圆锥曲线中常见不等关系的确立
- 格式:doc
- 大小:149.00 KB
- 文档页数:3
解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
圆锥曲线非对称问题技巧摘要:1.圆锥曲线基本概念回顾2.非对称问题的提出3.非对称问题的解决技巧4.实例分析与解答5.总结与拓展正文:一、圆锥曲线基本概念回顾圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线等。
它们都有两个重要的性质:焦点和准线。
掌握这些基本概念有助于解决非对称问题。
二、非对称问题的提出在圆锥曲线中,非对称问题是指曲线上的点到焦点的距离与到准线的距离不相等。
这个问题在实际问题中广泛存在,解决它有助于深入了解圆锥曲线的性质。
三、非对称问题的解决技巧1.利用焦点和准线的性质:根据焦点和准线的定义,可以得到一些关于曲线上的点到焦点和准线距离的关系式,从而解决非对称问题。
2.利用对称性:考虑曲线关于某条轴对称,可以将非对称问题转化为对称问题,再利用对称性质求解。
3.利用参数方程:将圆锥曲线转化为参数方程,可以更方便地处理非对称问题。
通过调整参数,可以找到满足非对称条件的解。
四、实例分析与解答以椭圆为例,设椭圆的方程为:(x-a)/b + (y-b)/a = 1。
假设存在一点P(x,y)满足非对称条件,即P到焦点F1的距离与到焦点F2的距离不相等。
根据焦点和准线的性质,可以得到以下方程:sqrt((x-a)/b + (y-b)/a) = sqrt((x-a+c)/b + (y-b)/a)通过化简和解方程,可以得到P点的坐标,从而解决非对称问题。
五、总结与拓展掌握圆锥曲线的非对称问题技巧,有助于解决实际问题中的非对称性问题。
在解决过程中,要灵活运用焦点和准线的性质、对称性以及参数方程等方法。
圆锥曲线定值问题及解题技巧一、圆锥曲线的基本性质圆锥曲线包括椭圆、双曲线和抛物线,它们在平面几何中占有重要地位。
这些曲线具有丰富的几何性质,如对称性、焦点和准线等。
了解和掌握这些性质是解决定值问题的关键。
二、定值问题定义与类型定值问题是指在圆锥曲线问题中,某些量在运动或变化过程中始终保持不变。
定值问题通常涉及到一些特定的性质或条件,需要运用推理、证明和计算来确定这些量。
这类问题常出现在各类数学竞赛和自主招生考试中。
三、坐标系的选取与转换解决圆锥曲线定值问题时,选择合适的坐标系至关重要。
坐标系的选取应便于表达和计算,有时需要将复杂的几何关系转化为代数方程。
此外,坐标转换也是解题的重要技巧,通过坐标变换可将问题化简。
四、参数方程的应用参数方程是解决定值问题的有力工具。
通过引入参数,可以将复杂的几何关系转化为代数方程,从而简化计算过程。
参数的选择应满足题目的特定条件,如焦点位置、对称轴等。
五、代数表达式的简化技巧在解决圆锥曲线定值问题时,需要处理大量的代数表达式。
掌握一些简化技巧,如合并同类项、提取公因式、化简分式等,可以大大提高解题效率。
此外,利用代数恒等式也是简化表达式的有效方法。
六、几何角度与线段长度关系在解决圆锥曲线定值问题时,需要关注几何角度和线段长度之间的关系。
这些关系可以通过几何定理和三角函数进行推导,进而找出定值。
熟练掌握基本几何知识是解决这类问题的关键。
七、运用向量和导数的物理背景向量和导数作为数学中的重要概念,具有丰富的物理背景。
在解决圆锥曲线定值问题时,可以利用向量的数量积、向量积等性质以及导数的几何意义,来揭示某些量之间的内在联系,进而找出定值。
圆锥曲线中不等关系确立的途径圆锥曲线是平面解析几何的核心内容,也是整个高中数学中重要的一部分.它主要考查学生画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算以及综合运用知识的能力.尤其是有关变量取值范围的求解,更是以上能力的综合体现,这也是解析几何中一类难题,难就难在不等关系如何确立?下面给出这类问题中不等关系确立的基本途径.途径一:从圆锥曲线自身范围确立不等关系圆锥曲线的几何性质中,首先研究的就是范围,所以曲线自身的范围就隐含着不等关系.例1已知F1、F2是椭圆的两个焦点,P 为椭圆上一点,∠F1P F2=60°,求椭圆离心率的范围.分析:题设条件已知的是等式∠F1P F2=60°,而要求解的离心率的范围是不等式,如何实现由等式向不等式转化,正是问题的关键.解:设椭圆方程为,P的坐标为(x0,y0).∴故椭圆的离心率的范围是途径二:从圆锥曲线所分平面的区域确立不等关系方程对应着平面上的曲线,而曲线分平面成的区域则对应着某个不等式,所以由点或曲线所在的某个区域可确立不等关系.例2已知抛物线2=2 (>0)上有两个点A、B关于点M(2,2)对称,求的取值范围.解:为使抛物线上存在两点A、B关于M(2,2)对称,则必有M在抛物线内部(内部是指含有焦点的区域). 所以途径三:从曲线的位置特征确立不等关系几何问题中的数量关系,往往由其位置来决定,所以把握几何图形的位置特征,从而确立不等关系.如例3另解:直线l与双曲线C的位置关系有三种:①当=b即C为等轴双曲线时,两条渐近线互相垂直,这时直线l与第二、第四象限的渐近线平行,与左支无交点,不符合题意.而等轴双曲线的离心率为,所以.②当> 时,直线l只与双曲线C的右支相交于两点,不符合题意.此时途径四:从方程中确立不等关系圆锥曲线中的很多问题,由条件建立的是等式,而结论求解的是不等式.判别式就是实现这种由相等关系转化为不等关系的一个桥梁.如例2另解:。
如何建立圆锥曲线中的不等关系白志锋在有关圆锥曲线的参数围问题、最值问题、存在性等问题中,建立不等关系是解题过程的一个难点。
本文归纳整理几种常用的方法,共参考。
一. 利用判别式挖掘条件中隐含着的一元二次方程的根的存在性,利用判别式建立不等关系。
例1. 已知椭圆C x y :22431+=,若椭圆上存在不同两点关于直线y x m =+4对称,求m 的取值围。
解:设椭圆上存在两点A (x y 11,),B (x y 22,)关于已知直线对称,并设AB 的中点为P (a ,b ),直线AB 与椭圆C 应有两个不同的交点,依次可用判别式大于零建立不等关系。
两式x y x y 12122222431431+=+=,作差,整理得y y x x x x y y 1212121234--=-⋅++而y y x x x x a y y b 121212121422--=-+=+=,,,所以b a =3,即P (a ,3a )。
又P 在直线y x m =+4上,则 34a a m a m =+=-,于是点P 的坐标为(--m m ,3),直线AB 的方程为y m x m +=-+314(),代入椭圆方程中消去y ,得 132616948022x mx m ++-= 由∆=-⨯->()()2613416948022m m 解得-<<2131321313m二. 利用曲线的几何性质将所考虑的参数与圆锥曲线自身的围联系起来,得到不等关系。
例2. (1992年高考题)已知椭圆x a y ba b 222210+=>>(),点A 、B 是椭圆上两点,线段AB 的垂直平分线与x 轴相交于点P (x 00,),求x 0的取值围。
解:设A (x y 11,),B (x y 22,),AB 的中点为M (m ,n ),则221212m x x n y y =+=+,,且x a y b1221221+= (1) x a y b 2222221+=(2)(1)-(2)整理得 k y y x x x x y y b a m n b aAB=--=-++⋅=-⋅121212122222 由于AB ⊥l ,故k k AB ⋅=-l 1即-⋅⋅-=-m n b a nm x 2201由此得x a b a m 0222=-,其中m x x =+122由椭圆的几何性质知-≤≤-≤≤a x a a x a 12,(等号不同时成立), 所以-<<a m a ,从而--<<-a b a x a b a22022三. 利用已知参数的围寻找待求参数与已知参数的关系,利用已知参数的围建立不等关系。
圆锥曲线取值范围问题一、圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.二、解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系; ③利用基本不等式求出参数的取值范围; ④利用函数值域的求法,确定参数的取值范围.三、例题.设C 为椭圆22184x y +=的左焦点,直线1y kx =+与椭圆交于A ,B 两点. (1)求CA CB +的最大值;(2)若直线1y kx =+与x 轴、y 轴分别交于M ,N ,且以MN 为直径的圆与线段MN 的垂直平分线的交点在椭圆内部(包括在边界上),求实数k 的取值范围。
【分析】(1)联立直线和椭圆方程,利用焦半径公式,结合韦达定理得到|CA |+|CB |关于k 的表达式,进而利用基本不等式求得最大值;(2)先根据直线的方程求得M ,N 的坐标,进而得到以线段MN 为直径的圆的方程和线段MN 的垂直平分线方程,解方程组求得圆与垂直平分线的交点坐标,利用点在椭圆内的条件得到不等式组求解即得k 的取值范围. 【详解】(1)22184x y +=的半长轴a =半短轴2,b =半焦距2,c =离心率c e a == 设()11,A x y ,()22,B x y ,联立221280y kx x y =+⎧⎨+-=⎩,可得()2212460k x kx ++-=, 所以122412kx x k +=-+,112,CA a ex CB =+==,则)1221212CA CB x x k +=+=≤+; (2)依题意可知1,0M k ⎛⎫- ⎪⎝⎭,(0,1)N ,所以圆的方程为1(1)0x x y y k ⎛⎫++-= ⎪⎝⎭①,垂直平分线为11122y x k k ⎛⎫=-++ ⎪⎝⎭②,联立①②消去y , 111111102222x x x x k k k k k ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++-++-+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,即221111024x x x k k k ⎛⎫⎛⎫+++-= ⎪ ⎪⎝⎭⎝⎭,即22223411044x x x x k k k k ++++-=,即22234111111104x x k k k k ⎛⎫⎛⎫⎛⎫++++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即22111104x x k k ⎛⎫++-= ⎪⎝⎭, 即21124x k ⎛⎫+= ⎪⎝⎭,解得11122x k =--,11122x k =-+, 对应11122y k =+,21122y k =-+, 两个交点的坐标为11111111,,,22222222k k k k ⎛⎫⎛⎫--+-+-+ ⎪ ⎪⎝⎭⎝⎭则可知2113822k ⎛⎫+≤ ⎪⎝⎭且2113822k ⎛⎫-+≤ ⎪⎝⎭,即111111k k ⎧≤≤⎪⎪⎨⎪≤≤+⎪⎩,即111k ≤≤,解得k ≥k ≤四、好题训练1.已知椭圆2222:1(0,0)x y C a b a b +=>>的焦距为.(1)求椭圆C 的标准方程;(2)若点()0,1A ,点B 在椭圆C 上,求线段AB 长度的最大值. 2.已知椭圆的长轴长是(,0). (1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于两不同的点,求m 的取值范围.3.在平面直角坐标系xOy 中,已知点P到两点(M N 的距离之和等于4,设点P 的轨迹为曲线C . (1)求曲线C 的方程.(2)若直线2y kx =+与曲线C 有公共点,求实数k 的取值范围.4.已知椭圆C :22221x y a b +=()0a b >>,1F ,2F为椭圆的左右焦点,1,2P ⎛ ⎝⎭为椭圆上一点,且2PF =(1)求椭圆的标准方程;(2)设直线l :2x =-,过点2F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 、直线AB 于M 、N 两点,求tan MAN ∠最小值. 5.已知圆锥曲线E 上的点M 的坐标(),x y.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,求直线l 在y 轴上的截距的取值范围.6.如图,点1F ,2F 分别是椭圆()2222:10x yC a b a b+=>>的左、右焦点,点A 是椭圆C 上一点,且满足2AF x ⊥轴,1230AF F ∠=︒,直线1AF 与椭圆C 相交于另一点B .(1)求椭圆C 的离心率;(2)若2ABF 的周长为M 为椭圆C 上任意一点,求1OM F M →→⋅的取值范围. 7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为()2,0-,()2,0,P 是动点,且直线DP 与EP 的斜率之积等于14-.(1)求动点P 的轨迹C 的方程;(2)已知直线y kx m =+与椭圆:2214xy +=相交于A ,B 两点,与y 轴交于点M ,若存在m使得34OA OBOM ,求m 的取值范围.8.已知抛物线2:2(0)C y px p =>的焦点到准线的距离为1. (1)求C 的方程;(2)已知点()()1122,,,A x y B x y 在C 上,且线段AB 的中垂线l 的斜率为12-,求l 在y 轴上的截距的取值范围.9.已知圆F 1:(x +1)2+y 2=16,F 2(1,0),P 是圆F 1上的一个动点,F 2P 的中垂线l 交F 1P 于点Q .(1)求点Q 的轨迹E 的方程;(2)若斜率为k (k ≠0)的直线l 1与点Q 的轨迹E 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点(13,0),求k 的取值范围.10.已知点A ,B 的坐标分别是()0,1-,()0,1,直线AM ,BM 相交于点M ,且它们的斜率之积为12-.(1)求点M 轨迹C 的方程;(2)若过点()2,0D 的直线l 与(1)中的轨迹C 交于不同的两点E 、F (E 在D 、F 之间),DE DF λ=,试求λ的取值范围. 11.已知平面内动点P与点)A和点()B 的连线的斜率之积为12-.(1)求动点P 的轨迹C 的方程;(2)过点()1,0F 的直线l 与曲线C 交于M ,N 两点,且OMF ONF S S λ=△△(113λ<<),求直线l 斜率的取值范围.12.已知抛物线C :22y px =()0p >的焦点为F,点(M a 在抛物线C 上. (1)若6MF =,求抛物线C 的标准方程;(2)若直线x y t +=与抛物线C 交于A ,B 两点,点N 的坐标为()1,0,且满足NA NB ⊥,原点O 到直线ABp 的取值范围. 13.已知一动圆M 与圆1C:(221x y ++=外切,且与圆2C:(2249x y -+=内切.(1)求动圆M 的圆心M 的轨迹方程E ;(2)若过点(1,0)A 的直线l (不与x 轴重合)与曲线E 交于,P Q 两点,线段PQ 的垂直平分线与x 轴交于点N ,求PQ AN的取值范围.14.在平面直角坐标系xOy中,直线:l y kx =22:14y E x +=相交于A 、B 两点,与圆22:4O x y +=相交于C 、D 两点. (1)若OC OD ⊥,求实数k 的值; (2)求2AB CD ⋅的取值范围.15.已知点()1,0F 是抛物线C :()220y px p =>的焦点,O 为坐标原点,过点F 的直线1l 交抛物线与A ,B 两点.(1)求抛物线C 的方程; (2)求OA OB ⋅的值;(3)如图,过点F 的直线2l 交抛物线于C ,D 两点(点A ,C 在x 轴的同侧,A C x x >),且12l l ⊥,直线AC 与直线BD 的交点为E ,记EFC △,ACF 的面积分别为1S ,2S ,求12S S 的取值范围.16.已知椭圆()22221x y a b a b +=>>的焦距为2,O 为坐标原点,F 为右焦点,点31,2E ⎛⎫ ⎪⎝⎭在椭圆上.(1)求椭圆的标准方程;(2)若直线l 的方程为4x =,AB 是椭圆上与坐标轴不平行的一条弦,M 为弦的中点,直线MO 交l 于点P ,过点O 与AB 平行的直线交/于点Q ,直线PF 交直线OQ 于点R ,直线QF 交直线MO 于点S .①证明:O ,S ,F ,R 四点共圆;②记△QRF 的面积为1S ,△QSO 的面积为2S ,求12S S 的取值范围. 17.已知椭圆C :22143x y +=左右焦点分别为12,F F ,P 在椭圆C 上且活动于第一象限,PP'垂直于y 轴交y 轴于P ',Q 为PP '中点;连接1QF 交y 轴于M ,连接2QF 并延长交直线:3l x 于N .(1)求直线1QF 与2QF 的斜率之积;(2)已知点(0,1)T -,求22MP NP TQ ⋅+的最大值.18.已知①如图,长为12的矩形ABCD ,以A 、B 为焦点的椭圆2222:1x y M a b+=恰好过CD 两点②设圆22(16x y +=的圆心为S ,直线l 过点T ,且与x 轴不重合,直线l 交圆S 于CD 两点,过点T 作SC 的平行线交SD 于M ,判断点M 的轨迹是否椭圆(1)在①②两个条件中任选一个条件,求椭圆M 的标准方程;(2)根据(1)所得椭圆M 的标准方程,若圆22:1O x y +=的切线l 与椭圆相交于P 、Q 两点,线段PQ 的中点为T ,求OT 的最大值.19.在平面直角坐标系xOy 中,点()2,0A -,过动点P 作直线4x =-的垂线,垂足为M ,且4AM AP ⋅=-.记动点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点A 的直线l 交曲线E 于不同的两点B 、C . ①若B 为线段AC 的中点,求直线l 的方程;②设B 关于x 轴的对称点为D ,求ACD △面积S 的取值范围.20()2222:10x y C a b a b +=>>经过点()3,1P .(1)求椭圆C 的标准方程;(2)设点P 关于x 轴的对称点为Q ,过点P 斜率为12,k k 的两条不重合的动直线与椭圆C 的另一交点分别为,M N (,M N 皆异于点Q ).若1213k k =,求点Q 到直线MN 的距离的取值范围.21.已知椭圆C :()222210x y a b a b+=>>的左,右焦点分别为1F ,2F ,椭圆C 上任意一点P 到焦点距离的最大值是最小值的3倍,且通径长为3(椭圆的通径:过椭圆的焦点且垂直于长轴的弦).(1)求椭圆C 的标准方程;(2)过2F 的直线l 与椭圆C 相交于不同的两点A ,B ,则1ABF 的内切圆面积是否存在最大值?若存在,则求出最大值;若不存在,请说明理由.22.已知F 是抛物线2:2(0)C y px p =>的焦点,点P 是抛物线上横坐标为2的点,且3PF =.(1)求抛物线的方程;(2)设直线l 交抛物线C 于,M N 两点,若4MN =,且弦MN 的中点在圆22()1x a y -+=上,求实数a 的取值范围.23.如图所示,在平面直角坐标系中,椭圆Γ:2212x y +=的左、右焦点分别为1F ,2F ,设P 是第一象限内Γ上一点,1PF ,2PF 的延长线分别交Γ于点1Q ,2Q .(1)求12PF Q △的周长;(2)设1r ,2r 分别为12PF Q △,21PF Q △的内切圆半径,求12r r -的最大值.24.设实数0k ≠,椭圆D :22162x y +=的右焦点为F ,过F 且斜率为k 的直线交D 于P 、Q两点,若线段PQ 的中为N ,点O 是坐标原点,直线ON 交直线3x =于点M .(1)若点P 的横坐标为1,求点Q 的横坐标; (2)求证:MF PQ ⊥; (3)求PQ MF的最大值.参考答案1.(1)22142x y +=(2 【分析】(1)由题意可得2c =2c e a a ===,求出a ,再由 b b ,从而可求得椭圆方程,(2)设()00,B x y ,然后利用距离公式和二次函数的性质求解即可 (1)依题意,得2c c ==2===⇒=c e a a ,所以b所以椭圆C 的标准方程为22142x y +=.(2)设()00,B x y ,则2200142x y +=,则有0y ≤≤所以20220041422y x y ⎛⎫=-=- ⎪⎝⎭,由两点间的距离公式,得()()222220000||14112y AB x y y ⎛⎫=+-=-+- ⎪⎝⎭ 2200025(1)6y y y =--+=-++,因为0y ≤≤所以当001,=-=y x ||AB 2.(1)2213x y +=;(2)22m -<<.【分析】(1)由已知得2a =c = (2)联立直线与椭圆方程,消元,利用韦达定理能求出m 的取值范围. 【详解】解:(1)由已知得2a =c =解得a =2321b ∴=-=, ∴椭圆的标准方程为2213x y +=.(2)由2213y x m x y =+⎧⎪⎨+=⎪⎩, 解方程组并整理得2246330x mx m ++-=, 有两个不同的交点∴222(6)44(33)12(4)0m m m ∆=-⨯⨯-=-->.解不等式得22m -<<.m ∴的取值范围(2,2)-.【点睛】本题考查椭圆标准方程的求法,考查实数的取值范围的求法,解题时要认真审题,注意根的判别式的合理运用.3.(1)2214x y +=;(2)|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.【分析】(1)根据椭圆的定义,即可求得a ,c 的值,根据a ,b ,c 的关系,求得b 值,即可得答案. (2)联立直线与椭圆方程,根据有公共点,可得0∆≥,化简整理,即可求得答案. 【详解】解:(1)由己知得4PM PN MN +=>=由椭圆定义可知,轨迹C 是以M ,N为焦点,焦距长2c =24a =的椭圆. 所以222431b a c =-=-=,所以曲线C 的方程是2214x y +=.(2)由22214y kx x y =+⎧⎪⎨+=⎪⎩得()221416120k x kx +++=. ()()22216412146448k k k ∆=-⨯⨯+=-,因为直线2y kx =+与曲线C 有公共点, 所以0∆≥,即264480k -≥,解得k ≤k ≥故实数k的取值范围是|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭. 4.(1)2212x y +=(2)4 【分析】(1)设()1,0(0)F c c ->,根据题中条件求出1c =,得出1PF =出a 的值,再根据222b a c =-即可求出b 的值,即可求出椭圆方程;(2)由题意直线AB 的斜率必定不为零,于是可设直线:1AB x ty =+,设11(,)A x y ,22(,)B x y ,根据韦达定理、中点坐标公式、弦长公式,以及题中条件,得到23tan t MN MAN AN+∠==,再根据基本不等式即可求出结果. (1)解:设()2,0F c ,则2PF ==1c =,即()11,0F -.∴1PF =122PF PF a +==,∴a =1b ,故椭圆的标准方程为2212x y +=; (2)解:由题意直线AB 的斜率必定不为零,于是可设直线AB :1x ty =+, 联立方程22112x ty x y =+⎧⎪⎨+=⎪⎩得()222210t y ty ++-=, 设()11,A x y ,()22,B x y ,由题意,()()222442810t t t ∆=++=+>,由韦达定理12222ty y t -+=+,12212y y t =-+,则22Nt y t =-+,∴22221122N N t x ty t t =+=-+=++,MN AB ⊥,∴MNk t =-,∴222226222t MN t t +=--=++,又1212AN AB y y==-=∴23tan4tMNMANAN+⎫∠===≥=,即1t=±时取等号.5.(1)圆锥曲线E是以(),)为焦点,长轴长为22163x y+=(2)(3,-【分析】(1)由平面上两点间距离公式及椭圆的定义即得;(2)由题可设直线l:y x m=+,联立椭圆的方程,利用韦达定理可得3m-<<,即求. (1)由题可知点M到定点(),)的距离之和为∴圆锥曲线E是以(),)为焦点,长轴长为所以其标准方程为22163x y+=.(2)设直线l:y x m=+,()11,A x y,()22,B x y,由22163x yy x m⎧+=⎪⎨⎪=+⎩,消去y,得2234260x mx m++-=,由题意,有()()221221244326043263m mmx xmx x⎧∆=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3m-<<所以直线l在y轴上的截距的取值范围为(3,-.6.(1(2)5,34⎡⎢⎣【分析】(1)结合已知条件,分别求出a 、c 与2||AF 的关系式,进而求得离心率;(2)结合(1)中结论和已知条件求出椭圆的方程,然后设出M 的坐标,然后利用数量积公式表示出1OM F M →→⋅,最后利用二次函数的性质求解即可. (1)在12Rt AF F △中,∵1230AF F ∠=︒, ∴122AF AF =,122F F =,由椭圆的定义,12223a AF AF AF =+=,22c , ∴椭圆离心率22c c e a a ====(2)2ABF 的周长为22AF BF AB ++=11224AF BF AF BF a +++==a =∵c e a ==,∴1c =,2222b a c =-=, ∴椭圆C 的标准方程为22132x y +=,可得()11,0F -,设()00,M x y ,则()00,OM x y →=,2200132x y +=, ∵()1001,F M x y →=+,∴()222210000002125123334OM F M x x y x x x x →→⎛⎫⋅=++=++-=++ ⎪⎝⎭,∵0x ≤≤所以由二次函数性质可知,当0x 1OM F M →→⋅的最大值为3当023x =-时,1OM F M →→⋅的最小值为54,所以1OM F M →→⋅的取值范围是5,34⎡⎢⎣.7.(1)()22124x y x +=≠±(2)11(1,)(,1)22-- 【分析】(1)根据直线DP 与EP 的斜率之积列方程,化简求得动点P 的轨迹C 的方程. (2)利用向量的坐标运算,由34OA OBOM 得到123x x =-,联立直线y kx m =+与椭圆:2214x y +=,化简写出根与系数关系、判别式,求得关于m 的不等式,并由此求得m 的取值范围. (1)设(),P x y ,则()1=22+24EP DP y y k k x x x ⋅=⋅-≠±-, 所以可得动点P 的轨迹C 的方程为()22124x y x +=≠±.(2)设()()1122,,,,A x y B x y 又()0,M m ,由34OA OBOM 得12123,30,4x x y y m ,123x x =-联立2214y kx m x y =+⎧⎪⎨+=⎪⎩可得()222418440k x kmx m +++-= 222(8)4(41)(4m 4)0km k ∆=-⨯+⨯->,即226416160k m -+>22410k m ∴-+>,且12221228414441km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩, 又123x x =-22441kmx k ,则222122224443()4141km m x x xk k , 222216410k m k m ,2221416m k m 代入22410k m -+>得22211014m m m-+->-, 2114m <<,解得11(1,)(,1)22m ∈--.m ∴的取值范围是11(1,)(,1)22--8.(1)22y x =;(2)9(,)16+∞.【分析】(1)利用p 的几何意义直接写出C 的方程即得.(2)根据给定条件设出直线l 及直线AB 的方程,联立直线AB 与抛物线C 的方程,求出弦AB 中点坐标,借助判别式计算作答. (1)因抛物线2:2(0)C y px p =>的焦点到准线的距离为1,则p =1, 所以C 的方程为22y x =. (2)依题意,设直线l 的方程为12y x b =-+,直线AB 的方程为y =2x +m ,设1122(,),(,)A x y B x y ,由222y x y x m⎧=⎨=+⎩消去x 得:20y y m -+=,由题意知Δ140m =->,得14m <,设线段AB 的中点为()00,N x y ,则120122y y y +==,再由002y x m =+,可得0142m x =-,又点N 在直线l 上,则111()2242m b =--+,于是584m b =-,从而有511984416b >-⨯=,所以l 在y 轴上的截距的取值范围为9(,)16+∞.9.(1)22143x y +=(2)15,,5⎛⎛⎫-∞+∞⎪⎝⎭⎝⎭【分析】(1)利用椭圆的定义可求椭圆方程.(2)设直线()()11122:,,,,l y kx m A x y B x y =+,联立直线方程和椭圆方程后利用韦达定理可求AB 的中垂线的方程,结合其过1,03⎛⎫⎪⎝⎭所得,k m 的等式,结合判别式为正可得k 的取值范围. (1)由题意可知:11||4PQ QF PF r +===, 由2F P 的中垂线l 交1F P 于点Q ,则2||QF PQ =, ∴211242QF QF F F +=>=,则点Q 的轨迹E 为以12,F F 为焦点,4为长轴长的椭圆, 即22224,22,3a c b a c ===-=, ∴点Q 的轨迹E 的方程为:22143x y +=.(2)设直线()()11122:,,,,l y kx m A x y B x y =+,将y kx m =+代入椭圆方程,消去y 得()2223484120k x kmx m +++-=,所以()()222(8)4344120km k m ∆=-+->即223043k m +>-①,由根与系数关系得122834km x x k +=-+,则()121226234my y k x x m k +=++=+, 所以线段AB 的中点M 的坐标为2243,3434km m k k ⎛⎫- ⎪++⎝⎭.又线段AB 的直平分线l '的方程为113y x k ⎛⎫=-- ⎪⎝⎭,由点M 在直线l '上,得22314134343m km k k k ⎛⎫=--- ⎪++⎝⎭,即24330k km ++=,所以()21433m k k=-+②,由①②得()222243439k k k+<+,∵2430k +>,∴22439k k +<,所以235k >,即k <k >所以实数的取值范围是15,,5⎛⎛⎫-∞+∞ ⎪⎝⎭⎝⎭.10.(1)2212x y +=(0x ≠),(2)31λ-<<且13λ≠.【分析】(1)设(,)M x y ,用坐标表示出已知条件即可得;(2)设11(,)F x y ,22(,)E x y ,由DE DF λ=得12,x x 的关系,12,y y 的关系,利用,E F 都是椭圆上的点,适合椭圆方程,可解得1x ,然后由1x ≤求得l 的范围,注意题中有01λ<<,10x ≠,结合起来求得正确的范围.(1)设(,)M x y ,则1112y y x x +-⋅=-(0x ≠),,化简得2212xy +=(0x ≠),此即为曲线C 的方程; (2)设11(,)F x y ,22(,)E x y ,221112x y +=,由DE DF λ=,得21212(2)x x y y λλ-=-⎧⎨=⎩, 212122x x y y λλλ=-+⎧⎨=⎩,E 在椭圆上,则2211(22)()12x y λλλ-++=,把221112x y =-代入得 222222111(22)(22)1222x x x λλλλλλ-+--++-=,解得1312x λλ-=,由1x <得,312λλ-33λ-<<+ 又由于E 在线段DF 上,01λ<<,10x =时,13λ=,所以31λ-<且13λ≠.11.(1)2212x y +=(x ≠;(2)()(),11,-∞-⋃+∞. 【分析】(1)设(),P x y,且x ≠12PA PB k k ⋅=-化简即可得动点P 的轨迹C 的方程;(2)设()11,A x y ,()22,B x y ,直线l :1x my =+与椭圆方程联立可得12y y +,12y y ,()221221242y y m y y m +-=+,由12OMF ONFS y S y λ==-, ()212121221122y y y y y y y y λλ+=++=--+,可得221422m m λλ---+=+,根据λ的范围求得12λλ--+的范围,再解不等式可得m 的范围,再求1m的范围即为直线l 斜率的取值范围.(1)设(),P x y,则22122PA PBy k k x ⋅===--,整理可得:2222x y +=,即2212x y +=(x ≠,所以动点P 的轨迹C 的方程为2212x y +=(x ≠,(2)由题意可知直线l 的斜率存在且不为0,设()11,A x y ,()22,B x y ,直线l 的方程为:1x my =+, 由22112x my x y =+⎧⎪⎨+=⎪⎩可得:()222210m y my ++-=, 所以12222m y y m -+=+,12212y y m -=+,因为11221212OMFONFOF y S y S y OF y λ⋅⋅===-⋅⋅,()()()2221222221244222y y m m m y y m m +-⎡⎤=⨯-+=⎣⎦++, ()222121212121212212122y y y y y y y y y y y y y y λλ+++==++=--+,所以221422m m λλ---+=+,即221422m m λλ+-=+,因为12y λλ=+-在1,13⎛⎫ ⎪⎝⎭上单调递减,所以1420,3y λλ⎛⎫=+-∈ ⎪⎝⎭,所以2244023m m <<+,因为22402m m >+,由224423m m <+可得:11m -<<, 所以直线l 的斜率11m<-或11m >.所以直线l 斜率的取值范围为()(),11,-∞-⋃+∞. 12.(1)24y x =或220y x =;(2)1,6⎡⎫+∞⎪⎢⎣⎭.【分析】(1)由已知可得202pa =,由抛物线的定义可得62pa +=,解方程求得p 的值即可求解; (2)设()11,A x y ,()22,B x y ,联立直线x y t +=与22y px =,由原点O 到直线AB 的距离不t 的范围,由韦达定理可得12x x +、12x x ,利用坐标表示0NA NB ⋅=可利用t 表示p ,再利用函数的单调性求得最值即可求解. (1)由题意及抛物线的定义得:62pa +=,又因为点(M a 在抛物线C 上,所以202pa =,由62202p a pa⎧+=⎪⎨⎪=⎩ 可得25p a =⎧⎨=⎩或101p a =⎧⎨=⎩,所以抛物线C 的标准方程为24y x =或220y x =. (2)设()11,A x y ,()22,B x y ,联立22x y t y px+=⎧⎨=⎩消去y 可得:()2220x p t x t -++=,则1222x x p t +=+,212x x t =,因为NA NB ⊥,所以()()()()()()121212121111NA NB x x y y x x t x t x ⋅=--+=--+--()()212122110x x t x x t =-++++=,所以()()22212210t t p t t -++++=,可得22121t t p t -+=+,由原点O 到直线AB≥2t ≥或2t ≤-, 因为0p >,所以2t ≤-不成立,所以2t ≥,因为221421411t t p t t t -+==++-++在[)2,+∞上单调递增, 所以2222112213p -⨯+≥=+,所以16p ≥, 即p 的取值范围为1,6⎡⎫+∞⎪⎢⎣⎭.13.(1)221168x y +=(2)( 【分析】(1)设圆M 的半径为r ,则1217MC r MC r ⎧=+⎪⎨=-⎪⎩,即可得到128MC MC +=,即可得到点M 的轨迹是以12,C C 为焦点的椭圆,求出,a b ,即可得到轨迹方程;(2)设l 方程为:(1)y k x =-,1122(,)(,)P x y Q x y ,,联立直线与椭圆方程,消元、列出韦达定理,根据弦长公式表示出PQ ,再求出线段PQ 垂直平分线方程,从而求出AN,即可得到PQ AN= (1)解:设圆M 的半径为r ,则1217MC r MC r ⎧=+⎪⎨=-⎪⎩12128MC MC C C ∴+=>=所以点M 的轨迹是以12,C C为焦点的椭圆,且4,a c ==2228b a c ∴=-=所以所求轨迹方程为221168x y +=. (2)解:经分析,l 斜率存在,设l 方程为:(1)y k x =-,1122(,)(,)P x y Q x y , 由22(11168y k x x y =-⎧⎪⎨+=⎪⎩)消去y 得:222212)42160k x k x k +-+-=( 221212224216,.1212k k x x x x k k -∴+==++PQ ∴=.. 121222(2)12ky y k x x k -+=+-=+ PQ ∴的中点坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭所以线段PQ 垂直平分线方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭.令0y =得2212N kx k =+,221112N k AN x k +∴=-=+PQAN ∴= 0k ≠ 211k ∴+> 2141630301k ∴<-<+ PQ AN∴的取值范围为(.14. (1)k = (2)[)4,64 【分析】(1)求出圆心到直线l的距离为d =k 的值; (2)设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆方程联立,列出韦达定理,利用弦长公式计算出AB 关于k 的表达式,利用勾股定理可求得CD 关于k 的表达式,再利用不等式的基本性质可求得2AB CD ⋅的取值范围. (1)解:因为OC OD ⊥,且圆O 的半径为2,所以点O 到直线l的距离2sin4d π===k =. (2)解:设()11,A x y 、()22,B x y,由2214y kx y x ⎧=⎪⎨+=⎪⎩,消y 整理得()22410k x ++-=,()()2224416160k k ∆=++=+>,所以12x x +=,12214x x k -=+,所以12 AB x x=-=()22414kk+=+.设圆心O到直线l的距离为d=所以CD===所以()()22222222411614142404644144k kkAB CDk k k k+++⋅=⋅⋅==-++++.244k+≥,则21144k<≤+,所以,[)22240644,644AB CDk⋅=-∈+.所以2AB CD⋅的取值范围为[)4,64.15.(1)24y x=(2)3-(3)()0,1【分析】(1)根据题意得到12p=,从而得到抛物线C:24y x=.(2)首先设直线AB的方程为1x ty=+,与抛物线24y x=联立得2440y ty--=,再利用韦达定理求解.(3)设211,4yA y⎛⎫⎪⎝⎭,222,4yC y⎛⎫⎪⎝⎭,21144,By y⎛⎫-⎪⎝⎭,22244,Dy y⎛⎫-⎪⎝⎭,再利用韦达定理和12ECFACFECSSS S AC==△△求解即可.(1)因为抛物线C:()220y px p=>,焦点()1,0F,所以12p=,解得2p=,所以抛物线C:24y x=.24y x =(2)设直线AB 的方程为1x ty =+,与抛物线24y x =联立得:2440y ty --=, 由韦达定理得124y y t +=,124y y =-,所以()22212121214416y yy y x x =⋅==,所以1212413OA OB x x y y ⋅=+=-+=- (3)设211,4y A y ⎛⎫⎪⎝⎭,222,4y C y ⎛⎫ ⎪⎝⎭,21144,B y y ⎛⎫- ⎪⎝⎭,22244,D y y ⎛⎫- ⎪⎝⎭, 因为21222112444AC y y k y y y y -==+-, 所以直线AC :2111244y y y x y y ⎛⎫-=- ⎪+⎝⎭,即1212124y y y x y y y y =+++。
2020上学期期末复习专题1 圆锥曲线的定点、定值问题(教师版)一.知识梳理1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (或x )得到一个关于变量x (或y )的一元方程.例:由⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则: Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时, 若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.弦长公式设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |= 1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2或|AB |=1+1k2·|y 1-y 2|= 1+1k2·(y 1+y 2)2-4y 1y 2. 3.定点问题(1)参数法:参数法解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中的核心变量(此处设为k );②利用条件找到k 与过定点的曲线F (x ,y )=0之间的关系,得到关于k 与x ,y 的等式,再研究变化量与参数何时没有关系,找到定点.(2)由特殊到一般法:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.4.定值问题(1)直接消参求定值:常见定值问题的处理方法:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.(2)从特殊到一般求定值:常用处理技巧:①在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;②巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.二.题型归纳题型1 “设参→用参→消参”三步解决圆锥曲线中的定点问题【例1-1】已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点. (1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.[解] (1)因为抛物线2y =2px (p >0)的焦点坐标为F (1,0),所以p2=1,所以p =2.所以抛物线C 的方程为2y =4x .(2)证明:①当直线AB 的斜率不存在时,设A ⎪⎪⎭⎫ ⎝⎛t t ,42,B ⎪⎪⎭⎫⎝⎛-t t ,42. 因为直线OA ,OB 的斜率之积为-12,所以214422-=-⋅t t t t ,化简得2t =32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A ()A A ,y x ,B ()B B ,y x ,联立⎩⎨⎧+==bkx y x y 42,消去x ,化简得ky 2-4y +4b =0.所以B A y y =4bk ,因为直线OA ,OB 的斜率之积为-12,所以21-=⋅B B A A x y x y ,整理得B A x x +2B A y y =0.即024422=+⋅B A B A y y yy ,解得B A y y =0(舍去)或B A y y =-32.所以B A y y =4bk=-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综上所述,直线AB 过定点(8,0).【跟踪训练1-1】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的标准方程;(2)设不经过点B (0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明:直线l 过定点,并求出该定点的坐标.【解】(1)由题意得,c =3,a b=2,a 2=b 2+c 2,∴a =2,b =1, ∴椭圆C 的标准方程为x 24+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠1),M (x 1,y 1),N (x 2,y 2). 联立⎩⎨⎧y =kx +m ,x 2+4y 2=4,消去y ,可得(4k 2+1)x 2+8kmx +4m 2-4=0.∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.∵点B 在以线段MN 为直径的圆上,∴BM ―→·BN ―→=0. ∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1) =(k 2+1)x 1x 2+k (m -1)(x 1+x 2)+(m -1)2=0,∴(k 2+1)4m 2-44k 2+1+k (m -1)-8km4k 2+1+(m -1)2=0,整理,得5m 2-2m -3=0,解得m =-35或m =1(舍去).∴直线l 的方程为y =kx -35.易知当直线l 的斜率不存在时,不符合题意.故直线l 过定点,且该定点的坐标为⎪⎭⎫ ⎝⎛-530,.【总结归纳】定点问题实质及求解步骤解析几何中的定点问题实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动.这类问题的求解一般可分为以下三步:题型2 “设参→用参→消参”三步解决圆锥曲线中的定值问题【例2-1】设O 为坐标原点,动点M 在椭圆x 29+y 24=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NM 2=(1)求点P 的轨迹E 的方程;(2)过F (1,0)的直线l 1与点P 的轨迹交于A ,B 两点,过F (1,0)作与l 1垂直的直线l 2与 点P 的轨迹交于C ,D 两点,求证:1|AB |+1|CD |为定值.[解] (1)设P(x ,y),M(x 0,y 0),则N(x 0,0).∵NP ―→= 2 NM ―→,∴(x -x 0,y)=2(0,y 0),∴x 0=x ,y 0=y 2.又点M 在椭圆上,∴142922=⎪⎭⎫ ⎝⎛+y x ,即x 29+y 28=1.∴点P 的轨迹E 的方程为x 29+y 28=1.(2)证明:由(1)知F 为椭圆x 29+y 28=1的右焦点,当直线l 1与x 轴重合时,|AB|=6,|CD|=2b 2a =163,∴1|AB|+1|CD|=1748.当直线l 1与x 轴垂直时,|AB|=163,|CD|=6,∴1|AB|+1|CD|=1748. 当直线l 1与x 轴不垂直也不重合时,可设直线l 1的方程为y =k(x -1)(k ≠0), 则直线l 2的方程为y =-1k(x -1),设A(x 1,y 1),B(x 2,y 2),联立⎩⎨⎧y =k x -1,x 29+y28=1消去y ,得(8+9k 2)x 2-18k 2x +9k 2-72=0,则Δ=(-18k 2)2-4(8+9k 2)(9k 2-72)=2 304(k 2+1)>0, x 1+x 2=18k 28+9k 2,x 1x 2=9k 2-728+9k 2,∴|AB|= 1+k 2·x 1+x 22-4x 1x 2=481+k 28+9k 2.同理可得|CD|=481+k 29+8k 2.∴1|AB|+1|CD|=8+9k 248k 2+1+9+8k 248k 2+1=1748.综上可得1|AB|+1|CD|为定值. 【跟踪训练2-1】已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)如图所示,点D 为x 轴上一点,过点D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过点D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为定值,并求出该定值.【解】(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,b 2+c 2=a 2,解得⎩⎨⎧b =1,c =3,所以椭圆C 的方程为x 24+y 2=1.(2)法一:设D (x 0,0),M (x 0,y 0),N (x 0,-y 0),-2<x 0<2,所以k AM =y 0x 0+2,因为AM ⊥DE ,所以k DE =-2+x 0y 0,所以直线DE 的方程为y =-2+x 0y 0(x -x 0). 因为k BN =-y 0x 0-2,所以直线BN 的方程为y =-y 0x 0-2(x -2).由⎩⎨⎧y =-2+x0y(x -x 0),y =-y0x 0-2(x -2),解得E ⎝⎛⎭⎫45x 0+25,-45y 0, 所以S △BDE S △BDN =12|BD |·|y E |12|BD |·|y N |=⎪⎪⎪⎪-45y 0|-y 0|=45.故△BDE 与△BDN 的面积之比为定值45.法二:设M (2cos θ,sin θ)(θ≠k π,k ∈Z ),则D (2cos θ,0),N (2cos θ,-sin θ), 设BE ―→=λBN ―→,则DE ―→=DB ―→+BE ―→=DB ―→+λBN ―→=(2-2cos θ,0)+λ(2cos θ-2,-sin θ) =(2-2cos θ+2λcos θ-2λ,-λsin θ).又AM ―→=(2cos θ+2,sin θ),由AM ―→⊥DE ―→,得AM ―→·DE ―→=0,从而[(2-2cos θ)+λ(2cos θ-2)](2cos θ+2)-λsin 2θ=0,整理得4sin 2θ-4λsin 2θ-λsin 2θ=0, 即5λsin 2θ=4sin 2θ.,所以λ=45,所以S △BDE S △BDN =|BE ||BN |=45.故△BDE 与△BDN 的面积之比为定值45.【总结归纳】定值问题实质及求解步骤定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题.其求解步骤一般为:题型三 探索性问题例3.已知圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1). (1) 求圆M 的方程;(2) 设P 为圆M 上任一点,过点P 向圆O :x 2+y 2=1引切线,切点为Q .试探究:平面内是否存在一定点R ,使得PQPR 为定值.若存在,求出点R 的坐标;若不存在,请说明理由. 解析:(1) 因为圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1), 所以设圆心坐标为(m,2m -6),半径为r , 则圆的标准方程为(x -m )2+(y -2m +6)2=r 2.则(1-m )2+(2-2m +6)2=r 2且(4-m )2+(-1-2m +6)2=r 2, 即(m -1)2+(8-2m )2=r 2且(m -4)2+(5-2m )2=r 2, 解得m =4,r =3.所以圆M :(x -4)2+(y -2)2=9.(2) 设P (x ,y ),R (a ,b ),则(x -4)2+(y -2)2=9,即x 2+y 2=8x +4y -11. 又PQ 2=x 2+y 2-1,PR 2=(x -a )2+(y -b )2=x 2+y 2-2ax -2by +a 2+b 2, 故PQ 2=8x +4y -12,PR 2=(8-2a )x +(4-2b )y +a 2+b 2-11.又设PQPR =t 为定值,故8x +4y -12=t 2[(8-2a )x +(4-2b )y +a 2+b 2-11]. 因为上式对圆M 上任意点P (x ,y )都成立,可得⎩⎪⎨⎪⎧8=(8-2a )t 2,4=(4-2b )t 2,-12=(a 2+b 2-11)t 2,解得⎩⎪⎨⎪⎧a 1=2,b 1=1,t 1=2或⎩⎪⎪⎪⎨⎪⎪⎪⎧a 2=25,b 2=15,t 2=103.综上,存在点R (2,1)或R ⎝ ⎛⎭⎪⎫25,15满足题意.跟踪训练3:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点⎝⎛⎭⎫1,32,离心率为32. (1) 求椭圆C 的方程;(2) 直线y =k (x -1)(k ≠0)与椭圆C 交于A ,B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点P ,Q ,试问:以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,请说明理由.解析:(1) 由题意得⎩⎪⎨⎪⎧ca =32,1a 2+34b 2=1,解得a =2,b =1.所以椭圆C 的方程是x 24+y 2=1.(2) 以线段PQ 为直径的圆过x 轴上的定点. 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 2=1得(1+4k 2)x 2-8k 2x +4k 2-4=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.又因为点M 是椭圆C 的右顶点,所以点M (2,0).由题意可知直线AM 的方程为y =y 1x 1-2(x -2),故点P ⎝ ⎛⎭⎪⎪⎫0,-2y 1x 1-2. 直线BM 的方程为y =y 2x 2-2(x -2),故点Q ⎝ ⎛⎭⎪⎪⎫0,-2y 2x 2-2. 若以线段PQ 为直径的圆过x 轴上的定点N (x 0,0),则等价于PN →·QN →=0恒成立.又因为PN →=⎝⎛⎭⎪⎪⎫x 0,2y 1x 1-2,QN →=⎝⎛⎭⎪⎪⎫x 0,2y 2x 2-2,所以PN →·QN →=x 20+2y 1x 1-2·2y 2x 2-2=x 20+4y 1y 2(x 1-2)(x 2-2)=0恒成立. 又因为(x 1-2)(x 2-2)=x 1x 2-2(x 1+x 2)+4=4k 2-41+4k 2-28k 21+4k 2+4=4k 21+4k 2,y 1y 2=k (x 1-1)k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=k 2⎝ ⎛⎭⎪⎪⎫4k2-41+4k 2-8k 21+4k 2+1=-3k 21+4k2,所以x 20+4y 1y 2(x 1-2)(x 2-2)=x 20+-12k 21+4k 24k 21+4k 2=x 20-3=0,解得x 0=±3. 故以线段PQ 为直径的圆过x 轴上的定点(±3,0).圆锥曲线定点定值问题作业1. 如图,平行四边形AMBN 的周长为8,点M ,N 的坐标分别为(-3,0),(3,0). (1) 求点A ,B 所在的曲线L 的方程;(2) 过L 上点C (-2,0)的直线l 与L 交于另一点D ,与y 轴交于点E ,且l ∥OA .求证:CD ·CEOA 2为定值.解析:(1) 因为四边形AMBN 是平行四边形,周长为8,所以A ,B 两点到M ,N 的距离之和均为4>23,可知所求曲线为椭圆. 由椭圆定义可知,a =2,c =3,b =1.曲线L 的方程为x24+y 2=1(y ≠0).(2) 由已知可知直线l 的斜率存在.因为直线l 过点C (-2,0),设直线l 的方程为y =k (x +2),代入曲线方程x 24+y 2=1(y ≠0),并整理得(1+4k 2)x 2+16k 2x +16k 2-4=0. 因为点C (-2,0)在曲线L 上,则D ⎝ ⎛⎭⎪⎪⎫-8k 2+21+4k2,4k 1+4k 2,E (0,2k ), 所以CD =41+k 21+4k2,CE =21+k 2. 因为OA ∥l ,所以设OA 的方程为y =kx ,代入曲线L 的方程,并整理得(1+4k 2)x 2=4. 所以x 2A =41+4k 2,y 2A =4k 21+4k 2,所以OA 2=4+4k 21+4k2,化简得CD ·CE OA 2=2,所以CD ·CE OA 2为定值.说明:本题考查用定义法求椭圆方程知识及直线与椭圆相交的有关线段的计算与证明.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴是短轴的两倍,点A ⎝ ⎛⎭⎪⎫3,12在椭圆C 上.不过原点的直线l 与椭圆C 相交于A ,B 两点,设直线OA ,l ,OB 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2恰好构成等比数列. (1) 求椭圆C 的方程;(2) 试判断OA 2+OB 2是否为定值.若是,求出这个值;若不是,请说明理由.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1. (2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4, 整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1.(2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.此时Δ=16(2-m 2)>0,即m ∈(-2,2),所以⎩⎪⎨⎪⎧x 1+x 2=±2m ,x 1x 2=2m 2-2.又OA 2+OB 2=x 21+y 21+x 22+y 22=34(x 21+x 22)+2=34[(x 1+x 2)2-2x 1x 2]+2=5, 所以OA 2+OB 2是定值,且为5.3.过椭圆x 2a 2+y 2b 2=1的右焦点F 作斜率k =-1的直线交椭圆于A ,B 两点,且OA →+OB →与a =⎝ ⎛⎭⎪⎫1,13共线.(1)求椭圆的离心率;(2)设P 为椭圆上任意一点,且OP →=mOA →+nOB →(m ,n ∈R ),证明:m 2+n 2为定值. 解 (1)设AB :y =-x +c ,直线AB 交椭圆于两点,A (x 1,y 1),B (x 2,y 2)⎩⎪⎨⎪⎧b 2x 2+a 2y 2=a 2b2y =-x +c⇒b 2x 2+a 2(-x +c )2=a 2b 2,(b 2+a 2)x 2-2a 2cx +a 2c 2-a 2b 2=0x 1+x 2=2a 2c a 2+b 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2, OA →+OB →=(x 1+x 2,y 1+y 2)与a =⎝ ⎛⎭⎪⎫1,13共线,3(y 1+y 2)-(x 1+x 2)=0,3(-x 1+c -x 2+c )-(x 1+x 2)=0,即 x 1+x 2=3c 2,a 2=3b 2,c =a 2-b 2=6a 3,e =c a =63.(2)证明:a 2=3b 2,椭圆方程为x 2+3y 2=3b 2,设M (x ,y )为椭圆上任意一点,OM →=(x ,y ),OM →=mOA →+nOB →,(x ,y )=(mx 1+nx 2,my 1+ny 2),点M (x ,y )在椭圆上,(mx 1+nx 2)2+3(my 1+ny 2)2=3b 2,即m 2(x 21+3y 21)+n 2(x 22+3y 22)+2mn (x 1x 2+3y 1y 2)=3b 2. ∴x 1+x 2=3c 2,a 2=32c 2,b 2=12c 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2=38c 2,∴x 1x 2+3y 1y 2=x 1x 2+3(-x 1+c )(-x 2+c )=4x 1x 2-3c (x 1+x 2)+3c 2=32c 2-92c 2+3c 2=0,将x 21+3y 21=3b 2,x 22+3y 22=3b 2代入得 3b 2m 2+3b 2n 2=3b 2,即m 2+n 2=1.3.在直角坐标系xOy 中,已知椭圆E 的中心在原点,长轴长为8,椭圆在x 轴上的两个焦点与短轴的一个顶点构成等边三角形. (1)求椭圆的标准方程;(2)过椭圆内一点M (1,3)的直线与椭圆E 交于不同的A ,B 两点,交直线y =-14x 于点N ,若NA →=mAM →,NB →=nBM →,求证:m +n 为定值,并求出此定值. 解 (1)因为长轴长为8,所以2a =8,a =4, 又因为两个焦点与短轴的一个顶点构成等边三角形, 所以b =32a =23,由于椭圆焦点在x 轴上, 所以椭圆的标准方程为x 216+y 212=1. (2)设A (x 1,y 1),B (x 2,y 2),N ⎝⎛⎭⎫x 0,-14x 0, 由NA →=mAM →,得⎝⎛⎭⎫x 1-x 0,y 1+14x 0=m (1-x 1,3-y 1),所以x 1=m +x 0m +1,y 1=3m -14x 0m +1,所以A ⎝ ⎛⎭⎪⎪⎫m +x 0m +1,3m -14x 0m +1, 因为点A 在椭圆x 216+y 212=1上,所以得到⎝ ⎛⎭⎪⎫m +x 0m +1216+⎝ ⎛⎭⎪⎪⎫3m -14x 0m +1212=1,得到9m 2+96m +48-134x 20=0;同理,由NB →=nBM →,可得9n 2+96n +48-134x 20=0, 所以m ,n 可看作是关于x 的方程9x 2+96x +48-134x 20=0的两个根, 所以m +n =-969=-323,为定值.4. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(0,-3),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1) 求椭圆C 的标准方程;(2) 若直线l 上存在点P 满足PM ·PN =PF 2,且点P 在椭圆外,证明:点P 在定直线上.解析:(1) 设椭圆的焦距为2c .由椭圆经过点(0,-3)得b = 3. ①由点F 到左顶点的距离和到右准线的距离相等,得a +c =a 2c -c . ② 又a 2=b 2+c 2, ③由①②③可得a =2,c =1,所以椭圆C 的标准方程为x 24+y 23=1.(2) 法一:当直线l 的斜率为0时,则M (2,0),N (-2,0),设P (x 0,y 0),则PM ·PN =|(x 0-2)(x 0+2)|.因为点P 在椭圆外,所以x 0-2,x 0+2同号,又PF 2=(x 0-1)2,所以|(x 0-2)(x 0+2)|=(x 0-1)2,解得x 0=52. 当直线l 的斜率不为0时,因为y 1+y 2=-6m3m 2+4,y 1y 2=-93m 2+4,PM =1+m 2|y 1-y 0|,PN =1+m 2|y 2-y 0|,PF =1+m 2|y 0|.因为点P 在椭圆外,所以y 1-y 0,y 2-y 0同号,所以PM ·PN =(1+m 2)(y 1-y 0)(y 2-y 0)=(1+m 2)[y 1y 2-y 0(y 1+y 2)+y 20]=(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4, 代入PM ·PN =PF 2得(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4=(1+m 2)y 20,整理得y 0=32m ,代入直线方程得x 0=52.所以点P 在定直线x =52上.法二:当直线l ⊥x 轴,则M ⎝ ⎛⎭⎪⎫1,32,N ⎝ ⎛⎭⎪⎫1,-32,则PM ·PN =⎪⎪⎪⎪⎪⎪y 0-32⎪⎪⎪⎪⎪⎪y 0+32.又PF 2=y 20,所以PM ·PN =PF 2不成立,不合题意. 当直线l 与x 轴不垂直时,设P (x 0,y 0),M (x 1,y 1),N (x 2,y 2).设直线l 的方程为y =k (x -1),与椭圆x 24+y 23=1联立并消去y 得 (3+4k 2)x 2-8k 2x +4k 2-12=0.因为Δ=64k 4-4(3+4k 2)(4k 2-12)=16k 4+108k 2+108>0, 所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,所以PM =1+k 2|x 1-x 0|,PN =1+k 2|x 2-x 0|,PF =1+k 2|x 0-1|. 因为点P 在椭圆外,所以x 1-x 0,x 2-x 0同号,所以PM ·PN =(1+k 2)(x 1-x 0)(x 2-x 0)=(1+k 2)[x 1x 2-x 0(x 1+x 2)+x 20] =(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2.代入PM ·PN =PF 2得(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2=(1+k 2)(x 20)(x 20-2x 0+1), 整理得x 0=52,所以点P 在定直线x =52上.。
圆锥曲线中常见不等关系的确立
圆锥曲线中的范围问题,是一个难点问题,这类问题涉及的知识范围广,条件隐含,能力要求高,同学们对这类问题往往思路不清,不会建立元素之间的关系(不等关系),本文将介绍解决这类问题的几种常用方法,供同学们在复习中参考。
一、利用点与曲线的位置关系建立不等关系
例1、已知椭圆C 的方程22
143x y +=试确定m 的取值范围,使得对于直线:4l y x m =+,在椭圆C 上有不同的两点关于该直线对称。
分析:由题可得关于直线对称的两点P 、Q 的中点在直线l 上,且PQ 所在的直线与l 的
交点在椭圆的内部,利用点在椭圆的内部求解。
解析:设1122(,),(,)P x y Q x y 是椭圆C 上的关于直线对称的不同的两点,M (x,y )是弦PQ 的中点,因为点P,Q 都在椭圆上,故有
113412x y +=①
223412x y +=②,由①-②得()()()()12121212340x x x x y y y y +-++-=
即
1212121234y y x x x x y y -+=-⋅-+,又122x x x +=,122y y y +=,则有12121
4
y y k x x -==--,
所以1344y
x -
=-⋅,即30x y -=,联立方程组304x y y x m
-=⎧⎨=+⎩解得交点M (),3m m --。
因为点M ()
,3m m --在椭圆内,所以
()()2
2
314
3
m m --+
<
,解得1313
m -
<<。
点评:本题的解法可概括为,先寻求问题中涉及的基本量将其化归为点与曲线的位置关
系,在利用点与椭圆的位置关系①点在椭圆内部22221x y a b +<;②点在椭圆外部22
221x y a b +>;
③点在椭圆上22
221x y a b
+=,来建立不等式或不等式组求解。
二、利用曲线本身的范围建立不等关系
例2、已知椭圆22
2:1(1)x C y a a
+=>,长轴的两端点是A 、B 。
若椭圆C 上存在点Q ,
使120AQB ∠=
,求离心率e 的范围。
分析:先寻求问题中涉及的基本量及120AQB ∠=
的利用途径,将其化归为曲线方程
的基本量a 、b 、c 的范围问题,再利用曲线本身的范围求解。
解析:设Q (x,y ),由椭圆的对称性,不妨设Q 在x 轴的上方,即y>0,易知
,AQ BQ y y
k k x a x a
=
=+-,由tan AQB ∠=222)20x y a ay +-+=① 又点Q 在椭圆上,故有22
21(1)x y a a
+=> ②
所以由①②,得()
2
2
031y y a -
=-,因为0y ≠(当y=0时,点Q 与A (或B )重合),
所以
31y a =
-,由1y ≤(短半轴的范围)131a ≤-,即1a ≤
所以2
222()13c b e a a ⎛⎫
==-≥ ⎪⎝⎭,又01e <<,3e ⎫∈⎪⎪⎣⎭
点评:充分利用圆锥曲线自身的范围是解决范围问题的方法之一,根据圆锥曲线的范围
建立相应的不等式,从而求出参数的取值范围。
如在焦点在x 轴上的椭圆中有:a x a -≤≤,
b y b -≤≤等。
三、利用判别式建立不等关系
例3、设P 是椭圆C :22221x y a b
+=上的一点,1F 、2F 是焦点,且1290F PF ∠=
,求
它的离心率e 的范围。
分析:本题涉及到焦点三角形,并且是直角三角形,可考虑联系椭圆的定义、勾股定理去建立关于e 的不等关系。
解析:由椭圆的定义得122PF PF a += ①,
在12F PF ∆中,1290F PF ∠=
,由勾股定理得
2
2
2
212124PF PF F F c +== ②,
由①、②化简可得22
122()PF PF a c ⋅=- ③,
由①、③,根据一元二次方程根与系数的关系,可知12,PF PF 是方程
222
22()0x a x a c -+-=的两根,则有22248()0a a c ∆=--≥,所以2
12
c a ⎛⎫≥ ⎪⎝⎭,
即2e ≥
,又1e <,故
12
e ≤<。
点评:本题的解法可概括为先找到题目中的已知量,与椭圆的定义相结合,将
12,PF PF 看作一元二次方程的两个根,由方程的判别式大于等于零,找到不等关系。
总之,在圆锥曲线中,涉及到求范围,或求最值问题时,往往考虑要找到题目中的等量及不等关系,有时不等关系题目当中直接给出,有时需要挖掘题目中的隐含条件,有时也用基本不等式或函数的单调性,平面几何知识,构造方程利用方程根的分布等建立不等关系。
这就要求同学们在平时的学习中多积累,多练习,掌握通性通法。