第三章导数练习题及答案:函数的单调性
- 格式:doc
- 大小:289.50 KB
- 文档页数:4
导数与函数的单调性练习题2.2.1 导数与函数的单调性基础巩固题:1.已知函数 $f(x)=\frac{ax+1}{x+2}$ 在区间 $(-2,+\infty)$ 上为增函数,求实数 $a$ 的取值范围。
解析:由题意可得 $f(x)$ 在 $(-2,+\infty)$ 上单调递增,因此$a>-\frac{1}{2}$。
又因为$f(x)$ 的定义域为$(-2,+\infty)$,所以 $a$ 的取值范围为 $a\geq -\frac{1}{2}$ 或 $a\leq -2$,即$a\geq -\frac{1}{2}$ 或 $a\leq -2$。
2.已知函数 $f(x)=x^2+2x+a\ln x$ 在区间 $(0,1)$ 上单调,求实数 $a$ 的取值范围。
解析:由题意可得 $f(x)$ 在 $(0,1)$ 上单调,因此$f'(x)=2x+2+\frac{a}{x}$ 在 $(0,1)$ 上恒大于等于零或恒小于等于零。
化简可得 $a\geq -(2x^2+2x)$ 或 $a\leq -(2x^2+2x)$ 在$(0,1)$ 上恒成立。
记 $g(x)=-(2x^2+2x)$,则 $g(x)$ 在$(0,1)$ 上单调递增,且 $-4<g(x)<0$。
因此,$a\geq -4$ 或$a\leq -4$,即 $a\geq -4$ 或 $a\leq -4$。
3.已知函数$f(x)=\frac{x}{2x-9}$,求$f(x)$ 的单调区间。
解析:求导得 $f'(x)=\frac{9}{(2x-9)^2}$,$f'(x)>0$ 当且仅当 $x\frac{9}{2}$。
因此,$f(x)$ 在 $(-\infty,\frac{9}{2})$ 上单调递减,在 $(\frac{9}{2},+\infty)$ 上单调递增。
所以$f(x)$ 的单调区间为 $(-\infty,\frac{9}{2})$ 和$(\frac{9}{2},+\infty)$。
函数的单调性练习题函数的单调性是高中数学中的一个重要概念,它在解决各种实际问题时起着重要的作用。
通过对函数的单调性进行分析,我们可以更好地理解函数的性质,并在解决问题时提供指导。
下面,我将给大家提供一些关于函数单调性的练习题,希望能够帮助大家更好地掌握这一概念。
练习题1:已知函数f(x) = x^2 + 3x - 2,求函数f(x)的单调区间。
解析:要求函数f(x)的单调区间,首先需要求出函数f(x)的一阶导数f'(x)。
对函数f(x)进行求导得到f'(x) = 2x + 3。
由于一阶导数的符号可以反映函数的单调性,我们只需要找出f'(x)的正负变化区间即可。
令f'(x) = 0,解得x = -1.5。
这个点将数轴分成了两个区间:(-∞, -1.5)和(-1.5, +∞)。
我们只需要在这两个区间内取一点代入f'(x),判断f'(x)的正负即可。
选取x = 0代入f'(x),得到f'(0) = 3,说明在区间(-∞, -1.5)内f'(x) > 0,在区间(-1.5, +∞)内f'(x) > 0。
因此,函数f(x)在整个定义域上都是递增的,即f(x)的单调区间为(-∞, +∞)。
练习题2:已知函数g(x) = x^3 - 6x^2 + 9x + 2,求函数g(x)的单调区间。
解析:同样地,我们需要求出函数g(x)的一阶导数g'(x)。
对函数g(x)进行求导得到g'(x) = 3x^2 - 12x + 9。
令g'(x) = 0,解得x = 1。
这个点将数轴分成了两个区间:(-∞, 1)和(1, +∞)。
选取x = 0代入g'(x),得到g'(0) = 9,说明在区间(-∞, 1)内g'(x) > 0,在区间(1, +∞)内g'(x) > 0。
完整版)函数的单调性练习题及答案1.函数的单调性练题一选择题:1.函数f(x)=x^2+2x-3的递增区间为(D。
[-1,+∞))2.如果函数f(x)=x^2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围是(A。
[-3,+∞))3.函数y=1-(1/(x-1))在(-1,+∞)内是单调递增。
4.如果函数f(x)=kx+b在R上单调递减,则(C。
b>0)5.在区间(-∞,0)上为增函数的是(B。
y=x^2)6.函数f(x)=2x-x^2的最大值是(B。
1)7.函数y=x+x^-2的最小值是(A。
0)2.填空题:8.函数f(x)=2x^2-mx+3,在(-∞,1)上是减函数,在[1,+∞)上是增函数,则m=4.9.已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数m的取值范围为(-∞,-1/2)U(1/2,+∞)。
3.解答题:10.利用单调函数的定义证明:函数f(x)=x+2/x在区间(0,2)上是减函数。
证明:对于任意的x1,x2∈(0,2),且x1<x2,有:f(x2)-f(x1)=(x2+2/x2)-(x1+2/x1)x2-x1+2/x2-2/x1x2-x1+2(x1-x2)/(x1x2)x2-x1)(1-2/(x1x2))因为x1,x2∈(0,2),所以x1x2>0,而1-2/(x1x2)<1,所以f(x2)-f(x1)<0,即f(x)在区间(0,2)上是减函数。
11.已知定义在区间(1,+∞)上的函数f(x)满足f(x)=f(x/2)-f(x/4),且当x>1时f(x)<0.1)求f(1)的值;因为f(x)=f(x/2)-f(x/4),所以f(2)=f(1)-f(1/2),又因为f(2)=f(1)-f(1/2)=f(1/2)-f(1/4),所以f(1/2)=f(1)-f(1/4),继续类似地推导,得到:f(1)=f(1)-f(1/2)+f(1/2)-f(1/4)+f(1/4)-f(1/8)+。
1.函数f (x )=cos x -x 在(0,π)上的单调性是( )A .先增后减B .先减后增C .增函数D .减函数D [解析] 因为 f ′(x)=-sin x -1<0.所以f (x )在(0,π)上是减函数,故选D.2.函数f (x )=x 3-3x +1的单调增区间是( )A .(-1,1)B .(-∞,1)C .(-1,+∞)D .(-∞,-1),(1,+∞)D [解析] f ′(x)=3x 2-3.由 f ′(x)>0得,x <-1或x >1.故单调增区间为(-∞,-1),(1,+∞),故选D.3.已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) A [解析] 因为f (x )=x ·sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ).所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3. 又x ∈⎝⎛⎭⎫0,π2时,得 f ′(x)=sin x +x cos x >0,所以此时函数是增函数.所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3. 所以f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A. 4.教材习题改编 函数f (x )=e x -x 的单调递增区间是________.[解析] 因为f (x )=e x -x ,所以 f ′(x)=e x -1,由 f ′(x)>0,得e x -1>0,即x >0.[答案] (0,+∞)5.已知f (x )=x 3-ax 在[1,+∞)上是增函数,则实数a 的最大值是________.[解析] f ′(x)=3x 2-a ≥0,即a ≤3x 2,又因为x ∈[1,+∞),所以a ≤3,即a 的最大值是3.[答案] 35.函数y =12x 2-ln x 的单调递减区间为( ) A .(-1,1] B .(0,1]C .[1,+∞)D .(0,+∞)B [解析] 由题意知函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1, 所以函数的单调递减区间为(0,1].6.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是( )A .增函数B .减函数C .先增后减D .先减后增A [解析] 在(0,2π)上有 f ′(x)=1-cos x >0恒成立,所以f (x )在(0,2π)上单调递增.7.已知函数f (x )=2x 3-6ax +1,a ≠0,则函数f (x )的单调递减区间为( )A .(-∞,+∞)B .(-a ,+∞)C .(-∞,-a )∪(a ,+∞)D .(-a ,a ) D [解析] f ′(x)=6x 2-6a =6(x 2-a ),当a <0时,对x ∈R ,有 f ′(x)>0;当a >0时,由 f ′(x)<0解得-a <x <a ,所以当a >0时,f (x )的单调递减区间为(-a ,a ).故选D.8.(2017·聊城模拟)已知函数y =x f ′(x)的图象如图所示(其中 f ′(x)是函数f (x )的导函数).则下面四个图象中,y =f (x )的图象大致是( )C[解析] 由条件可知当0<x<1时,x f′(x)<0,所以f′(x)<0,函数递减.当x>1时,x f′(x)>0,所以f′(x)>0,函数递增,所以当x=1时,函数取得极小值.当x<-1时,x f′(x)<0,所以f′(x)>0,函数递增,当-1<x<0时,x f′(x)>0,所以f′(x)<0,函数递减,所以当x=-1时,函数取得极大值.符合条件的只有C项.9.若函数f(x)=k e x+x在(0,+∞)上是减函数,则k的范围为() A.k≥-1 B.k≤-1C.k≥1 D.k≤1B[解析] f′(x)=k e x+1.由题意得k e x+1≤0在(0,+∞)上恒成立,即k≤-1e x,x∈(0,+∞).当x∈(0,+∞),-1e x∈(-1,0),所以k≤-1,故选B.10.(2017·贵阳市监测考试)对于R上可导的任意函数f(x),若满足(x-3) f′(x)≤0,则必有()A.f(0)+f(6)≤2f(3) B.f(0)+f(6)<2f(3)C.f(0)+f(6)≥2f(3) D.f(0)+f(6)>2f(3)A[解析] 由题意知,当x≥3时,f′(x)≤0,所以函数f(x)在[3,+∞)上单调递减或为常数函数;当x<3时,f′(x)≥0,所以函数f(x)在(-∞,3)上单调递增或为常数函数,所以f(0)≤f(3),f(6)≤f(3),所以f(0)+f(6)≤2f(3),故选A.11.函数f(x)=(x-3)e x的单调递增区间是________.[解析] 因为f(x)=(x-3)·e x,则f ′(x)=e x (x -2),令f ′(x)>0,得x >2,所以f (x )的单调递增区间为(2,+∞).[答案] (2,+∞)12.已知函数f (x )=ax +ln x ,则当a <0时,f (x )的单调递增区间是________,单调递减区间是________.[解析] 由已知得f (x )的定义域为(0,+∞).因为f ′(x)=a +1x =a ⎝⎛⎭⎫x +1a x ,所以当x ≥-1a时 f ′(x)≤0,当0<x <-1a时f ′(x)>0,所以f (x )的单调递增区间为⎝⎛⎭⎫0,-1a ,单调递减区间为⎝⎛⎭⎫-1a ,+∞. [答案] ⎝⎛⎭⎫0,-1a ⎝⎛⎭⎫-1a ,+∞ 13.若f (x )=x sin x +cos x ,则f (-3),f ⎝⎛⎭⎫π2,f (2)的大小关系为________(用“<”连接).[解析] 函数f (x )为偶函数,因此f (-3)=f (3).又f ′(x)=sin x +x cos x -sin x =x cos x ,当x ∈⎝⎛⎭⎫π2,π时, f ′(x)<0. 所以f (x )在区间⎝⎛⎭⎫π2,π上是减函数, 所以f ⎝⎛⎭⎫π2>f (2)>f (3)=f (-3). [答案] f (-3)<f (2)<f ⎝⎛⎭⎫π2 14.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.[解析] 由题意知f ′(x)=-x +4-3x =-(x -1)(x -3)x,由f ′(x)=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.[答案] (0,1)∪(2,3)15.(2017·兰州市实战考试)已知函数f (x )=ln x -ax +1-a x -1(a ∈R ).当0<a <12时,讨论f (x )的单调性.[解] 因为f (x )=ln x -ax +1-a x-1, 所以f ′(x)=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞), 令f ′(x)=0,可得两根分别为1,1a-1, 因为0<a <12,所以1a-1>1>0, 当x ∈(0,1)时, f ′(x)<0,函数f (x )单调递减;当x ∈⎝⎛⎭⎫1,1a -1时, f ′(x)>0,函数f (x )单调递增; 当x ∈⎝⎛⎭⎫1a -1,+∞时, f ′(x)<0,函数f (x )单调递减.16.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值;(2)求函数f (x )的单调区间.[解] (1)对f (x )求导得f ′(x)=14-a x 2-1x, 由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知 f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x)=x 2-4x -54x 2. 令f ′(x)=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时, f ′(x)<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时, f ′(x)>0,故f (x )在(5,+∞)内为增函数.故函数f (x )的单调递增区间为(5,+∞),单调递减区间为(0,5).。
《函数的单调性与导数》专题训练1.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能是下列选项中的( )2.如图是函数y =f (x )的导函数f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .在区间(3,5)上f (x )是增函数 3.函数y =x +x ln x 的单调递减区间是( )A .(-∞,e -2) B .(0,e -2) C .(e -2,+∞)D .(e 2,+∞)4.已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调递减函数,则实数a 的取值范围是( )A .(-∞,-3)∪[3,+∞)B .[-3,3]C .(-∞,-3)∪(3,+∞)D .(-3, 3) 5.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)6.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________. 7.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________.8.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________.9.已知函数f (x )=(ax 2+x -1)e x ,其中e 是自然对数的底数,a ∈R. (1)若a =1,求曲线f (x )在点(1,f (1))处的切线方程.(2)若a=-1,求f(x)的单调区间.10.已知二次函数h(x)=ax2+bx+2,其导函数y=h′(x)的图象如图所示,f(x)=6ln x+h(x).(1)求函数f(x)的解析式;(2)若函数f(x)在区间(1,m+12)上是单调函数,求实数m的取值范围.《函数的单调性与导数》专题训练答案解析1.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的()【答案】C【解析】题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.如图是函数y=f(x)的导函数f′(x)的图象,则下面判断正确的是()A.在区间(-2,1)上f(x)是增函数B.在区间(1,3)上f(x)是减函数C.在区间(4,5)上f(x)是增函数D.在区间(3,5)上f(x)是增函数【答案】C【解析】由导函数f′(x)的图象知在区间(4,5)上,f′(x)>0,所以函数f(x)在(4,5)上单调递增.故选C. 3.函数y=x+x ln x的单调递减区间是()A.(-∞,e-2)B.(0,e-2)C.(e-2,+∞) D.(e2,+∞)【答案】B【解析】因为y=x+x ln x,所以定义域为(0,+∞).令y′=2+ln x<0,解得0<x<e-2,即函数y=x+x ln x的单调递减区间是(0,e-2),故选B.4.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调递减函数,则实数a的取值范围是() A.(-∞,-3)∪[3,+∞) B.[-3,3]C.(-∞,-3)∪(3,+∞) D.(-3,3)【答案】B【解析】f′(x)=-3x2+2ax-1≤0在(-∞,+∞)上恒成立且不恒为0,Δ=4a2-12≤0⇒-3≤a≤ 3.] 5.函数f(x)=(x-3)e x的单调递增区间是()A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)【答案】D【解析】f ′(x )=(x -3)′e x +(x -3)(e x )′=e x (x -2).由f ′(x )>0得x >2,∴f (x )的单调递增区间是(2,+∞).6.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________. 【答案】-32-6【解析】f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.7.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________. 【答案】(1,2)【解析】[f ′(x )=6x 2-18x +12,令f ′(x )<0,即6x 2-18x +12<0,解得1<x <2. 8.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________.【答案】⎝⎛⎭⎫-∞,12 【解析】f ′(x )=2a -1(x +2)2,由题意得f ′(x )≤0在(-2,+∞)内恒成立,∴解不等式得a ≤12,但当a =12时,f ′(x )=0恒成立,不合题意,应舍去,所以a 的取值范围是⎝⎛⎭⎫-∞,12. 9.已知函数f (x )=(ax 2+x -1)e x ,其中e 是自然对数的底数,a ∈R. (1)若a =1,求曲线f (x )在点(1,f (1))处的切线方程. (2)若a =-1,求f (x )的单调区间. 【解析】f ′(x )=(ax +2a +1)x e x .(1)若a =1,则f ′(x )=(x +3)x e x ,f (x )=(x 2+x -1)e x ,所以f ′(1)=4e ,f (1)=e. 所以曲线f (x )在点(1,f (1))处的切线方程为y -e =4e(x -1),即4e x -y -3e =0. (2)若a =-1,则f ′(x )=-(x +1)x e x .令f ′(x )=0解x 1=-1,x 2=0. 当∈(-∞,-1)时,f ′(x )<0; 当x ∈(-1,0)时,f ′(x )>0; 当x ∈(0,+∞)时,f ′(x )<0;所以f (x )的增区间为(-1,0),减区间为(-∞,-1)和(0,+∞).10.已知二次函数h (x )=ax 2+bx +2,其导函数y =h ′(x )的图象如图所示,f (x )=6ln x +h (x ).(1)求函数f (x )的解析式;(2)若函数f (x )在区间(1,m +12)上是单调函数,求实数m 的取值范围.【解析】(1)由已知,h ′(x )=2ax +b ,其图象为直线,且过(0,-8),(4,0)两点,把两点坐标代入h ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧ 2a =2,b =-8,解得⎩⎪⎨⎪⎧a =1,b =-8,∴h (x )=x 2-8x +2,h ′(x )=2x -8,∴f (x )=6ln x +x 2-8x +2. (2)∵f ′(x )=6x +2x -8=2(1)(3)(0)x x x x--> ∴当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,1) 1 (1,3) 3 (3,+∞)f ′(x ) + 0 - 0 + f (x )↗↘↗∴f (x )的单调递增区间为(0,1)和(3,+∞), f (x )的单调递减区间为(1,3).要使函数f (x )在区间⎝⎛⎭⎫1,m +12上是单调函数, 则⎩⎨⎧1<m +12,m +12≤3,解得12<m ≤52,即实数m 的取值范围为⎝⎛⎦⎤12,52.。
高三数学利用导数研究函数的单调性试题答案及解析1.我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得ln y=φ(x)lnf(x),两边求导得=φ′(x)·ln f(x)+φ(x)·,于是y′=f(x)φ(x)[φ′(x)·ln f(x)+φ(x)·].运用此方法可以探求得y=x的单调递增区间是________.【答案】(0,e)【解析】由题意知y′=x (-ln x+·)=x·(1-ln x),x>0,>0,x>0,令y′>0,则1-ln x>0,所以0<x<e.2.已知函数f(x)=(ax+1)e x.(1)求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在区间[-2,0]上的最小值.【答案】(1)见解析(2)当a>1时,f(x)在区间[-2,0]上的最小值为-a·;当0<a≤1时,f(x)在区间[-2,0]上的最小值为.【解析】解:依题意,函数的定义域为R,f′(x)=(ax+1)′e x+(ax+1)(e x)′=e x(ax+a+1).(1)①当a=0时,f′(x)=e x>0,则f(x)的单调递增区间为(-∞,+∞);②当a>0时,由f′(x)>0,解得x>-,由f′(x)<0,解得x<-,则f(x)的单调递增区间为(-,+∞),f(x)的单调递减区间为(-∞,-);③当a<0时,由f′(x)>0,解得x<-,由f′(x)<0解得,x>-,则f(x)的单调递增区间为(-∞,-),f(x)的单调递减区间为(-,+∞).(2)①当时,)上是减函数,在(-,0)上是增函数,则函数f(x)在区间[-2,0]上的最小值为f(-)=-a·;②当时,即当0<a≤1时,f(x)在[-2,0]上是增函数,则函数f(x)在区间[-2,0]上的最小值为f(-2)=.综上,当a>1时,f(x)在区间[-2,0]上的最小值为-a·;当0<a≤1时,f(x)在区间[-2,0]上的最小值为.3.函数f(x)=x(x-m)2在x=1处取得极小值,则m=________.【答案】1【解析】f′(1)=0可得m=1或m=3.当m=3时,f′(x)=3(x-1)(x-3),1<x<3,f′(x)<0;x<1或x>3,f′(x)>0,此时x=1处取得极大值,不合题意,所以m=1.4.设,曲线在点处的切线与直线垂直.(1)求的值;(2)若对于任意的,恒成立,求的范围;(3)求证:【解析】(1)求得函数f(x)的导函数,利用曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直,即可求a的值;(2)先将原来的恒成立问题转化为lnx≤m(x−),设g(x)=lnx−m(x−),即∀x∈(1,+∞),g(x)≤0.利用导数研究g(x)在(0,+∞)上单调性,求出函数的最大值,即可求得实数m的取值范围.(3)由(2)知,当x>1时,m=时,lnx<(x−)成立.不妨令x=,k∈N*,得出[ln(2k+1)−ln(2k−1)]<,k∈N*,再分别令k=1,2,,n.得到n个不等式,最后累加可得.(1) 2分由题设,∴,. 4分(2),,,即设,即.6分①若,,这与题设矛盾. 7分②若方程的判别式当,即时,.在上单调递减,,即不等式成立. 8分当时,方程,设两根为,当,单调递增,,与题设矛盾.综上所述, . 10分(3) 由(2)知,当时, 时,成立.不妨令所以,11分12分累加可得∴∴ ---------------14分【考点】1.利用导数研究曲线上某点切线方程;2.导数在最大值、最小值问题中的应用.5.已知函数.(1)当时,证明:当时,;(2)当时,证明:.【答案】(1)证明过程详见解析;(2)证明过程详见解析.【解析】本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将当时,转化为,对函数求导,利用单调递增,单调递减,来判断函数的单调性来决定函数最值,并求出最值为0,即得证;第二问,先将转化为且,利用导数分别判断函数的单调性求出函数最值,分别证明即可.(1)时,,令,,∴在上为增函数 3分,∴当时,,得证. 6分(2)令,,时,,时,即在上为减函数,在上为增函数 9分∴①令,,∴时,,时,即在上为减函数,在上为增函数∴②∴由①②得. 12分【考点】导数的运算、利用导数判断函数的单调性、利用导数求函数的最值.6.已知函数.(1)当a=l时,求的单调区间;(2)若函数在上是减函数,求实数a的取值范围;(3)令,是否存在实数a,当(e是自然对数的底数)时,函数g(x)最小值是3,若存在,求出a的值;若不存在,说明理由.【答案】(1)单调递减区间为,单调递增区间为;(2);(3)存在实数.【解析】(1)把代入函数解析式得,且定义域为,利用导数法可求出函数的单调区间,由,分别解不等式,,注意函数定义域,从而可求出函数的单调区间;(2)此问题利用导数法来解决,若函数在上是减函数,则其导函数在上恒成立,又因为,所以函数,必有,从而解得实数的取值范围;(3)利用导数求极值的方法来解决此问题,由题意得,则,令,解得,通过对是否在区间上进行分类讨论,可求得当时,有,满足条件,从而可求出实数的值.(1)当时,. 2分因为函数的定义域为,所以当时,,当时,.所以函数的单调递减区间为,单调递增区间为. 4分(2)在上恒成立.令,有, 6分得,. 8分(3)假设存在实数,使有最小值3,. 9分当时,在上单调递减,,(舍去); 10分②当时,在上单调递减,在上单调递增.,解得,满足条件; 12分③当时,在上单调递减,,(舍去). 13分综上,存在实数,使得当时,有最小值3. 14分【考点】1.导数性质;2.不等式求解;3.分类讨论.7.设函数f(x)=x-2msin x+(2m-1)sin xcos x(m为实数)在(0,π)上为增函数,则m的取值范围为()A.[0,]B.(0,)C.(0,]D.[0,)【答案】A【解析】∵f(x)在区间(0,π)上是增函数,∴f′(x)=1-2mcos x+2(m-)cos 2x=2[(2m-1)cos2x-mcos x+1-m]=2(cos x-1)[(2m-1)cos x+(m-1)]>0在(0,π)上恒成立,令cos x=t,则-1<t<1,即不等式(t-1)[(2m-1)t+(m-1)]>0在(-1,1)上恒成立,①若m>,则t<在(-1,1)上恒成立,则只需≥1,即<m≤,②当m=时,则0·t+-1<0,在(-1,1)上显然成立;③若m<,则t>在(-1,1)上恒成立,则只需≤-1,即0≤m<.综上所述,所求实数m的取值范围是[0,].8.已知e为自然对数的底数,设函数f(x)=xe x,则()A.1是f(x)的极小值点B.﹣1是f(x)的极小值点C.1是f(x)的极大值点D.﹣1是f(x)的极大值点【答案】B【解析】f(x)=xe x⇒f′(x)=e x(x+1),令f′(x)>0⇒x>﹣1,∴函数f(x)的单调递增区间是[﹣1,+∞);令f′(x)<0⇒x<﹣1,∴函数f(x)的单调递减区间是(﹣∞,﹣1),故﹣1是f(x)的极小值点.故选:B.9.若函数f(x)=x3-ax2+(a-1)x+1在区间(1,4)上是减函数,在区间(6,+∞)上是增函数,则实数a的取值范围是________.【答案】[5,7]【解析】f′(x)=x2-ax+(a-1),由题意,f′(x)≤0在(1,4)恒成立且f′(x)≥0在(6,+∞)恒成立,即a≥x+1在(1,4)上恒成立且a≤x+1在(6,+∞)上恒成立,所以5≤a≤7.10.已知函数f(x)=x2-mlnx+(m-1)x,当m≤0时,试讨论函数f(x)的单调性;【答案】当-1<m≤0时单调递增区间是和(1,+∞),单调递减区间是;当m≤-1时,单调递增区间是和,单调递减区间是【解析】函数的定义域为,f′(x)=x-+(m-1)=.①当-1<m≤0时,令f′(x)>0,得0<x<-m或x>1,令f′(x)<0,得-m<x<1,∴函数f(x)的单调递增区间是和(1,+∞),单调递减区间是;②当m≤-1时,同理可得,函数f(x)的单调递增区间是和,单调递减区间是.11.若函数f(x)=x2+ax+在上是增函数,则a的取值范围是________.【答案】a≥3【解析】f′(x)=2x+a-≥0在上恒成立,即a≥-2x在上恒成立.令g(x)=-2x,求导可得g(x)在上的最大值为3,所以a≥3.12.函数y=(3-x2)e x的单调递增区间是()A.(-∞,0)B.(0,+∞)C.(-∞,-3)和(1,+∞)D.(-3,1)【答案】D【解析】y'=-2xe x+(3-x2)e x=e x(-x2-2x+3)>0x2+2x-3<0-3<x<1,∴函数y=(3-x2)e x的单调递增区间是(-3,1).13.若函数f(x)=x3-x2+ax+4恰在[-1,4]上单调递减,则实数a的值为________.【答案】-4【解析】∵f(x)=x3-x2+ax+4,∴f′(x)=x2-3x+a.又函数f(x)恰在[-1,4]上单调递减,∴-1,4是f′(x)=0的两根,∴a=-1×4=-4.14.函数f(x)=x2-ln x的单调递减区间为 ().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)【答案】B【解析】由题意知,函数的定义域为(0,+∞),又由f′(x)=x-≤0,解得0<x≤1,所以函数的单调递减区间为(0,1].15.已知函数,(1)求函数的单调区间;(2)若方程有且只有一个解,求实数m的取值范围;(3)当且,时,若有,求证:.【答案】(1)的递增区间为,递减区间为和;(2);(3)详见解析.【解析】(1)对求导可得,令,或,由导数与单调性的关系可知,所以递增区间为,递减区间为;(2)若方程有解有解,则原问题转化为求f(x)的值域,而m只要在f(x)的值域内即可,由(1)知,,方程有且只有一个根,又的值域为,;(3)由(1)和(2)及当,时,有,不妨设,则有,,又,即,同理,又,,且在上单调递减,,即.试题解析:(1),令,即,解得,令,即,解得,或,的递增区间为,递减区间为和. 4分(2)由(1)知,, 6分方程有且只有一个根,又的值域为,由图象知8分(3)由(1)和(2)及当,时,有,不妨设,则有,,又,即, 11分,又,,且在上单调递减,,即. 13分【考点】1.导数在函数单调性上的应用;2. 导数与函数最值.16.某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。
答案:C 解析:∵f ′(x )=2x +2+ ,f (x )在(0,1)上单调, ∴f ′(x )≥0 或 f ′(x )≤03.函数 f (x )=x + 的单调区间为________.-1),令 f (x )=x 2-x -2,f ′(x )=2x -1<0,得 x < ,7.已知 y = x 3+bx 2+(b +2)x +3 在 R 上不是单调增函数,则 b 的范围为________.基础巩固题:1.函数 f(x)= ax + 1x + 2导数与函数的单调性在区间(-2,+∞)上为增函数,那么实数 a 的取值范围为( )1 1 1 <a< <-1 或 a> > >-22 2 21 - 2a 1答案:C 解析:∵f(x)=a+ 在(-2,+∞)递增,∴1-2a<0,即 a> .x + 2 22.已知函数 f (x )=x 2+2x +a ln x ,若函数 f (x )在(0,1)上单调,则实数 a 的取值范围是()A .a ≥0B .a <-4C .a ≥0 或 a ≤-4D .a >0 或 a <-4ax在(0,1)上恒成立,即 2x 2+2x +a ≥0 或 2x 2+2x +a ≤0 在(0,1)上恒成立, 所以 a ≥-(2x 2+2x )或 a ≤-(2x 2+2x )在(0,1)上恒成立.记 g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0,∴a ≥0 或 a ≤-4,故选 C.9x答案:(-3,0),(0,3)解析:f ′(x )=1-x 2= x 29 x 2-9 ,令 f ′(x )<0,解得-3<x <0或 0<x <3,故单调减区间为(-3,0)和(0,3).4 函数 y = x 2 - x 3 的单调增区间为,单调减区间为___________________2 答案: (0, ) ; (-∞,0),( 32 3 , +∞) 解析: y ' = -3x 2 + 2 x = 0, x = 0, 或x =23 5.确定下列函数的单调区间:(1)y =x 3-9x 2+24x (2)y =3x -x 3(1)解:y ′=(x 3-9x 2+24x )′=3x 2-18x +24=3(x -2)(x -4) 令 3(x -2)(x -4)>0,解得 x >4 或 x <2.∴y =x 3-9x 2+24x 的单调增区间是(4,+∞)和(-∞,2) 令 3(x -2)(x -4)<0,解得 2<x <4.∴y =x 3-9x 2+24x 的单调减区间是(2,4)(2)解:y ′=(3x -x 3)′=3-3x 2=-3(x 2-1)=-3(x +1)(x -1)令-3(x +1)(x -1)>0,解得-1<x <1. ∴y =3x -x 3 的单调增区间是(-1,1).令-3(x +1)(x -1)<0,解得 x >1 或 x <-1.∴y =3x -x 3 的单调减区间是(-∞,-1)和(1,+∞) 6.函数 y =ln(x 2-x -2)的单调递减区间为__________.[答案] (-∞,-1) [解析] 函数 y =ln(x 2-x -2)的定义域为(2,+∞)∪(-∞,1 2∴函数 y =ln(x 2-x -2)的单调减区间为(-∞,-1)13= x 2 x 2 [答案] b <-1 或 b >2[解析] 若 y ′=x 2+2bx +b +2≥0 恒成立,则 Δ=4b 2-4(b+2)≤0,∴-1≤b ≤2,由题意 b <-1 或 b >2.8.已知 x ∈R,求证:e x ≥x +1.证明:设 f (x )=e x -x -1,则 f ′(x )=e x -1.∴当 x =0 时,f ′(x )=0,f (x )=0.当 x >0 时,f ′(x )>0,∴f (x )在(0,+∞)上是增函数.∴f (x )>f (0)=0. 当 x <0 时,f ′(x )<0,f (x )在(-∞,0)上是减函数,∴f (x )>f (0)=0.9.已知函数 y =x + 1 x,试讨论出此函数的单调区间.1 x2 - 1 ( x + 1)( x - 1) ( x + 1)( x - 1)解:y ′=(x + )′=1-1·x -2= 令 > 0. x x 21 ( x + 1)( x - 1)解得 x >1 或 x <-1.∴y =x + 的单调增区间;是(-∞,-1)和(1,+∞).令x x 21<0,解得-1<x <0 或 0<x <1. ∴y =x + 的单调减区间是(-1,0)和(0,1)x10.已知函数的图象过点 P (0,2),且在点 M (-1,f (-1))处的切线方程为.(Ⅰ)求 函数 y=f(x)的解析式;(Ⅱ)求函数 y=f(x)的单调区间. 解:(Ⅰ)由 f(x)的图象经过 P (0,2),知 d=2,所以由在 M(-1,f(-1))处的切线方程是, 知故所求的解析式是(Ⅱ)解得当 当故内是增函数,在内是减函数,在内是增函数.点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题 的能力.11.已知函数 f(x)=x 3-x 2+bx+c. (1)若 f(x)在(-∞,+∞)上是增函数,求 b 的取值范围; 解 (1)=3x 2-x+b,因 f(x)在(-∞,+∞)上是增函数,则≥0.即 3x 2-x+b≥0,∴b≥x -3x 2 在(-∞,+∞)恒成立.设 g(x)=x-3x 2. 当 x=时,g(x)max =,∴b≥. 12.已知函数 f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数 a 的取值范围.解 f(x)=x(x-1)(x-a)=x 3-(a+1)x 2+ax ∴=3x 2-2(a+1)x+a 要使函数 f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,只需=3x 2-2(a+1)x+a 在(2,+∞)上满足≥0 即可.的对称轴是 x=,∴a 的取值应满足:或解得:a≤.∴a 的取值范围是 a≤.∵=3x 2-2(a+1)x+a13.已知函数 f ( x ) = 4 x + ax 2- 2 3x 3( x ∈ R) 在区间 [-1,1]上是增函数,求实数 a 的取值范围.解: f ' ( x ) = 4 + 2ax - 2 x 2 ,因为 f (x )在区间 [-1,1]上是增函数,所以 f ' ( x ) ≥ 0 对x ∈[-1,1] 恒成立,即 x 2 - ax - 2 ≤ 0 对 x ∈[-1,1] 恒成立,解之得: -1 ≤ a ≤ 1(x -1)2 解析:f ′(x )= =(x -1)3 (x -1)3当 b -1=1,即 b =2 时,f (x )= ,所以函数 f (x )在(-∞,1)上单调递减,在(1,所以实数 a 的取值范围为 [-1,1].点拨:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调 性关系:即“若函数单调递增,则 f ' ( x ) ≥ 0 ;若函数单调递减,则 f ' ( x ) ≤ 0 ”来求解,注 意此时公式中的等号不能省略,否则漏解.14.已知函数 f ( x ) = x 3 + bx 2 + ax + d 的图象过点 P (0,2),且在点 M (-1, f (-1) )处 的切线方程 6 x - y + 7 = 0 ,(1)求函数 y = f ( x ) 的解析式;(2)求函数 y = f ( x ) 的单调区间。
2.2.1导数与函数的单调性基础巩固题:1.函数f(x)=21++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.0<a<21 B.a<-1或a>21 C.a>21D.a>-2答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>21.2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0B .a <-4C .a ≥0或a ≤-4D .a >0或a <-4答案:C 解析:∵f ′(x )=2x +2+ax ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0, ∴a ≥0或a ≤-4,故选C.3.函数f (x )=x +9x 的单调区间为________.答案:(-3,0),(0,3) 解析:f ′(x )=1-9x 2=x 2-9x2,令f ′(x )<0,解得-3<x <0或0<x <3,故单调减区间为(-3,0)和(0,3).4 函数32x x y -=的单调增区间为 ,单调减区间为___________________答案:2(0,)3 ; 2(,0),(,)3-∞+∞ 解析: '22320,0,3y x x x x =-+===或 5.确定下列函数的单调区间:(1)y =x 3-9x 2+24x (2)y =3x -x 3 (1)解:y ′=(x 3-9x 2+24x )′=3x 2-18x +24=3(x -2)(x -4) 令3(x -2)(x -4)>0,解得x >4或x <2.∴y =x 3-9x 2+24x 的单调增区间是(4,+∞)和(-∞,2) 令3(x -2)(x -4)<0,解得2<x <4.∴y =x 3-9x 2+24x 的单调减区间是(2,4)(2)解:y ′=(3x -x 3)′=3-3x 2=-3(x 2-1)=-3(x +1)(x -1) 令-3(x +1)(x -1)>0,解得-1<x <1. ∴y =3x -x 3的单调增区间是(-1,1).令-3(x +1)(x -1)<0,解得x >1或x <-1.∴y =3x -x 3的单调减区间是(-∞,-1)和(1,+∞) 6.函数y =ln(x 2-x -2)的单调递减区间为__________.[答案] (-∞,-1) [解析] 函数y =ln(x 2-x -2)的定义域为(2,+∞)∪(-∞,-1),令f (x )=x 2-x -2,f ′(x )=2x -1<0,得x <12,∴函数y =ln(x 2-x -2)的单调减区间为(-∞,-1)7.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________.[答案] b <-1或b >2 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +2)≤0,∴-1≤b ≤2,由题意b <-1或b >2.8.已知x ∈R,求证:e x ≥x +1.证明:设f (x )=e x -x -1,则f ′(x )=e x -1.∴当x =0时,f ′(x )=0,f (x )=0.当x >0时,f ′(x )>0,∴f (x )在(0,+∞)上是增函数.∴f (x )>f (0)=0. 当x <0时,f ′(x )<0,f (x )在(-∞,0)上是减函数,∴f (x )>f (0)=0.9.已知函数y =x +x1,试讨论出此函数的单调区间. 解:y ′=(x +x 1)′=1-1·x -2=222)1)(1(1x x x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1.∴y =x +x 1的单调增区间;是(-∞,-1)和(1,+∞).令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1)10.已知函数32()f x x bx cx d =+++的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x .(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调区间. 解:(Ⅰ)由f(x)的图象经过P (0,2),知d=2, 所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++=' 由在M(-1,f(-1))处的切线方程是76=+-y x , 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即{{326,23,12 1.0,3.b c b c b c b c b c -+=-=-∴-+-+=-===-即解得 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ)22()36 3.3630,f x x x x x '=----=令2210.x x --=即 解得 .21,2121+=-=x x当;0)(,21,21>'+>-<x f x x 时或 当.0)(,2121<'+<<-x f x 时故)21,()(--∞在x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数. 点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力.11.已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围;解 (1))(x f '=3x 2-x+b,因f(x)在(-∞,+∞)上是增函数,则)(x f '≥0.即3x 2-x+b≥0,∴b≥x -3x 2在(-∞,+∞)恒成立.设g(x)=x-3x 2.当x=61时,g(x)max =121,∴b≥121. 12.已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a 的取值范围.解 f(x)=x(x-1)(x-a)=x 3-(a+1)x 2+ax ∴)(x f '=3x 2-2(a+1)x+a 要使函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,只需)(x f '=3x 2-2(a+1)x+a 在(2,+∞)上满足)(x f '≥0即可.∵)(x f '=3x 2-2(a+1)x+a 的对称轴是x=31+a ,∴a 的取值应满足:⎪⎩⎪⎨⎧≥'≤+0(2)231f a 或⎪⎪⎩⎪⎪⎨⎧≥+'>+0)31(231a f a 解得:a≤38.∴a 的取值范围是a≤38.13.已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-.点拨:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.14.已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M (-1,)1(-f )处的切线方程076=+-y x ,(1)求函数)(x f y =的解析式;(2)求函数)(x f y =的单调区间。
导数与曲线的单调性练习题1. 设函数 f(x) 在区间 (-∞,0) 上是减函数,在区间(0,∞) 上是增函数,且 f'(x) = x^2 + 1,求 f(x) 在区间 (-∞,∞) 上的单调性。
解析:根据题意可知,f(x) 在区间 (-∞,0) 上是减函数,在区间(0,∞) 上是增函数。
而函数的导数 f'(x) = x^2 + 1,那么我们可以求导数 f'(x) = 0 的解。
x^2 + 1 = 0x^2 = -1由于方程 x^2 = -1 在实数范围内无解,所以 f'(x) = x^2 + 1 恒大于 0,即 f(x) 在区间 (-∞,∞) 上是增函数。
2. 已知函数 f(x) = 2x^3 - 5x^2 + 3x - 7,在区间 (-∞,∞) 上的单调性。
解析:为了确定 f(x) 在区间 (-∞,∞) 上的单调性,我们可以求导数 f'(x)。
f'(x) = 6x^2 - 10x + 3接下来,我们需要求出 f'(x) = 0 的解。
6x^2 - 10x + 3 = 0使用求根公式可以得到:x = (10 ± √(10^2 - 4*6*3))/(2*6)计算可得:x = (10 ± √(100 - 72))/12x = (10 ± √28)/12因此,f'(x) = 0 的解为:x = (5 + √7)/6 和 x = (5 - √7)/6接下来我们可以分析 f'(x) 在这两个解处的取值情况以及 f'(x)在这两个解之间的变化情况:当 x < (5 - √7)/6 时,f'(x) 的值大于 0;当 (5 - √7)/6 < x < (5 + √7)/6 时,f'(x) 的值小于 0;当x > (5 + √7)/6 时,f'(x) 的值大于 0。
函数的单调性〔一〕一、选择题:1.在区间(0,+∞)上不是增函数的函数是〔 〕A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 〔 〕 A .-7 B .1 C .17 D .25 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是〔 〕A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是〔 〕A .a ≤3B .a ≥-3C .a ≤5D .a ≥310.已知函数()()2212f x x a x =+-+的单调递减区间(]4,∞-上是减函数,则实数a 的取值范围是〔 〕 A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) 〔1〕求f (1)的值.〔2〕假设f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞]〔1〕当a =21时,求函数f (x )的最小值;〔2〕假设对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36),又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的表达.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
1.求下列函数的单调性:
(1).x x a a x f --=)((0>a 且1≠a );
(2).)253(log )(2-+=x x x f a (0>a 且1≠a );
(3).)0,11(1
)(2≠<<--=b x x bx x f . 解: 1.函数定义域为R .
).(ln )(ln ln )(x x x x a a a x a a a a x f --+='-⋅⋅-='
当1>a 时,.0)(,0,0ln >'∴>+>-x f a a a x x
∴函数)(x f 在),(+∞-∞上是增函数.
当10<<a 时,.0)(,0,0ln <'∴>+<-x f a a a x x
∴函数)(x f 在),(+∞-∞上是减函数.
2.函数的定义域是3
1>x 或.2-<x )
2)(13(log )56()253(253log )(22+-+='-+⋅-+='x x e x x x x x e x f a a ①若1>a ,则当3
1>x 时,0)2)(13(,056,0log >+->+>x x x e a , ∴0)(>x f ,∴函数)(x f 在⎪⎭⎫ ⎝⎛∞+,31
上是增函数;
当2-<x 时,0)(<'x f ,∴函数)(x f 在()2,-∞-上是减函数
②若10<<a ,则当3
1>x 时,0)(<'x f , ∴函数)(x f 在⎪⎭
⎫ ⎝⎛∞+,31上是减函数;
当2-<x 时,0)(>'x f ,∴函数)(x f 在()2,-∞-上是增函数
3.函数)(x f 是奇函数,只需讨论函数在(0,1)上的单调性 当10<<x 时,2
222)1()1()1()(-'-⋅--⋅'⋅='x x x x x b x f 222)
1()1(-+-=x x b 若0>b ,则0)(<'x f ,函数)(x f 在(0,1)上是减函数;
若0<b ,则0)(>'x f ,函数)(x f 在(0,1)上是增函数.
又函数)(x f 是奇函数,而奇函数在对称的两个区间上有相同的单调性.所以当0>b 时,函数)(x f 在(-1,1)上是减函数,当0<b 时,函数)(x f 在(-1,1)上是增函数.
2.求下列函数的单调区间:
(1).32)(24+-=x x x f ;
(2).22)(x x x f -=;
(3).).0()(>+=b x
b x x f 解:1.函数)(x f 的定义域为R ,x x x x x x f )1)(1(44)(4+-=-='
令0)(>'x f ,得01<<-x 或1>x .
∴函数)(x f 的单调递增区间为(-1,0)和),1(+∞;
令0)(<'x f ,得1-<x 或10<<x ,
∴函数)(x f 的单调递减区间为)1,(--∞和(0,1).
2.函数定义域为.20≤≤x
.2122)2()(222x x x x x x x x f --=-'
-='
令0)(>'x f ,得10<<x .
∴函数)(x f 的递增区间为(0,1);
令0)(<'x f ,得21<<x ,
∴函数)(x f 的单调递减区间为(1,2).
3.函数定义域为).)((11)(,022b x b x x x b x f x +-=-
='≠ 令0)(>'x f ,得b x >或b x -<.
∴函数)(x f 的单调递增区间为),(b --∞和),(+∞b ;
令0)(<'x f ,得b x b <<-且0≠x ,
∴函数)(x f 的单调递减区间是)0,(b -和),0(b .
3.已知c x x f +=2)(,且).1()]([2
+=x f x f f
(1).设)]([)(x f f x g =,求)(x g 的解析式;
(2).设)()()(x f x g x λϕ-=,试问:是否存在实数λ,使)(x ϕ在()1,-∞-内为减函数,且在(-1,0)内是增函数.
解:1.由题意得c c x c x f x f f ++=+=222)()()]([, )1()]([.)1()1(2222+=++=+x f x f f c x x f ,
∴.1,1,)1()(2
22222=∴+=+∴++=++c x c x c x c c x
∴.1)1()1()]([)(,1)(2222++=+==+=x x f x f f x g x x f
2.)2()2()()()(24λλλϕ-+-+=-=x x x f x g x .
若满足条件的λ存在,则.)2(24)(3x x x λϕ-+='
∵函数)(x ϕ在()1,-∞-内是减函数,∴当1-<x 时,0)(<'x ϕ,
即0)2(243<-+x x λ对于)1,(--∞∈x 恒成立.
∴.44,1,4)2(222-<-∴-<∴->-x x x λ
∴4)2(2-≥-λ,解得4≤λ.
又函数)(x ϕ在(-1,0)上是增函数,∴当01<<-x 时,0)(>'x ϕ
即0)2(243>-+x x λ对于)0,1(-∈x 恒成立,
∴.044,01,4)2(222<<-∴<<--<-x x x λ
∴4)2(2-≤-λ,解得4≥λ.
故当4=λ时,)(x ϕ在()1,-∞-上是减函数,在(-1,0)上是增函数,即满足条件的λ存在.
说明:函数思维实际上是辩证思维的一种特殊表现形式,它包含着运动、变化,也就存在着量与量之间的相互依赖、相互制约的关系.因此挖掘题目中的隐含条件则是打开解题思路的重要途径,具体到解题的过程,学生很大的思维障碍是迷失方向,不知从何处入手去沟通已知与未知的关系,使分散的条件相对集中,促成问题的解决.不善于应用a x f <)(恒成立a x f <⇔m ax )]([和a x f >)(恒成立a x f >⇔m in )]([,究其原因是对函数的思想方法理解不深.
4.已知a 、b 为实数,且e a b >>,其中e 为自然对数的底,求证:a b b a >.
解:证法一:
e a b >> ,∴要证a b b a >,只要证b a a b ln ln >,
设)(ln ln )(e b b a a b b f >-=,则b
a a
b f -='ln )(. e a b >> ,∴1ln >a ,且1<b
a ,∴.0)(>'
b f ∴函数b a a b b f ln ln )(-⋅=在),(+∞e 上是增函数.
∴0ln ln )()(=-=>a a a a a f b f ,即0ln ln >-b a a b ,
∴.,ln ln a b b a b a a b >∴>
证法二:要证a b b a >,只要证)(ln ln b a e b a a b <<>⋅, 即证b b a a ln ln >,设)(ln )(e x x x x f >=,则0ln 1)(2<-='x
x x f , ∴函数)(x f 在),(+∞e 上是减函数.
又)()(,b f a f b a e >∴<< ,即.,ln ln a b b a b
b a a >∴> 说明:“构造”是一种重要而灵活的思维方式,应用好构造思想解题的关键是:一要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行逻辑组合.解决这种问题常见的思维误区是不善于构造函数或求导之后得出)()()()(x g x f x g x f >⇒'>'的错误结论.
5. 函数⎪⎭
⎫ ⎝⎛
+=x y 11log 21在区间),0(+∞上是( ) A .增函数,且0>y B .减函数,且0>y C .增函数,且0<y D .减函数,且0<y
解:解法一:令x
u 11+=,且1),,0(>∴+∞∈u x , 则0log 2
1<=u y ,排除A 、B .
由复合函数的性质可知,u 在 ),0(+∞上为减函数. 又u y 21log =亦为减函数,故⎪⎭
⎫ ⎝⎛+
=x y 11log 21在 ),0(+∞ 上为增函数,排除D ,选C . 解法二:利用导数法
0log )1(11log 111
2221>+=⎪⎭⎫ ⎝⎛-⋅⋅+='e x x x e x y (),0(+∞∈x ),故y 在),0(+∞上是增函数.
由解法一知0<y .所以选C .。