纳米碳管铝基复合材料制备及摩擦性能研究
- 格式:pdf
- 大小:2.14 MB
- 文档页数:61
碳纳米管的特性及其高性能的复合材料综述摘要作为一种具有较强力学性能的材料,碳纳米管自诞生以来就受到了广泛关注,并且从以往的实践经验上来看,碳纳米管是非常理想的制备符合材料的形式。
在本文的研究当中,主要立足于这一领域进行分析,提出了碳纳米管本身所具备的特性,以及这种材料在实践过程当中的优越性,进而提出应用策略,希望能够在一定程度上起到借鉴作用。
关键词碳纳米管;复合材料;复合镀迄今为止,碳纳米管材料已经在诸多领域当中得以运用,并且取得了比较显著的成果,其中包括电极材料、符合材料、催化剂载体等诸多方面。
在应用过程当中,碳纳米管的优异性能能够使其在符合材料当中起到较强的作用。
本文研究的侧重点在于碳纳米管的制备和复合材料的应用方面,提出了碳纳米管的特性及其高性能的复合材料。
1 碳纳米管的结构及其性能从结构上来看,碳纳米管具有石墨层状的结构,其中包括单壁碳纳米管和多壁碳纳米管。
组成纳米碳管的C-C共价键是自然界当中具有稳定特征的化学键,无论在理论计算还是实践当中,都能够看出来,碳纳米管具有非常强的韧性。
在制备过程当中,碳纳米管主要涉及的电弧放电、催化热解和激光蒸发等。
具体来讲,在电弧放电当中,主要制备单壁碳纳米管,但是其中具有一定的弊端,比如产率非常低,但是成本却很高;而催化热解法当中所表现出来的是设备简单和生长速度较快等特点,一般在现代工程的批量化生产过程当中,会用到这种方法。
在当前应用领域,高强度的微米级碳纤维复合材料有着非常广阔的应用前景和较好的应用效果。
但是当前我国在这一领域所取得的进展依旧比较滞后,要想在强度上取得新的突破,必须要有效减少碳纤维的直径,提高纵横比。
碳纳米管是比较典型的纳米材料,纵横比非常可观。
更为重要的是,从长度上来讲,纳米管对于复合材料的加工性能并没有非常明显的不良影响,使用这一材料能够有效聚合复合材料,改变传统加工当中的一些问题,增强复合材料的导电性能。
再加上纳米管当中所具备的结构优势,使得聚合物电导率提升的同时也不容易被改变性能[1]。
碳纳米管-镁基复合材料的制备与物性研究碳纳米管/镁基复合材料的制备与物性研究摘要:碳纳米管/镁基复合材料由于其优异的力学性能和独特的物理化学性质,吸引了广泛的研究兴趣。
本文针对碳纳米管/镁基复合材料的制备方法和物性特征进行了综述。
首先介绍了碳纳米管和镁在复合材料中的优势及其应用领域。
然后,详细阐述了碳纳米管/镁基复合材料的制备方法,包括机械合金法、电化学沉积法、热压烧结法等。
接着,重点讨论了碳纳米管/镁基复合材料的物性研究,包括力学性能、热性能和电性能等方面。
最后,对该复合材料的未来研究方向提出了展望。
1.引言碳纳米管/镁基复合材料由于其独特的结构和优异的性能,在航空航天、汽车制造、电子设备等领域具有广泛的应用前景。
碳纳米管可以作为增强相,提高复合材料的强度和刚度,同时还可以增加复合材料的导电性。
镁作为基体材料,具有低密度、良好的塑性变形能力和较高的比强度。
因此,碳纳米管/镁基复合材料在实际应用中具有很大的潜力。
2.碳纳米管/镁基复合材料的制备方法2.1 机械合金法机械合金法是一种简单有效的制备碳纳米管/镁基复合材料的方法。
该方法将碳纳米管与镁粉一起放入球磨罐中,通过球磨过程使两者充分混合。
然后,通过热压烧结或热等静压成型等方法得到最终的复合材料。
机械合金法具有操作简单、成本低廉等优点,但碳纳米管的分散和镁与碳纳米管之间的界面结合仍然是一个挑战。
2.2 电化学沉积法电化学沉积法是一种通过电化学沉积技术来制备碳纳米管/镁基复合材料的方法。
在这种方法中,利用电化学沉积的原理在镁基体上沉积碳纳米管。
通过调节电解液成分和电沉积参数,可以控制碳纳米管的尺寸和形貌。
然后,通过热处理等方法来获得最终的复合材料。
电化学沉积法具有制备过程简单、对碳纳米管的控制能力强等优点,但需要对电化学沉积条件进行精确控制。
2.3 热压烧结法热压烧结法是一种将碳纳米管与镁粉混合后在高温高压下进行烧结的方法。
在高温下,碳纳米管与镁发生反应生成碳化镁,并与镁基体结合形成碳纳米管/镁基复合材料。
碳纳米管增强铝基纳米复合材料制备及性能研究碳纳米管增强铝基纳米复合材料是一种新型的高性能材料,具有独特的优势。
随着科技的不断进步,越来越多的研究人员开始关注这一领域。
本文将探讨碳纳米管增强铝基纳米复合材料制备及其性能研究。
一、碳纳米管碳纳米管是由碳原子排列成的管状结构,直径在几纳米到几十纳米之间,长度可以从纳米到厘米级别。
它具有高强度、高导电性和高导热性等特点,被认为是一种理想的纳米材料。
二、铝基纳米复合材料铝基纳米复合材料是由铝基合金和纳米材料混合制成的复合材料,具有高强度、高硬度、高韧性、高耐腐蚀性和高温稳定性等特点。
与传统的铝合金相比,铝基纳米复合材料的机械性能更加优越。
三、碳纳米管增强铝基纳米复合材料将碳纳米管添加到铝基纳米复合材料中可以改善其力学性能、导电性能和导热性能等。
碳纳米管与铝基复合材料的结合可以增加其界面强度和弹性模量,同时也可以增加其准晶程度和基体强度。
因此,碳纳米管增强铝基纳米复合材料具有非常好的综合性能。
四、碳纳米管增强铝基纳米复合材料的制备碳纳米管增强铝基纳米复合材料的制备方法主要包括机械合金化、熔体渗透、电化学合成和等离子喷涂等方法。
其中,机械合金化方法是一种广泛应用的方法,它可以实现大规模的制备。
五、碳纳米管增强铝基纳米复合材料的性能研究碳纳米管增强铝基纳米复合材料的性能研究主要包括力学性能、导电性能和导热性能等方面。
研究表明,添加适量的碳纳米管可以显著提高铝基纳米复合材料的力学性能,增加导电性能和导热性能。
同时,不同制备方法和制备参数也会对其性能产生影响。
六、未来发展碳纳米管增强铝基纳米复合材料的应用前景十分广泛。
它可以被广泛应用于航空航天、汽车制造、电子电器、医疗器械和建筑材料等领域。
未来,我们需要进一步加强对这种新型材料的研究,探索更加高效的制备方法和更加理想的应用场景。
七、结论碳纳米管增强铝基纳米复合材料是一种非常有前途的新型高性能材料。
研究表明,它具有非常好的力学性能、导电性能和导热性能等优势,可以被广泛应用于多个领域。
碳纳米管/聚合物基复合材料力学性能研究及应用前景摘要:碳纳米管以其独特的化学性能和物理性能成为复合材料的增强体,目前在许多科学研究领域中得到应用。
本文介绍了碳纳米管修饰的高分子复合材料在国内外的研究现状,进一步对几种碳纳米管/聚合物基复合材料的结构和力学性能进行综述。
在此基础上,分析并展望了今后碳纳米管/聚合物复合材料的发展趋势。
关键词:碳纳米管高分子复合材料力学性能Abstract:Carbon Nanotubes(CNT) become reinforced composite materials due to their unique chemical and physical properties , it applied in many scientific research currently. This paper introduces the current situation of CNT modified polymer composites in domestic and abroad, the structural and mechanical properties of several CNT / polymer composites were further reviewed . On this basis, we analyzes and prospects the future development trend of carbon CNT / polymer composites.Key words:carbon nanotubes,polymer,composites, the properties of mechanical碳纳米管(CNT)又名巴基管,是一种由管状的同轴纳米管组成的碳分子。
它由Lijima[1]在1991年发现,作为石墨、金刚石等碳晶体家族的新成员,由于其独特结构因而具有许多特异的物理性能,所以受到了各个领域科学家的高度重视,并且成为近年来材料领域的研究热点。
碳纳米管增强复合材料的制备与性能研究近年来,碳纳米管(Carbon Nanotube,简称CNT)因其出色的力学性能和独特的电子性质,成为研究领域的热门话题之一。
在复合材料领域,将CNT作为增强填料注入基体中,可以大幅度提升材料的力学性能,使复合材料具备更广泛的应用潜力。
首先,我们来了解一下碳纳米管的制备方法。
目前,常用的制备碳纳米管的方法主要有热解法和化学气相沉积法。
热解法是通过将碳源(例如甲烷、乙炔等)加热至高温,使其分解生成纳米级碳粉末,再通过高温炉进行淀粉状碳纳米管的制备。
化学气相沉积法则是在特定的温度和压力条件下,将金属催化剂与碳源气体(例如苯、甲烷等)共同进入炉管,通过热裂解反应在金属催化剂表面形成碳纳米管。
这两种方法各有优劣,根据具体需求选择合适的方法进行制备。
然而,对于碳纳米管的应用而言,单纯制备碳纳米管还不足以满足要求,还需要将其与基体材料相结合,形成增强复合材料。
常见的方式是通过浸渍法或机械混合法将碳纳米管注入到基体中。
浸渍法是将碳纳米管悬浮液浸渍于基体表面,并通过真空或气压的作用使其渗透至基体内部,达到均匀分散的目的。
机械混合法则是将碳纳米管与基体材料一同进行混合,利用机械力将其均匀分散。
这两种方法的选择取决于基体材料的性质和应用场景。
通过以上的制备方法,得到的碳纳米管增强复合材料具备了优异的力学性能。
首先,碳纳米管以其高强度和高刚度,使得增强复合材料的强度得到显著提升。
研究表明,在添加低浓度的碳纳米管的情况下,复合材料的拉伸强度可以提高 30%-100%。
其次,碳纳米管具有优异的导电性,可以赋予复合材料良好的导电性能。
这样的复合材料多用于电子元器件、防静电材料等领域。
此外,碳纳米管还具有优异的导热性能,使得复合材料具备了良好的散热性能,适用于热管理领域。
然而,碳纳米管增强复合材料的制备与性能研究仍有待进一步深入。
首先,目前碳纳米管的制备方法仍存在高成本、低产率的问题,限制了其在工业化生产中的应用。
碳纳米管增强复合材料的力学性能研究碳纳米管是一种由碳原子构成的纳米材料,具有优异的力学性能和导电性。
随着科技的不断发展,研究人员越来越关注如何利用碳纳米管来增强复合材料的力学性能。
在本文中,我们将探讨碳纳米管增强复合材料的力学性能研究。
首先,我们需要了解碳纳米管的特性以及其对力学性能的影响。
碳纳米管具有轻质、高强度和高刚度的特点,使其成为一种理想的增强材料。
当碳纳米管嵌入在复合材料基体中时,可以显著提高复合材料的强度和刚度。
此外,碳纳米管还具有良好的导电性,使得碳纳米管增强复合材料在电子器件等领域具有广泛的应用前景。
然而,为了更好地利用碳纳米管的增强效果,我们需要深入研究其与复合材料基体的相互作用机制。
近年来的研究表明,碳纳米管与复合材料基体之间的力学耦合效应是影响复合材料力学性能的重要因素之一。
因此,研究人员通过模拟和实验的方法,对碳纳米管增强复合材料进行力学行为的研究。
在模拟方面,研究人员通常利用分子动力学模拟、有限元分析等方法,对碳纳米管增强复合材料的力学性能进行预测和优化。
通过这些模拟方法,研究人员能够探究碳纳米管与复合材料基体之间的相互作用机制,了解复合材料在不同力学加载下的响应行为,并提出相应的改善策略。
另一方面,实验是验证模拟结果和理论分析的重要手段。
通过制备碳纳米管增强复合材料样品,并进行力学性能测试,研究人员可以直接观察和测量复合材料的力学行为。
例如,拉伸试验、压缩试验、弯曲试验等可以评估复合材料的强度、刚度和韧性等性能指标。
同时,扫描电子显微镜、透射电子显微镜等技术可以观察和分析复合材料中碳纳米管的分散状态和界面结构。
除了研究碳纳米管与复合材料基体之间的相互作用机制,我们还需要考虑制备工艺对复合材料力学性能的影响。
研究人员通过改变碳纳米管的添加方法、复合材料基体的制备过程等控制变量,来研究制备工艺对复合材料力学性能的影响。
例如,通过调整碳纳米管的浓度和分散剂对复合材料的性能进行优化。
浙江大学
硕士学位论文
纳米碳管/铝基复合材料制备及摩擦性能研究
姓名:丁志鹏
申请学位级别:硕士
专业:材料物理与化学
指导教师:张孝彬
20050101
⑧浙江太学硕士学位论文丁忐鹏2005年1月且,在氩气气氛下,即使预制件中含有镁(表2—1样品I、II、Ⅳ、V、Ⅵ)无压渗透也不会发生。
上述所制备的样品外在形貌如图2-5(b)所示,预制件被烧结而熔融态的铝并没有渗透进去;其表面无金属光泽且粉体严重剥落,现象根本无法进行切削加工。
进一步的实验表明,只有当增强粉体中含镁、且在氮气气氛下,无压渗透才会发生。
所制备的样品形貌如图2-5(a),熔融态的铝已均匀渗透到模压成的预制件中,因此其表面具有金属光泽,致密度高,切削加工性能也好。
由此可见铝合金的无压渗透有两个必要条件:1)体系中应含有镁;2)需在含氮气氛中进行。
可以推断,在制备复合材料的过程中,氮气会和镁粉发生某种反应,而且该反应会对无压渗透过程产生重要的影响。
(a)无压渗透后的
⑨浙江大学硕上学位论文丁志鹏2005年1月
(a)为复合材料断面磨平抛光腐蚀后的SEM
(b)为(a)表面的能谱分析
⑦浙江大学硕士学位论文丁忐鹏2005年1月
(c)显示了(a)表面的A1分布(亮点为A1)
(d)显示了(a)表面的CNTs分布(亮点为CNTs)
图2—8
⑨塑坚查兰竺.!兰堡丝兰工查堕2005年1月
我们对所制得的渗透样品常温下掰断断口和在液氮冷却后脆断的断口用扫描电镜进行了观察。
图2—9为纳米碳管体积含量为10%复合材料常温下掰断断口SEM形貌照片,从照片中我们可以很清楚地观察到河流状花纹,经过大量的实验发现常温下掰断断口很难找到纳米碳管,这可能是由于在断口处纳米碳管被埋在金属基体里很少出现拔出现象。
为了观察纳米碳管在复合材料中的分布和结合状况,我们把复合材料放到液氮中冷却后掰断观察其脆断的断口,如图2—10。
断口SEM形貌照片可以看到纳米碳管在复合材料中的分布和结合状况。
从图2—10可以看出由于纳米碳管其外被金属包覆其直径比图2—4的要大一些。
另外,碳纳米管分布均匀,彼此粘连较少,断口处存在纳米碳管的拔出与桥接,复合材料的断裂以纤维拔出为主。
图2—9碳纳米管体积含量为10%复合材料常温下掰断断口SEM形貌照片
47
⑧浙江大学硕十学位论文丁志鹏2005年1月
(a)lOOOOx
(b)20000x
⑧塑坚叁兰堡二!堂笪堡兰工查堕2005年1月
(d)40000x
图2一10纳米碳管体积含量为10%复合材料脆断的断口SEM形貌照片
通过TEM我们进一步观察了纳米碳管在复合材料中结合状况,图2—11为TEM观测复合材料中纳米碳管和铝基体的明场像和选区电子衍射像。
从中可以
⑨塑垩叁堂堡主兰垡兰茎工查壁2005年1月
(c)复合材料铝基体TEM
(d)复合材料铝基体的衍射花样
图2—1l复合材料中纳米碳管和铝基体TEM照片及衍射花样。