像的对比度。
锐化则是通过增强图像的边缘和细节,使图像更加清晰。
三、图像的滤波处理图像的滤波处理是指通过对图像进行一系列滤波操作,来提取图像中的特征和信息。
常用的图像滤波方法包括模板滤波、频域滤波和小波变换等。
1. 模板滤波:模板滤波是基于局部像素邻域的滤波方法,通过定义一个滤波模板,将其与图像进行卷积操作,从而实现图像的滤波。
使用MATLAB进行图像处理的基本方法第一章:介绍MATLAB图像处理工具箱MATLAB是一种用于算法开发、数据可视化和数值计算的高级工具。
图像处理是MATLAB中重要的应用之一,其图像处理工具箱提供了许多功能强大的函数和工具,能够完成各种图像处理任务。
1.1 图像处理基础图像处理是通过计算机对图像进行分析、处理和改变的过程。
它可以用于增强图像的质量、从图像中提取有用的信息或特征,以及实现图像的压缩和恢复等任务。
1.2 MATLAB图像处理工具箱的功能MATLAB图像处理工具箱提供了丰富的函数和工具,包括图像读取和写入、图像增强、图像分割、图像滤波、图像变换等。
这些功能可以帮助用户对图像进行各种处理和分析。
第二章:图像预处理图像预处理是图像处理的第一步,其目的是消除图像中的噪声和其他不必要的信息,使后续的处理更加准确和有效。
2.1 图像读取和显示在MATLAB中,可以使用imread函数读取图像,imshow函数显示图像。
读取图像后,可以对图像进行显示、调整亮度和对比度等操作。
2.2 图像增强图像增强是通过对图像的像素值进行调整,改善图像的视觉质量。
常用的图像增强方法有直方图均衡化、对比度拉伸和滤波等。
第三章:图像分割图像分割是将图像划分成若干个具有独立意义的部分的过程。
图像分割可以帮助我们识别并提取出感兴趣的目标,进行后续的处理和分析。
3.1 基于阈值的图像分割阈值分割是一种简单且有效的图像分割方法,其思想是将图像中的像素分成前景和背景两部分。
MATLAB提供了imbinarize函数用于阈值分割。
3.2 基于边缘的图像分割边缘分割基于图像中物体的边界特征,通过检测图像中的边缘来实现图像分割。
MATLAB中的边缘检测函数包括edge和gradient。
第四章:图像滤波图像滤波是对图像进行平滑或增强处理的过程,它可以帮助去除图像中的噪声、增强图像的边缘和细节等。
4.1 线性滤波线性滤波是一种基于加权和求和的滤波方法,常用的线性滤波器有均值滤波器和高斯滤波器等。
MATLAB课程设计(基于MATLAB的图像处理的基本运算)课程设计任务书学⽣姓名:专业班级:指导教师:⼯作单位:题⽬: 基于MATLAB的图像处理的基本运算初始条件①MATLAB软件②数字信号处理与图像处理基础知识要求完成的主要任务:(1)能够对图像亮度和对⽐度变化调整,并⽐较结果。
(2)编写程序通过最近邻插值和双线性插值等算法将⽤户所选取的图像区域进⾏放⼤和缩⼩整数倍的和旋转操作,并保存,⽐较⼏种插值的效果。
(3)图像直⽅图统计和直⽅图均衡,要求显⽰直⽅图统计,⽐较直⽅图均衡后的效果。
(4)对图像加⼊各种噪声,⽐较效果。
时间安排:第1周:安排任务,分组第2-17周:设计仿真,撰写报告第18周:完成设计,提交报告,答辩地点:鉴主3楼计算机实验室指导教师签名: 2010年⽉⽇系主任(或责任教师)签名: 2010年⽉⽇摘要MATLAB是—套⾼性能的数值计算和可视化软件,它集数值分析、矩阵运算、信号处理和图形显⽰于⼀体,构成—个⽅便的、界⾯友好的⽤户环境。
MATLAB强⼤的扩展功能为各个领域的应⽤提供了基础,由各个领域的专家相继给出了MATLAB ⼯具箱,其中主要有信号处理,控制系统,神经⽹络,图像处助,鲁棒控制,⾮线性系统控制设计,最优化,⼩波,通信等⼯具箱,这此⼯具箱给各个领域的研究和⼯程应⽤提供了有⼒的⼯具。
借助于这些“巨⼈肩膀上的⼯具”,各个层次的研究⼈员可直现⽅便地进⾏分析、计算及设计⼯作,从⽽⼤⼤地节省了时间。
本次课程设计的⽬的在于较全⾯了解常⽤的数据分析与处理原理及⽅法,能够运⽤相关软件进⾏模拟分析。
通过对采集的图像进⾏常规的图像的亮度和对⽐度的调整,并进⾏最近邻插值和双线性插值等算法将⽤户所选取的图像区域进⾏放⼤和缩⼩整数倍的和旋转操作,并保存,⽐较⼏种插值的效果,以及对图像进⾏直⽅图和直⽅图均衡并加⼊噪声进⾏对⽐,达到本次课程设计的⽬的关键词:MATLAB 亮度和对⽐度插值放⼤旋转噪声AbstractMATLAB is - set of high-performance numerical computation and visualization software, which combines numerical analysis, matrix computation, signal processing and graphics in one form - a convenient, user-friendly user environment.MATLAB is a powerful extension application in various fields to provide a basis by experts in various fields have been given a MATLAB toolbox, which are signal processing, control systems, neural networks, image processing support, robust control, nonlinearcontrol system design, optimization, wavelets, communications toolkit, which this kit to the various areas of research and engineering applications a powerful tool.With these "tools on the shoulders of giants," researchers at all levels can now be easily analyzed directly, calculation and design work, which greatly saves time.The training aims to strengthen the basis of a more comprehensive understanding of commonly used data analysis and processing principles and methods related to the use of simulation software.Images collected by conventional image brightness and contrast adjustments, and the nearest neighbor interpolation and bilinear interpolation algorithm to the user selected image area to zoom in and out several times and rotate the whole operation, and save, comparethe effect of several interpolation and the image histogram and histogram and compared with noise, to the purpose of this course design.Keywords: MATLAB brightness and contrast rotation interpolation noise amplification ⽬录1.MATLAB简介 (1)1.1 MATLA的基本⽤途 (1)1.2 MATLAB的语⾔特点 (1)1.3 MATLAB系统构成 (1)2.数据采集 (2)2.1图像的选取 (2)2.2 图像亮度和对⽐度的调整 (2)2.2.1 编辑M⽂件 (2)2.2.2 MATLAB⽀持的图像格式和类型 (3)2.2.3 图像的读取 (3)2.2.4调整图像亮度和对⽐度 (4)3.图像的⼏何操作 (6)3.1插补操作 (6)3.1.1 插补功能介绍 (6)3.1.2 插补具体操作 (6)3.2 放缩操作 (8)3.2.1放缩功能介绍 (8)3.2.2 具体操作 (9)3.3 旋转操作 (10)3.3.1 旋转功能介绍 (10)3.3.2 具体操作 (10)4.直⽅图统计 (12)4.1灰度图的获取 (12)4.1.1 灰度图的转换功能介绍 (12)4.1.2 具体操作 (12)4.2直⽅图以及直⽅图均衡 (13)4.2.1 直⽅图函数功能介绍 (13)4.2.2 直⽅图具体操作 (14)5.图像的噪声处理 (15)5.1添加噪声的功能介绍 (15)5.2添加噪声的具体操作 (16)6.总结(⼼得体会) (18)7.参考⽂献 (19)1.MATLAB简介1.1 MATLA的基本⽤途MATLAB是矩阵实验室(Matrix Laboratory)之意。
实验一MATLAB数字图像处理初步一、实验目的1、熟悉及掌握在MATLAB中能够处理哪些格式图像。
2、熟练掌握在MATLAB中读取图像,并获取图像的大小、颜色、高度、宽度等等相关信息。
3、掌握在MATLAB中按照指定要求存储一幅图像的方法。
4、熟悉数字图像矩阵的格式转换二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。
灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。
例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。
因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。
图像关于x和y坐标以及振幅连续。
要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。
将坐标值数字化成为取样;将振幅数字化成为量化。
采样和量化的过程如图1所示。
因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。
作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。
图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MATLAB把其处理为4类: 亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。
若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。
若图像是double类,则像素取值就是浮点数。
规定双精度型归一化亮度图像的取值范围是[0,1](2) 二值图像一幅二值图像是一个取值只有0和1的逻辑数组。
而一幅取值只包含0和1的uint8类数组,在MATLAB中并不认为是二值图像。
使用Matlab进行图像识别的基本步骤在当今数字化时代,图像识别技术被广泛应用于各个领域,如人脸识别、智能交通系统和医学影像分析等。
Matlab作为一种功能强大的科学计算软件,提供了丰富的图像处理和分析工具。
本文将介绍使用Matlab进行图像识别的基本步骤。
一、图像获取和预处理图像识别的第一步是获取图像数据。
通常情况下,我们可以使用摄像头或加载一幅图像文件作为输入。
在Matlab中,可以使用imread函数读取图像文件,或使用摄像头对象进行实时图像采集。
获取到图像数据后,我们需要进行预处理以提高图像质量和减少噪声。
常见的预处理操作包括图像去噪、尺寸调整和灰度化等。
Matlab提供了多种图像处理函数,如medfilt2、imresize和rgb2gray等,可以方便地完成这些操作。
二、特征提取与选择在图像识别中,我们需要从图像中提取特征并选择合适的特征表示方法。
特征提取是将图像数据转化为数值形式的过程,常用的特征包括颜色、纹理和形状等。
Matlab提供了一系列的特征提取函数,如rgbhist、glcm和regionprops等,可以用来计算图像的各种特征。
选择合适的特征对于图像识别的准确性和效率至关重要。
在特征选择阶段,我们通常会使用相关性分析、主成分分析和逐步回归等方法来评估和选择特征。
Matlab提供了丰富的统计工具和机器学习算法,可以帮助我们进行特征选择和降维操作。
三、模型训练和分类在得到了合适的特征表示后,我们需要使用这些特征来训练一个分类模型,以便对新的图像进行分类。
常用的分类算法包括支持向量机、人工神经网络和随机森林等。
Matlab中提供了大量的机器学习工具箱,如svmtrain、patternnet和TreeBagger等,可以用来构建和训练各种分类模型。
模型训练的过程通常包括数据划分、训练和评估三个步骤。
数据划分是将数据集划分为训练集和测试集的过程,常用的方法包括随机划分和交叉验证。
在Matlab中进行图像处理的基本步骤和方法图像处理是一门涉及数字图像的处理技术和方法的学科,它可以帮助我们从图像中获取有用的信息,并改进图像的质量。
Matlab是一种广泛应用于科学和工程领域的高级计算机语言和环境,也是图像处理的重要工具之一。
本文将介绍在Matlab中进行图像处理的基本步骤和方法。
一、图像的读取和显示在开始进行图像处理之前,我们首先需要读取和显示图像。
在Matlab中,可以使用imread函数读取图像文件,该函数会返回一个包含图像像素值的矩阵。
通过imshow函数可以将图像显示在Matlab的图像窗口中。
同时,也可以使用imwrite函数将处理后的图像数据保存为图像文件。
二、图像的预处理在进行一系列的图像处理操作之前,通常需要对图像进行预处理,以提高后续处理步骤的效果。
常见的图像预处理方法包括灰度化、降噪、增强对比度等操作。
1. 灰度化灰度化是将彩色图像转化为灰度图像的过程。
在Matlab中,可以使用rgb2gray 函数将彩色图像转化为灰度图像。
灰度图像只有一个通道,每个像素的值表示了该像素的亮度。
2. 降噪图像中常常存在各种噪声,如高斯噪声、椒盐噪声等。
为了提高图像质量和后续处理的准确性,可以使用图像降噪方法来减少这些噪声的影响。
Matlab中提供了一些常用的降噪函数,如medfilt2、wiener2等,可以根据实际需求选择合适的方法来降噪。
3. 增强对比度对比度是指图像中不同亮度之间的差异程度。
当图像的对比度较低时,图像细节会变得不明显。
为了提高图像的可视化效果,可以使用一些增强对比度的方法。
例如,可以使用imadjust函数对图像的像素值进行调整,以拉伸图像的灰度级范围。
三、图像的滤波滤波在图像处理中起到了非常重要的作用,可以用来平滑图像、提取图像的边缘等。
在Matlab中,提供了多种滤波函数,可以根据需求选择合适的滤波方法。
1. 均值滤波均值滤波是一种常见的平滑滤波方法,可以用来消除图像中的高频噪声。
matlab图像处理基础实例·边缘检测(edge)边缘检测时先要把其他格式图像转化为灰度图像>> f=imread('');>> a=rgb2gray(f);>> [g,t]=edge(a,'canny');>> imshow(g)·剪贴(imcrop)、subplot等imfinfo colormap subimageimadd imsubtract immultiply imdivide imresize imrotate(旋转)>> a=imread('');>> b=imcrop(a,[75 68 130 112]);% I2 = IMCROP(I,RECT)% RECT is a 4-element vector with the form [XMIN YMIN WIDTH HEIGHT]; % subplot(121)⼀⾏两列的显⽰,当前显⽰第⼀个图⽚>> subplot(121);imshow(a);>> subplot(122);imshow(b);·roipoly选择图像中的多边形区域>> a=imread('');>> c=[200 250 278 248 199 172];>> r=[21 21 75 121 121 75];>> b=roipoly(a,c,r);>> subplot(121);imshow(a);>> subplot(122);imshow(b);·roicolor按灰度值选择的区域>> a=imread('');>> i=rgb2gray(a);>> b=roicolor(i,128,255);>> subplot(121);imshow(a);>> subplot(122);imshow(b);·转化指定的多边形区域为⼆值掩膜poly2mask>> x=[63 186 54 190 63];>> y=[60 60 209 204 60];>> b=poly2mask(x,y,256,256); >> imshow(b);>> holdCurrent plot held>> plot(x,y,'b','LineWidth',2)·roifilt2区域滤波a=imread('');i=rgb2gray(a);c=[200 250 278 248 199 172];r=[21 21 75 121 121 75];b=roipoly(i,c,r);h=fspecial('unsharp');j=roifilt2(h,i,b);subplot(121),imshow(i);subplot(122),imshow(j);·roifill区域填充>> a=imread('');>> i=rgb2gray(a);>> c=[200 250 278 248 199 172]; >> r=[21 21 75 121 121 75]; >> j=roifill(i,c,r); >> subplot(211);imshow(i);>> subplot(212);imshow(j);·FFT变换f=zeros(100,100);f(20:70,40:60)=1;imshow(f);F=fft2(f);F2=log(abs(F));imshow(F2),colorbar·补零操作和改变图像的显⽰象限f=zeros(100,100);f(20:70,40:60)=1;subplot(121);imshow(f);F=fft2(f,256,256);F2=fftshift(F);subplot(122);imshow(log(abs(F2)))·离散余弦变换(dct)>> a=imread('');>> i=rgb2gray(a);>> j=dct2(i);>> subplot(131);imshow(log(abs(j))),colorbar >> j(abs(j)<10)=0;>> k=idct2(j);>> subplot(132);imshow(i);>> subplot(133);imshow(k,[0,255]);info=imfinfo('')%显⽰图像信息·edge提取图像的边缘canny prewitt sobelradon函数⽤来计算指定⽅向上图像矩阵的投影>> a=imread('');>> i=rgb2gray(a);>> b=edge(i);>> theta=0:179;>> [r,xp]=radon(b,theta);>> figure,imagesc(theta,xp,r);colormap(hot); >> xlabel('\theta(degrees)'); >> ylabel('x\prime');>> title('r_{\theta}(x\prime)');>> colorbar·filter2均值滤波>> a=imread('');>> i=rgb2gray(a);>> imshow(i)>> k1=filter2(fspecial('average',3),i)/255;%3*3 >> k2=filter2(fspecial('average',5),i)/255;%5*5 >> k3=filter2(fspecial('average',7),i)/255;%7*7 >> figure,imshow(k1)>> figure,imshow(k2)>> figure,imshow(k3)wiener2滤波eg:k=wiener(I,[3,3]))medfilt2中值滤波同上deconvwnr维纳滤波马赫带效应(同等差⾊带条)·减采样>> a=imread('');>> b=rgb2gray(a);>> [wid,hei]=size(b);>> quarting=zeros(wid/2+1,hei/2+1); >> i1=1;j1=1;>> for i=1:2:widfor j=1:2:heiquarting(i1,j1)=b(i,j);j1=j1+1;endi1=i1+1;j1=1;end>> figure>> imshow(uint8(quarting))>> title('4倍减采样')>> quarting=zeros(wid/4+1,hei/4+1); i1=1;j1=1;for i=1:4:widfor j=1:4:heiquarting(i1,j1)=b(i,j);j1=j1+1;endi1=i1+1;j1=1;end>> figure,imshow(uint8(quarting)); title('16倍减采样')结论:在采⽤不同的减采样过程中,其图像的清晰度和尺⼨均发⽣了变化灰度级转化>> a=imread('');>> b=rgb2gray(a);>> figure;imshow(b)>> [wid,hei]=size(b);>> img2=zeros(wid,hei);>> for i=1:widfor j=1:heiimg2(i,j)=floor(b(i,j)/128);endend>> figure;imshow(uint8(img2),[0,2]) %2级灰度图像图像的基本运算>> i=imread('');>> figure;subplot(231);imshow(i);>> title('原图');>> j=imadjust(i,[.3;.6],[.1 .9]);%Adjust image intensity values or colormap图像灰度值或colormap调整% J = IMADJUST(I,[LOW_IN; HIGH_IN],[LOW_OUT; HIGH_OUT])>> subplot(232);imshow(j);title('线性扩展');>> i1=double(i);i2=i1/255;c=2;k=c*log(1+i2);>> subplot(233);imshow(k);>> title('⾮线性扩展');>> m=255-i;>> subplot(234);imshow(m)>> title('灰度倒置')>> n1=im2bw(i,.4);n2=im2bw(i,.7);>> subplot(235);imshow(n1);title('⼆值化阈值')>> subplot(236);imshow(n2);title('⼆值化阈值')图像的代数运算加。
Matlab 图像处理基本操作
文/天神
一、图像基本操作
1.读取图像并显示:
>> clear;close all %清空Matlab工作平台所有变量(准备工作)>> I=imread('pout.tif'); % 该图像是Matlab图形工具箱中自带的图像(\toolbox\images\imdemos)
>> imshow(I)
2.检查内存(数组)中的图像:
>> whos
Name Size Bytes Class
I 291x240 69840 uint8 array
Grand total is 69840 elements using 69840 bytes
表示该图像采用8位存储方式并占用了69840B的存储空间。
3.实现图像直方图均衡化:
>> figure,imhist(I) % 在新图中显示图像I的直方图
>> I2=histeq(I); % 均衡化以后的图像存在I2数组中(图像灰度值扩展到整个灰度范围,对比度提高)
>> figure,imshow(I2) % 显示均衡化后的图像
>> figure,imhist(I2) % 显示均衡后的灰度值分布情况
8位图像取值范围:[0,255],16位图像取值范围:[0,655351],双精度图像取值范围:[0,1]
4.保存图像:
>> imwrite(I2,'pout2.png'); % 将图像由原先的tif格式另存为png格式
5.检查新生成文件的信息:
>> imfinfo('pout2.png') % 观察保存图像的文件信息
ans =
Filename: 'pout2.png' % 文件名
FileModDate: '11-Apr-2009 21:55:35' % 文件修改日期
FileSize: 36938 % 文件大小
Format: 'png' % 文件格式
FormatVersion: [] % 格式
Width: 240 % 文件宽度
Height: 291 % 文件高度
BitDepth: 8 % 文件位深度
ColorType: 'grayscale' % 颜色类型
……
二、图像处理Matlab的应用:
实例:消除rice.png图像中亮度不一致的背景,并使用阈值将修改后的图像转换为二值图像,使用成员标记返回图像中对象的个数以及统计特性。
按照如下步骤进行:
1.读取和显示图像
>> clear;close all
>> I=imread('rice.png');
>> imshow(I)
2.估计图像背景:
图像中心位置背景亮度强于其他部分亮度,用imopen函数和一个半径为15的圆盘结构元素对输入的图像I进行形态学开操作,去掉那些不完全包括在圆盘中的对象,从而实现对背景亮度的估计。
>> clear;close all
>> I=imread('rice.png');
>> imshow(I)
>> background=imopen(I,strel('disk',15));
>> imshow(background)
>> figure,surf(double(background(1:8:end,1:8:end))),zlim([0,255]);
>> set(gca,'ydir','reverse');
显示了背景图(左)和背景表面图(右)
3.从原始图像中减去背景图像(原始图像I减去背景图像得到背景较为一致的图像):
>> I2=imsubtract(I,background);
>> figure,imshow(I2)
4.调节图像的对比度(图像较暗,可用imadjust函数命令来调节图像的对比度)
>> I3=imadjust(I2,stretchlim(I2),[0 1]);
>> figure,imshow(I3);
5.使用阈值操作将图像转换为二进制(二值)图像(bw),调用whos命令查看图像的存储信息.
>> level=graythresh(I3); % 图像灰度处理
>> bw=im2bw(I3,level); % 图像二值化处理
>> figure,imshow(bw) % 显示处理后的图片
>> whos
Name Size Bytes Class
I 256x256 65536 uint8 array
I2 256x256 65536 uint8 array
I3 256x256 65536 uint8 array
background 256x256 65536 uint8 array
bw 256x256 65536 logical array
level 1x1 8 double array
Grand total is 327681 elements using 327688 bytes
6.检查图像中对象个数(bwlabel函数表示了二值图像中的所有相关成分并返回在图像中找到的对象个数)
>> [labeled,numObjects]=bwlabel(bw,4);
>> numObjects
numObjects =
101
表示图像中的米粒对象个数是101.
7.检查标记矩阵:(imcrop命令进行交互式操作,图像内拉出较小矩形并显示已标记的对象和部分背景内的像素)
>> grain=imcrop(labeled)
grain =
0 0 42 42 42 42 42 42 42 0
0 0 42 42 42 42 42 42 42 42
0 0 42 42 42 42 42 42 42 42
0 0 42 42 42 42 42 42 42 42
0 0 42 42 42 42 42 42 42 42
0 0 42 42 42 42 42 42 42 42
0 42 42 42 42 42 42 42 42 42
0 42 42 42 42 42 42 42 42 42
8.观察标记矩阵(用label2rgb将其显示为一副伪彩色的索引图像):
>> RGB_label=label2rgb(labeled,@spring,'c','shuffle');
>> imshow(RGB_label);
9.测量图像对象或区域的属性(Regionprops,返回一个结构数据)
>> graindata=regionprops(labeled,'basic')
graindata =
101x1 struct array with fields:
Area
Centroid
BoundingBox
>> graindata(40).Area % 显示矩阵中第40个元素的属性
ans =
197
>> graindata(40).BoundingBox,graindata(40).Centroid % 寻找最近的边缘和中心点ans =
82.5000 59.5000 24.0000 20.0000
ans =
95.4213 70.4924
>> allgrains=[graindata.Area]; % 创建一个新的向量allgrains,其包含每个米粒的范围>> whos allgrains
Name Size Bytes Class
allgrains 1x101 808 double array
Grand total is 101 elements using 808 bytes
>> allgrains(51) % 相当于整个矩阵的索引为51的属性是多少,可见与原来得到的结果相同
ans =
140
>> max(allgrains) % 获取最大的米粒大小
ans =
404
>> biggrain=find(allgrains==404) % 使用find命令返回这个最大尺寸米粒的标记号
biggrain =
59
>> mean(allgrains) % 获取米粒的平均大小
ans =
175.0396
9.绘制包含30个柱的直方图来说明米粒大小的分布情况
>> hist(allgrains,30)
(米粒大小分布柱状图)。