人教A版数学必修二3.2.1《直线的点斜式方程》导学案
- 格式:doc
- 大小:160.00 KB
- 文档页数:3
3、2、1 直线的点斜式方程一、【学习目标】1、引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程;2、在理解的基础上掌握直线方程的点斜式的特征及适用范围.【教学重点】直线的点斜式、斜截式方程的推导及运用;【教学难点】直线的点斜式、斜截式方程的意义及运用;根据条件熟练地求出直线的方程二、【自学内容和要求及自学过程】1、阅读教材第92—93页内容,然后回答问题(点斜式方程)<1>如果已知直线l 经过点),(000y x P ,且斜率为k ,设点),y x P ( 是直线l 上不同于点0P 的任意一点,你能求出直线的方程吗?你怎么说明我们根据斜率所得到的方程就是我们所求的直线方程?<2>我们由<1>所得的方程是斜率存在的情况,若斜率不存在也就是倾斜角是直角的情况,方程怎么求?倾斜角为零度呢? 结论:<1>由斜率公式得:=k (0y y -)/(0x x -),即)(00x x k y y -=-就是我们所求的方程.证明过程:由上述推导过程我们可知:01过点),(000y x P ,斜率为k 的直线l 的坐标都满足上述方程;反过来我们还可以验证.02坐标满足上述方程的点,都在过点),(000y x P ,斜率为k 的直线l 上. <2>两种特殊情况的方程分别为:00y y x x ==、【例1】已知直线l 过点A(2,1)且与直线y -1=4x -3垂直,求直线l 的方程.【解析】方程y -1=4x -3可化为y -1=4(x -34),由点斜式方程知其斜率k =4,又∵l 与直线y -1=4x -3垂直, ∴直线l 的斜率为-14,又由l 过点A(2,1). ∴直线l 的方程为y -1=-14(x -2), 即x +4y -6=0.练习一:教材95页练习1、2.2、阅读教材第94页思考上面的内容,回答问题(斜截式)<3>如果直线l 的斜率为k ,且与y 轴的交点为),0(b ,代入直线的点斜式方程,我们能得到什么结论?结论:<3>我们可以得到)0(-=-x k b y 即b kx y +=,我们把直线l 与y 轴的交点),0(b 的纵坐标b 叫做直线l 在y 轴上的截距.我们把这个方程叫做直线的斜截式方程.练习二:①请同学们记住这个结论,并且思考,截距是距离吗?②观察方程b kx y +=,它的形式具有什么特点?k 和b 分别表示什么含义?③请同学们完成教材第95页练习3.3、阅读教材94页例2,回答问题(复习直线垂直、平行的条件)<4>已知直线111:b x k y l +=,222:b x k y l +=,那么21//l l ,21l l ⊥ 的条件分别是什么?若反过来,成立吗?结论:<4>212121,//b b k k l l ≠=⇔,12121-=⋅⇔⊥k k l l .(要注意特殊情况,譬如斜率不存在或斜率为零的情况)练习三:①完成教材第95页练习4;②习题3.2A 组1<1><2><3>.三、【作业】习题3.2A 组2、3、5、10;四、【小结】本节课主要学习了三大块内容,直线的点斜式、斜截式方程,以及两直线平行和垂直的条件.要重点理解点斜式、斜截式方程的推导过程和结构特征以及适用范围.五、【反思】教学,重要的是学生的学,而不是教师的教.老师要做到的是怎样推动学生积极的学习.个人认为推动学生学习,最重要的是给学生一个台阶,上得去的台阶.譬如上一章学习的立体几何,由于是新知识,学生学习起来比较吃力,课堂效果和作业效果都一般,但是直线这一章相比之下简单一些,学生的学习效果很不错,并且乐意学.所以调动学生的积极性,重要的是循序渐进,不要过分拔高,也就是说给学生一个台阶.。
3.2.1直线的点斜式方程【问题导入】(1)已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线吗?( ) (2)已知两点可以确定一条直线吗?( ) 那我们就可以说,在直角坐标系中给定或给定就能唯一确定一条直线.即平面直角坐标系中的点在不在这条直线上是完全确定的. 本节课目的:研究给定一个点),(000y x P 和 【探究新知】【问题一】如图,直线l 经过点),(000y x P ,且斜率为k ,设点),(y x P 是直线l 上不同于点0P 的任意一点,因为直线l 的斜率为k ,由斜率公式得: k=1) 注: 1°过点),(000y x P ,斜率是k 的直线l 上的点,其坐标都满足方程(1). 2°坐标满足方程(1)的点都在经过),(000y x P ,斜率为k 的直线l 上.方程(1)由直线上一定点及其斜率确定,我们把(1)叫做直线的点斜式方程,简称点斜式 【例1】直线l 经过点)3,2(0-P 倾斜角α=450,求这条直线的方程,并画出图形.变式:写出下列直线的点斜式方程: 1直线l 经过点)3,2(0-P 斜率是0 .2.直线l 经过点)3,2(0-P 斜率不存在 .【问题二】直线l 的斜率为k ,且与y 轴的交点为(0,b ),求直线l 的点斜式方程 2) 截距:直线l 与y 轴交点(0,b )的纵坐标 叫做直线l 在y 轴上的 方程(2)由直线的斜率k 与它在y 轴上的截距b 确定,所以方程(2)叫做直线的斜截式方程,简称斜截式 练习:写出下列直线的斜截式方程: 1. 斜率是,在y 轴上的截距是-2 2. 斜率是-2,在y 轴上的截距是4【例2】已知直线l 1:y = k 1 + b 1,l 2:y 2 = k 2 x + b 2 . 试讨论:(1)l 1∥l 2的条件是什么?(2)l 1⊥l 2的条件是什么?变式:判断下列各对直线是否平行或垂直: 1211(1):3,:222l y x l y x =+=- 1253(2):,:35l y x l y x ==-当堂检测 1. 过点(4,2)-,倾斜角为135ο的直线方程是( ). A.20y ++-=B.360y +++= C.40x +--=D.40x ++-= 2. 已知直线的方程是21y x +=--,则( ). A .直线经过点(2,1)-,斜率为1- B .直线经过点(2,1)--,斜率为1 C .直线经过点(1,2)--,斜率为1- D .直线经过点(1,2)-,斜率为1- 3. 直线130kx y k -+-=,当k 变化时,所有直线恒过定点( ). A .(0,0) B .(3,1)C .(1,3) D .(1,3)--4. 直线l的倾斜角比直线12y x =+的倾斜角大45ο,且直线l 的纵截距为3,则直线的方程是 .5. 已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是: .6.求倾斜角是直线1y =+的倾斜角的14,且分别满足下列条件的直线方程.(1)经过点1)-; (2)在y 轴上的截距是5.7.直线l 过点P (2,3)且与x 轴,y 轴分别交于A 、B 两点,若P 恰为线段AB 的中点,求直线l 的方程.。
3.2.1 直线的点斜式方程 3.2.2 直线的两点式方程学习目标:1.正确理解直线方程的点斜式 斜截式的形式特点和适用范围,能利用直线的点斜式 斜截式公式求直线方程;2、掌握直线方程两点式和截距式的发现推导过程,并能运用这两种形式求出直线方程.3.独立思考,合作探究,通过具体实例,学会用点斜式 斜截式,两点式和截距式公式求直线方程的方法;4.了解直线方程的形式特点及适用范围,培养学生辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.学习过程: 同学们,如果把直线当做结论,那么确定一条直线需要几个条件?如何根据所给条件求出直线的方程?一.自学导引1.(复习)<1>直线的斜率定义是什么?直线的斜率公式是什么?<2>如何确定一条直线?<3>过已知点),(000y x P 的直线有多少条?过点),(000y x P ,斜率为k 的直线有多少条?2、阅读教材第92—93页内容,然后回答问题(点斜式方程)<1>如果已知直线l 经过点),(000y x P ,且斜率为k ,设点),y x P ( 是直线l 上不同于点0P 的任意一点,你能求出直线的方程吗?<2>我们由<1>所得的方程是斜率存在的情况,若斜率不存在也就是倾斜角是直角的情况,方程怎么求?倾斜角为零度呢?预习自测:请同学们自学教材例1,并完成教材第95页练习1、2.第95页练习:1.(1) ,(2)(3) ,(4)2.(1)斜率是 ,倾斜角是 .(2)斜率是 ,倾斜角是 .3、阅读教材第94页思考上面的内容,回答问题(斜截式)<3>如果直线l 的斜率为k ,且与y 轴的交点为),0(b ,代入直线的点斜式方程,我们能得到什么结论?结论:<3>我们可以得到 .即 ,我们把直线l 与y 轴的交点),0(b 的 坐标b 叫做直线l 在y 轴上的截距.我们把这个方程叫做直线的 斜截式方程. 预习自测:①请同学们记住这个结论,并且思考,截距是距离吗?②观察方程b kx y +=,它的形式具有什么特点?k 和b 分别表示什么含义?③请同学们完成教材第95页练习3.第95页练习3:(1) ,(2)4.阅读教材94页例2,回答问题(复习直线垂直、平行的条件)<4>已知直线111:b x k y l +=,222:b x k y l +=,那么21//l l ,21l l ⊥的条件分别是什么?若反过来,成立吗? 结论: 212121,//b b k k l l ≠=⇔,12121-=⋅⇔⊥k k l l .(要注意特殊情况,譬如斜率不存在和斜率为零的情况) 预习自测:教材第95页练习4;(1) ,(2)5、阅读教材95—96页内容,结合前边内容,回答问题(两点式)<1>已知直线)),(),,(2121222111y y x x y x P y x P ≠≠,(,求直线21P P 的方程; 结论:<1>当21x x ≠时,所求直线的斜率)/()(1212x x y y k --=,任取),(),,(222111y x P y x P 中的一点,例如取),(111y x P,由点斜式方程,得, ))](/)[(112121x x x x y y y y ---=-(,当12y y ≠时,我们可以把方程写成下列形式:)()()()(121121//x x x x y y y y --=--(这个式子对称、美观);这个式子是由两点得到的,所以我们把它叫做两点式方程,简称两点式.<2>若点),(),,(222111y x P y x P ,21x x =或21y y =时,直线的方程又该如何表示? 结论:<2>方程为1x x =或1y y =①请同学们思考一下,两点式运用的时候需注意什么?你能归纳出两点式的适用范围吗?②预习自测:第97页练习:1.(1)___________________6、请结合教材第96页例3,回答下列问题(截距式)<3>已知直线l 与x 轴的交点坐标为)0,(a A ,与y 轴的交点坐标为)0,(b B ,其中()0,0≠≠b a ,求直线l 的方程.结论:<3>把)0,(a A 、)0,(b B 两点代入直线的两点式方程,可以得到 ,这个方程由x 轴的截距a 和y 轴的截距b 所确定,所以把这个方程叫做直线方程的截距式方程.①请同学们思考一下a 、b 表示截距是不是直线与坐标轴的两个交点到原点的距离?截距式不能表示平面坐标系下哪些直线?请同学们试着归纳总结一下!②预习自测:教材第97页练习1.<2>_____________________.2.(1)___________________(2)__________________小结: 点斜式方程:____________________ ( )斜截式方程:_____________________ ( )两点式方程:_____________________ ( )截距式方程:______________________( )二:典例分析:例1:已知直线l 的斜率为21,且与两坐标轴围成的三角形的面积为4,求直线l 的方程.例2:已知三角形的三个顶点 A (-5,0),B (3,-3),C (0,2),求BC 边所在直线的方程,以及该边上中线所在直线的方程.例3:求经过点P(-5,4),且在两坐标轴上的截距相等的直线方程.三:拓展延伸:1.求与两坐标轴围成的三角形周长为9,且斜率为 34 的直线方程2.已知直线l 经过点P(1,2),并且点A(2,3)和点 B(4,-5)到直线l 的距离相等,求直线l 的方程.四:当堂检测:(1)经过点A(-1,2),且与直线 y=3x+1垂直的直线方程_________________. (2)斜率为-2,且在y轴上的截距为5的直线方程_________________.(3)过点A(7,-4),B(-5,6)的直线方程__________________(4)经过点P(0,5),且在两坐标轴上的截距之和为2的直线方程____________.五:小结:(1)知识内容:(2)学习方法:六:作业:1、必做题:习题3.2A组2、3、5、9,10;2、选做题:习题3.2B组1,7,8。
3.2.1 直线的点斜式方程学习目标1.了解由斜率公式推导出直线方程的点斜式并掌握由点斜式推导出直线的斜截式方程;2.初步学会利用直线方程的知识解决有关的实际问题.学法指导通过已知直角坐标系内确定一条直线的几何要素,探讨得出直线的点斜式、斜截式方程;通过对比理解“截距”与“距离”的区别,体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想.一复习问题1已知两点A(x1,y1)、B(x2,y2),如何求直线AB的斜率?问题2在直角坐标系内确定一条直线,应知道哪些条件?二新课问题探究点一直线的点斜式方程问题1求直线的方程指的是求什么?问题2直线l经过点P0(x0,y0),且斜率为k,设点P(x,y)是直线l上的任意一点,(1)怎样建立x,y与k,x0,y0之间的关系?(2)过点P0(x0,y0),斜率是k的直线l上的点,其坐标都满足(1)中的方程吗?为什么?(3)坐标满足方程y-y0=k(x-x0)的点都在过点P0(x0,y0),斜率为k的直线上吗?为什么?小结上述(2),(3)两条都成立,所以方程①就是过点P0(x0,y0),斜率为k的直线的方程.方程①由直线上一点及其斜率确定,把这个方程叫做直线的点斜式方程,简称点斜式.问题3如何求x轴所在的直线方程?问题4由x轴的方程你能猜出y轴所在的直线方程吗?问题5如何求出经过点P0(x0,y0)且平行于x轴(即垂直于y轴)的直线方程是什么?问题6如何求过点P0(x0,y0)且平行于y轴(即垂直于x轴)的直线方程?例1直线l经过点P0(-2,3),且倾斜角α=45°,求直线l的点斜式方程,并画出直线l.小结 1.求直线的点斜式方程:2.点斜式方程y-y0=k(x-x0)可表示过点P(x0,y0)的所有直线,但x=x0除外.跟踪训练1写出下列直线的点斜式方程.(1)经过点A(2,5),且与直线y=2x+7平行;(2)经过点D(1,1),且与x轴垂直.问题探究点二直线的斜截式方程问题1已知直线l的斜率为k,且与y轴的交点为(0,b),得到的直线l的方程是什么?小结我们把直线与y轴交点的纵坐标b叫做直线l在y轴上的截距.方程y=kx+b由直线的斜率k 与它在y轴上的截距b确定,所以该方程叫做直线的斜截式方程,简称斜截式.问题2直线y=kx+b在x轴上的截距是什么?它是直线与x轴的交点到原点的距离吗?截距的值一定是正数吗?问题3观察方程y=kx+b,它的形式具有什么特点?问题4你如何从直线方程的角度认识一次函数y=kx+b?一次函数中k和b的几何意义是什么?例2已知直线l1:y=k1x+b1,l2:y=k2x+b2,试讨论:(1)l1∥l2的条件是什么?(2)l1⊥l2的条件是什么?小结已知l1:y=k1x+b1,l2:y=k2x+b2,则l1∥l2⇔k1=k2,且b1≠b2;l1⊥l2⇔k1k2=-1.跟踪训练2已知直线l过点P(2,1),且直线l的斜率为直线x-4y+3=0的斜率的2倍,求直线l的方程.三本课小结1.已知直线l经过的一个点和直线斜率就可用点斜式写出直线的方程.用点斜式求直线方程时,必须保证该直线斜率存在.而过点P(x0,y0),斜率不存在的直线方程为x=x0.直线的斜截式方程y=kx +b是点斜式的特例.2.求直线方程时常常使用待定系数法,即根据直线满足的一个条件,设出其点斜式方程或斜截式方程,再根据另一条件确定待定常数的值,从而达到求出直线方程的目的.但在求解时仍然需要讨论斜率不存在的情形.。
3.2.1 直线的点斜式方程学习目标 1.了解由斜率公式推导直线方程的点斜式的过程;2.掌握直线的点斜式方程与斜截式方程;3.会利用直线的点斜式与斜截式方程解决有关的实际问题.知识点一 直线的点斜式方程思考1 如图,直线l 经过点P 0(x 0,y 0),且斜率为k ,设点P (x ,y )是直线l 上不同于点P 0的任意一点,那么x ,y 应满足什么关系?答案 由斜率公式得k =y -y 0x -x 0, 则x ,y 应满足y -y 0=k (x -x 0).思考2 经过点P 0(x 0,y 0)的所有直线是否都能用点斜式方程来表示?答案 斜率不存在的直线不能用点斜式表示,过点P 0斜率不存在的直线为x =x 0.知识点二 思考1 已知直线l 的斜率为k ,且与y 轴的交点为(0,b ),得到的直线l 的方程是什么? 答案 将k 及点(0,b )代入直线方程的点斜式得:y =kx +b .思考2 方程y =kx +b ,表示的直线在y 轴上的截距b 是距离吗?b 可不可以为负数和零? 答案 y 轴上的截距b 不是距离,可以是负数和零. 思考3 对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2. ①l 1∥l 2⇔________________, ②l 1⊥l 2⇔________________.答案 ①k 1=k 2且b 1≠b 2 ②k 1k 2=-1类型一 直线的点斜式方程例1 (1)经过点(-3,1)且平行于y 轴的直线方程是________.(2)直线y =2x +1绕着其上一点P (1,3)逆时针旋转90°后得直线l ,则直线l 的点斜式方程是________.(3)一直线l 1过点A (-1,-2),其倾斜角等于直线l 2:y =33x 的倾斜角的2倍,则l 1的点斜式方程为________. 答案 (1)x =-3 (2)y -3=-12(x -1)(3)y +2=3(x +1)解析 (1)∵直线与y 轴平行,∴该直线斜率不存在, ∴直线方程为x =-3.(2)由题意知,直线l 与直线y =2x +1垂直,则直线l 的斜率为-12.由点斜式方程可得l 的方程为y -3=-12(x -1).(3)∵直线l 2的方程为y =33x , 设其倾斜角为α,则tan α=33得α=30°, 那么直线l 1的倾斜角为2×30°=60°, 则l 1的点斜式方程为y +2=tan 60°(x +1),即y +2=3(x +1).跟踪训练1 写出下列直线的点斜式方程: (1)经过点A (2,5),斜率是4; (2)经过点B (2,3),倾斜角是45°; (3)经过点C (-1,-1),与x 轴平行. 解 (1)y -5=4(x -2);(2)∵直线的斜率k =tan 45°=1, ∴直线方程为y -3=x -2; (3)y =-1.类型二 直线的斜截式方程例 2 (1)倾斜角为60°,与y 轴的交点到坐标原点的距离为3的直线的斜截式方程是_________________.答案 y =3x +3或y =3x -3 解析 ∵直线的倾斜角是60°, ∴其斜率k =tan 60°=3,∵直线与y 轴的交点到原点的距离是3, ∴直线在y 轴上的截距是3或-3,∴所求直线方程是y =3x +3或y =3x -3.(2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的方程.解 由斜截式方程知直线l 1的斜率k 1=-2,又因为l ∥l 1.由题意知l 2在y 轴上的截距为-2,所以l 在y 轴上的截距b =-2,由斜截式可得直线l 的方程为y =-2x -2.反思与感悟 (1)斜截式方程的应用前提是直线的斜率存在.当b =0时,y =kx 表示过原点的直线;当k =0时,y =b 表示与x 轴平行(或重合)的直线.(2)截距不同于日常生活中的距离,截距是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数和零,而距离是一个非负数.跟踪训练2 (1)已知直线l 的斜率为16,且和两坐标轴围成面积为3的三角形,求l 的斜截式方程;(2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1垂直且与l 2在y 轴上的截距互为相反数,求直线l 的方程.解 (1)设直线方程为y =16x +b ,则x =0时,y =b ;y =0时,x =-6b .由已知可得12·|b |·|-6b |=3,即6|b |2=6,∴b =±1.故所求直线方程为y =16x +1或y =16x -1.(2)∵l 1⊥l ,直线l 1:y =-2x +3,∴l 的斜率为12,∵l 与l 2在y 轴上的截距互为相反数, 直线l 2:y =4x -2,∴l 在y 轴上的截距为2, ∴直线l 的方程为y =12x +2.类型三 平行与垂直的应用例3 (1)当a 为何值时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行? (2)当a 为何值时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直? 解 (1)由题意可知,12212l l k k a =-,=-,∵l 1∥l 2,∴⎩⎪⎨⎪⎧a 2-2=-1,2a ≠2,解得a =-1.故当a =-1时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行.(2)由题意可知,12214l l k a k =-,=, ∵l 1⊥l 2,∴4(2a -1)=-1,解得a =38.故当a =38时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直.反思与感悟 设直线l 1和l 2的斜率k 1,k 2都存在,其方程分别为l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,那么:(1)l 1∥l 2⇔k 1=k 2,且b 1≠b 2;(2)k 1=k 2,且b 1=b 2⇔两条直线重合;(3)l 1⊥l 2⇔k 1·k 2=-1. 跟踪训练3 已知在△ABC 中,A (0,0),B (3,1),C (1,3). (1)求AB 边上的高所在直线的方程; (2)求BC 边上的高所在直线的方程; (3)求过A 与BC 平行的直线方程. 解 (1)直线AB 的斜率k 1=1-03-0=13,AB 边上的高所在直线斜率为-3且过点C ,所以AB 边上的高所在直线的方程为y -3=-3(x -1).(2)直线BC 的斜率k 2=3-11-3=-1,BC 边上的高所在直线的斜率为1且过点A ,所以BC 边上的高所在直线的方程为y =x .(3)由(2)知,过点A 与BC 平行的直线的斜率为-1,其方程为y =-x .1.方程y =k (x -2)表示( ) A .通过点(-2,0)的所有直线 B .通过点(2,0)的所有直线C .通过点(2,0)且不垂直于x 轴的所有直线D .通过点(2,0)且除去x 轴的所有直线 答案 C解析 易验证直线通过点(2,0),又直线斜率存在,故直线不垂直于x 轴. 2.倾斜角是30°,且过(2,1)点的直线方程是____________. 答案 y -1=33(x -2) 解析 ∵斜率为tan 30°=33, ∴直线的方程为y -1=33(x -2). 3.(1)已知直线y =ax -2和y =(a +2)x +1互相垂直,则a =________;(2)若直线l 1∶y =-2a x -1a与直线l 2∶y =3x -1互相平行,则a =________.答案 (1)-1 (2)-23解析 (1)由题意可知a (a +2)=-1,解得a =-1.(2)由题意可知⎩⎪⎨⎪⎧-2a=3,-1a ≠-1,解得a =-23.4.(1)求经过点(1,1),且与直线y =2x +7平行的直线的方程; (2)求经过点(-2,-2),且与直线y =3x -5垂直的直线的方程. 解 (1)∵与直线y =2x +7平行, ∴该直线斜率为2, 由点斜式方程可得y -1=2(x -1),即y =2x -1∴所求直线的方程为y =2x -1. (2)∵所求直线与直线y =3x -5垂直,∴该直线的斜率为-13,由点斜式方程得:y +2=-13(x +2),即y =-13x -83.故所求的直线方程为y =-13x -83.1.求直线的点斜式方程的方法步骤2.直线的斜截式方程的求解策略(1)用斜截式求直线方程,只要确定直线的斜率和截距即可,同时要特别注意截距和距离的区别. (2)直线的斜截式方程y =kx +b 不仅形式简单,而且特点明显,k 是直线的斜率,b 是直线在y 轴上的截距,只要确定了k 和b 的值,直线的图象就一目了然.因此,在解决直线的图象问题时,常通过把直线方程化为斜截式方程,利用k ,b 的几何意义进行判断. 3.判断两条直线位置关系的方法直线l 1:y =k 1x +b 1,直线l 2:y =k 2x +b 2. (1)若k 1≠k 2,则两直线相交. (2)若k 1=k 2,则两直线平行或重合, 当b 1≠b 2时,两直线平行; 当b 1=b 2时,两直线重合.(3)特别地,当k 1·k 2=-1时,两直线垂直. (4)对于斜率不存在的情况,应单独考虑.一、选择题1.过点(4,-2),倾斜角为150°的直线方程的点斜式为( )A .y -2=-33(x +4) B .y -(-2)=-33(x -4) C .y -(-2)=33(x -4) D .y -2=33(x +4) 答案 B解析 由题意知k =tan 150°=-33,所以直线的点斜式方程为y -(-2)=-33(x -4). 2.已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B .直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为1 答案 C解析 ∵方程变形为y +2=-(x +1), ∴直线过点(-1,-2),斜率为-1.3.已知直线l 1:y =x +12a ,l 2:y =(a 2-3)x +1,若l 1∥l 2,则a 的值为( )A .4B .2C .-2D .±2答案 C解析 因为l 1∥l 2,所以a 2-3=1,a 2=4,所以a =±2, 又由于l 1∥l 2,两直线l 1与l 2不能重合,则12a ≠1,即a ≠2,故a =-2.4.下列选项中,在同一直角坐标系中,表示直线y =ax 与y =x +a 正确的是( )答案 C解析 ①当a >0时,直线y =ax 的倾斜角为锐角,直线y =x +a 在y 轴上的截距a >0,A ,B ,C ,D 都不成立;②当a =0时,直线y =ax 的倾斜角为0°,A ,B ,C ,D 都不成立;③当a <0时,直线y =ax 的倾斜角为钝角,直线y =x +a 的倾斜角为锐角且在y 轴上的截距a <0,只有C 成立.5.直线y =kx +b 通过第一、三、四象限,则有( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b >0 D .k <0,b <0答案 B解析 ∵直线经过第一、三、四象限,∴图形如图所示,由图知,k >0,b <0.6.已知直线kx -y +1-3k =0,当k 变化时,所有的直线恒过定点( ) A .(1,3) B .(-1,-3) C .(3,1) D .(-3,-1)答案 C解析 直线kx -y +1-3k =0变形为y -1=k (x -3), 由直线的点斜式可得直线恒过定点(3,1). 二、填空题7.将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位长度,所得到的直线方程为______________. 答案 y =-13x +13解析 直线y =3x 绕原点逆时针旋转90°所得到的直线方程为y =-13x ,再将该直线向右平移1个单位得到的直线方程为y =-13(x -1),即y =-13x +13.8.直线y =ax -3a +2(a ∈R )必过定点________. 答案 (3,2)解析 ∵y =a (x -3)+2,即y -2=a (x -3), ∴直线过定点(3,2).9.已知直线y =(3-2k )x -6不经过第一象限,则k 的取值范围为________. 答案 k ≥32解析 由题意知,需满足它在y 轴上的截距不大于零,且斜率不大于零,则⎩⎪⎨⎪⎧-6≤0,3-2k ≤0,得k ≥32.10.与直线l :y =34x +1平行,且在两坐标轴上截距之和为1的直线l 1的方程为________________.答案 y =34x -3解析 根据题意知直线l 的斜率k =34,故直线l 1的斜率k 1=34,设直线l 1的方程为y =34x +b 1,则令y =0得它在x 轴上的截距a 1=-43b 1.∵a 1+b 1=-43b 1+b 1=-13b 1=1,∴b 1=-3.∴直线l 1的方程为y =34x -3.11.斜率为34,且与坐标轴所围成的三角形的周长是12的直线方程是________.答案 y =34x ±3解析 设所求直线方程为y =34x +b ,令y =0得x =-4b3,由题意得:|b |+⎪⎪⎪⎪⎪⎪-43b + b 2+16b 29=12,|b |+43|b |+53|b |=12,4|b |=12,∴b =±3, ∴所求直线方程为y =34x ±3.三、解答题12.已知三角形的顶点坐标是A (-5,0),B (3,-3),C (0,2),试求这个三角形的三条边所在的斜截式方程.解 直线AB 的斜率k AB =-3-03--=-38,过点A (-5,0),∴直线AB 的点斜式方程为y =-38(x +5),即所求的斜截式方程为y =-38x -158.同理,直线BC 的方程为y -2=-53x ,即y =-53x +2.直线AC 的方程为y -2=25x ,即y =25x +2.∴直线AB ,BC ,AC 的斜截式方程分别为y =-38x -158,y =-53x +2,y =25x +2.13.已知直线l 的斜率与直线3x -2y =6的斜率相等,且直线l 在x 轴上的截距比在y 轴上的截距大1,求直线l 的方程.解 由题意知,直线l 的斜率为32,故设直线l 的方程为y =32x +b ,l 在x 轴上的截距为-23b ,在y轴上的截距为b ,所以-23b -b =1,b =-35,所以直线l 的方程为y =32x -35.。
§3.2.1 直线的点斜式方程---学案姓名: 班级: 学号:一 预习要点:1.方程___________________叫做直线的点斜式方程.....,简称点斜式.... 2.如果直线l 的斜率为k ,且与y 轴的交点为),0(b ,则直线l 的方程为 . 这就是直线的斜截式方程,简称斜截式,其中 称为直线在y 轴上的截距.3.直线在y 轴上的截距是指____________.x 轴所在直线的方程是 ; y 轴所在直线的方程是 .4.已知直线111:b x k y l +=,直线222:b x k y l +=,21//l l 的条件是__________; 21l l ⊥的条件是__________ .二.思考问题:1.直角坐标系内的所有直线都有点斜式方程吗?能否用斜截式表示平面内的所有直线?2.截距是距离吗?它可以是负数吗?3.观察方程y=kx+b,它的形式具有什么特点?它与我们学过的一次函数有什么关系? 三 练习与例题练习1 写出下列直线的方程(1)经过点A(3,-1),斜率是2:________________________(2)经过点A(3,-1),倾斜角是120:________________________(3)经过点A(3,-1),倾斜角是0:________________________ (4)经过点A(3,-1),倾斜角是90:________________________练习2 填空题(1)已知直线的点斜式方程23(x 1)y +=+,那么此直线的斜率是______, 倾斜角是______(2)已知直线的斜截式方程是322y x =-,那么此直线的斜率是_____,与y 轴的交点是_______ (3)1211:3:222l y x l y x =+=-直线和直线的位置关系是_________ (4)3453::35l y x l y x ==-直线和直线的位置关系是_____________例1 已知直线l :y=2x+1,请写出过定点A(2,1)与已知直线l 垂直和平行的两条直线的方程例2 已知A(1,3),B(-5,1),请写出A,B 所在直线的方程变式 请写出以A(1,3),B(-5,1)为端点的线段的垂直平分线方程四 拓展探究已知P(-3,2),Q(3,4)及直线y=-x-b.若此直线与线段PQ 相交,试求出b 的取值范围五.自我总结。
3. 2.1 直线的点斜式方程【教学目标】(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的斜截式方程与一次函数的关系.【教学重难点】重点:直线的点斜式方程和斜截式方程。
难点:直线的点斜式方程和斜截式方程的应用。
【教学过程】(一)情景导入、展示目标1.情境1:过定点P (x 0,y 0)的直线有多少条?倾斜角为定值的直线有多少条?学生思考、讨论。
(二)预习检查、交流展示检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(三)合作探究、精讲精炼。
问题1:确定一条直线需要几个独立的条件?学生可能的回答:(1)两个点P 1(x 1,y 1),P 2(x 2,y 2);(2)一个点和直线的斜率(可能有学生回答倾斜角);(3)斜率和直线在y 轴上的截距(说明斜率存在);(4)直线在x 轴和y 轴上的截距(学生没有学过直线在x 轴上的截距,可类比,同时强调截距均不能为0)。
问题2:给出两个独立的条件,例如:一个点P 1(2,4)和斜率k=2就能决定一条直线l 。
(1)你能在直线l 上再找一点,并写出它的坐标吗?你是如何找的?(2)这条直线上的任意一点P (x ,y )的坐标x ,y 满足什么特征呢?直线上的任意一点P(x,y)(除P 1点外)和P 1(x 1,y 1)的连线的斜率是一个不变量,即为k ,即:k =00x x y y --, 即y - y 1= k (x - x 1)学生在讨论的过程中:(1) 强调P (x ,y )的任意性。
(2) 不直接提出直线方程的概念,而用一种通俗的,学生易于理解的语言先求出方程,可能学生更容易接受,也更愿意参与。
问题3:(1)P 1(x 1,y 1)的坐标满足方程吗?(2)直线上任意一点的坐标与此方程有什么关系?教师指出,直线上任意一点的坐标都是这个方程的解;反过来,以这个方程的解为坐标的点都在此直线上。
【学习目标】 1、知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的斜截式方程与一次函数的关系.2、过程与方法:在已知直角坐标系内确定一条直线的几何要素----直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。
3、情感态度与价值观:通过让体会直线的斜截式方程与一次函数的关系,进一步培养数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
【重点难点】(1)重点:直线的点斜式方程和斜截式方程。
(2)难点:直线的点斜式方程和斜截式方程的应用。
【学法指导】1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、牢记直线的点斜式方程形式,注意适用条件。
3、要求小班、重点班学生全部完成,平行班学生完成A 、B 类问题。
【知识链接】1.直线倾斜角的概念 2. 直线的斜率两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直. 【学习过程】A 问题1、在直角坐标系内确定一条直线,应知道哪些条件?yxOP P 0B 问题2、直线l 经过点),(000y x P ,且斜率为k 。
设点),(y x P 是直线l 上的任意一点,请建立y x ,与00,,y x k 之间的关系。
A 问题3、(1)过点),(000y x P ,斜率是k 的直线l 上的点,其坐标都满足方程(1)(2)坐标满足方程(1)的点都在经过),(000y x P ,斜率为k 的直线l 上吗?B 问题4、直线的点斜式方程能否表示坐标平面上的所有直线呢?B 问题5、(1)x 轴所在直线的方程是什么?y 轴所在直线的方程是什么?yP 0(2)经过点),(000y x P 且平行于x 轴(即垂直于y 轴)的直线方程是什么?(3)经过点),(000y x P 且平行于y 轴(即垂直于x 轴)的直线方程是什么?.l l l α︒A 例1直线经过点P(-3,2),且倾斜角为=45,求直线的点斜式方程,并画出直线A 问题7、已知直线l 的斜率为k ,且与y 轴的交点为),0(b ,求直线l 的方程。
数学:3.2《直线的点斜式、斜截式⽅程》教案(新⼈教A 版必修2)课题:直线的点斜式、斜截式⽅程课型:新授课教学⽬标:1、知识与技能(1)理解直线⽅程的点斜式、斜截式的形式特点和适⽤范围;(2)能正确利⽤直线的点斜式、斜截式公式求直线⽅程。
(3)体会直线的斜截式⽅程与⼀次函数的关系.2、过程与⽅法在已知直⾓坐标系内确定⼀条直线的⼏何要素——直线上的⼀点和直线的倾斜⾓的基础上,通过师⽣探讨,得出直线的点斜式⽅程;学⽣通过对⽐理解“截距”与“距离”的区别。
3、情态与价值观通过让学⽣体会直线的斜截式⽅程与⼀次函数的关系,进⼀步培养学⽣数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学⽣能⽤联系的观点看问题。
教学重点:直线的点斜式⽅程和斜截式⽅程。
教学难点:直线的点斜式⽅程和斜截式⽅程的应⽤例3.如果直线l 沿x 轴负⽅向平移3个单位,再沿y 轴正⽅向平移1个单位后,⼜回到原来的位置,求直线l 的斜率.( -31)归纳⼩结:(1)本节课我们学过那些知识点;(2)直线⽅程的点斜式、斜截式的形式特点和适⽤范围是什么?(3)求⼀条直线的⽅程,要知道多少个条件?作业布置:第100页第1题的(1)、(2)、(3)和第3、5题课后记:课题:直线的两点式和截距式⽅程课型:新授课教学⽬标:1、知识与技能(1)掌握直线⽅程的两点式的形式特点及适⽤范围;(2)了解直线⽅程截距式的形式特点及适⽤范围。
2、过程与⽅法让学⽣在应⽤旧知识的探究过程中获得到新的结论,并通过新旧知识的⽐较、分析、应⽤获得新知识的特点。
3、情态与价值观(1)认识事物之间的普遍联系与相互转化;(2)培养学⽣⽤联系的观点看问题。
教学重点:直线⽅程两点式。
教学难点:两点式推导过程的理解1)到⽬前为⽌,我们所学过的直线⽅程的表达形式有多少种?它们之间有什么关系?2)要求⼀条直线的⽅程,必须知道多少个条件?作业布置:第100页第1题的(4)、(5)、(6)和第2、4题课后记:课题:直线的⼀般式⽅程课型:新授课教学⽬标:1、知识与技能(1)明确直线⽅程⼀般式的形式特征;(2)会把直线⽅程的⼀般式化为斜截式,进⽽求斜率和截距;(3)会把直线⽅程的点斜式、两点式化为⼀般式。
高一课堂学案课题:直线的点斜式方程编号:3.2.1编写人:审核人:_____使用人:_____上课时间:______班级_______ 小组_______姓名_______(2)斜率为0,在y 轴上的截距为6 _______ ;(3)过(4,2)A -,倾斜角是120 ____________ ;(4)倾斜角为0150,在y 轴上的截距是-3的直线的斜截式方程为 _________________ .例3:(1)经过点(-5,2)且平行于y 轴的直线方程是______________(2)直线y=x+1绕其上一点p (3,4)逆时针旋转90度得到直线L ,则其点斜式方程为____________________(3)求过点p(1,2)且与直线y=2x+1的平行的直线方程为____________【练】(一)选择题(每题10分,共35分)1. 直线x=1的倾斜角为 ( )A.不存在B.90°C.0°D.180°2. 已知直线l 1:y=2x-1,l 2:y=-x+3,则直线l 1与l 2的位置关系是( )A.平行B.垂直C.重合D.相交但不垂直3. 直线23y x =-的斜率和在y 轴上的截距分别等于( )A.2,3B. -3,-3C.-3,2D. 2,-34. 直线经过点(2,3)P -,且倾斜角045α=,则直线的点斜式方程是( )A. 32y x +=-B. 32y x -=+C. 23y x +=-D. 23y x -=+5. 已知直线的方程是21y x +=--,则( ).A .直线经过点(2,1)-,斜率为1-B .直线经过点(2,1)--,斜率为1C .直线经过点(1,2)--,斜率为1-D .直线经过点(1,2)-,斜率为1-6. 直线130kx y k -+-=,当k 变化时,所有直线恒过定点( ).A .(0,0)B .(3,1)C .(1,3)D .(1,3)--(二) 填空题(每题10分,共30分)7. 在y 轴上的截距为2,且与直线34y x =--平行的直线的斜截式方程为 。
3.2.1《直线的点斜式方程》导学案
【学习目标】 1、知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的斜截式方程与一次函数的关系. 2、过程与方法:在已知直角坐标系内确定一条直线的几何要素----直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。
3、情感态度与价值观:通过让体会直线的斜截式方程与一次函数的关系,进一步培养数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
【重点难点】
(1)重点:直线的点斜式方程和斜截式方程。
(2)难点:直线的点斜式方程和斜截式方程的应用。
【学法指导】
1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、牢记直线的点斜式方程形式,注意适用条件。
3、要求小班、重点班学生全部完成,平行班学生完成A 、B 类问题。
【知识链接】
1.直线倾斜角的概念 2. 直线的斜率
两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直. 【学习过程】
A 问题1、在直角坐标系内确定一条直线,应知道哪些条件?
B 问题2、直线l 经过点),(000y x P ,且斜率为k 。
设点),(y x P 是直线l 上的任意一点,请建立y x ,与00,,y x k 之间的关系。
A 问题3、(1)过点),(000y x P ,斜率是k 的直线l 上的点,其坐标都满足方程(1) (2)坐标满足方程(1)的点都在经过)
,(000y x P ,斜率为k 的直线l 上吗?B 问题4、
直线的点斜式方程能否表示坐标平面上的所有直线呢?
B 问题5、(1)x 轴所在直线的方程是什么?y 轴所在直线的方程是什么?
(2)经过点),(000y x P 且平行于x 轴(即垂直于y 轴)的直线方程是什么?
(3)经过点),(000y x P 且平行于y 轴(即垂直于x 轴)的直线方程是
什么?
.l l l
α︒A 例1直线经过点P(-3,2),且倾斜角为=45,求直线的点斜式方程,并画出直线
A 问题7、已知直线l 的斜率为k ,且与y 轴的交点为),0(b ,求直线l 的方程。
B 问题8、观察方程b kx y +=,它的形式具有什么特点?
B 问题9、直线b kx y +=在x 轴上的截距是什么?
B 问题10、你如何从直线方程的角度认识一次函数b kx y +=? 一次函数中
k
和
b
的几何意义是什么?你能说出一次函数
3,3,12+-==-=x y x y x y 图象的特点吗?
B 例2.直线111222:,:l y k x b l y k x b =+=+。
试讨论:(1)12l l 平行的条件是什么?
(2)12l l 垂直的条件是什么?
【基础达标】
1.A(;C(;D(
2.21,+2+1,.
A A y x y x ︒︒︒-=-=写出下列直线的点斜式方程:
(1)经过点3,-1)经过点30(3)经过点0,3),倾角是0(4)经过点-4,-2),倾角是120填空题
(1)已知直线的点斜式方程是那么此直线的斜率是 ,倾斜角是(2)已知直线的点斜式方程是)那么此直线的斜率是 ,倾斜角是A
3写出下列直线的斜截式方程:12121153
:3,:2;(2):,:2235l y x l y x l y x l y x
=+=-==-y 轴上的截距是-2;(2)斜率是-2,在y 轴上的截距是4A4.判断下列各对直线是否平行或垂直:
(1)
B 5.过点(5,2)且在两坐标轴截距相等的直线方程是____.(易错题)
C6.经过点(1,2)A 并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程。
【学习反思】。