y A' B' D Dy B Dx
x
A 0
自由度: 描述几何体系运动时,所需独立坐标的数目。 几何体系运动时,可以独立改变的坐标的数目。 几何可变体系自由度大于0 几何不变体系自由度等于0 平面内的点自由度为2 平面内的刚体自由度为3
联系(约束)
如果体系有了自由度,必须消除,消除的办法是增加约束。
W=3×7-(2×9)-3=0
平面杆件体系的自由度
若每个节点均为自由,则有2j个自由度,但连接节点的每根杆 件都起一个约束作用,则体系的计算自由度为
W=2j-b -r
j---刚片数; b---杆件数; r ---支座链杆数。
算例
j=4
b=4 r=3
j=8
b=12
r=4
W=2×4-4-3=1
W=2×8-12-4=0
在运动中改变位置。
虚铰特例 2杆平行等长,刚片位置改变,链杆仍平行但改变方 向,虚铰转到另一无穷远点(常变体系)
2杆平行不等长,刚片位置改变,链杆不再平行, 虚铰转到有限远点(瞬变体系)
基本组成规则
基本规则的应用
利用组成规律可以两种方式构造一般的结构:
(1)从基础出发构造
(2)从内部刚片出发构造
2.5 机动分析
1,3
.
.1,2
2,3
.
.
无多余约束的几何不变体系
几何瞬变体系
1,2
. .
1,3 2,3
. 2,3
几何瞬变体系
1,2 1,3
F
D C E
F
D C B E
A
A
B
F
D
C A
E
D
E
C