气测录井基础知识
- 格式:doc
- 大小:33.50 KB
- 文档页数:3
常用录井方法简介录井即记录、录取钻井过程中的各种相关信息。
录井技术是油气勘探开发活动中最基本的技术,是发现、评估油气藏最及时、最直接的手段,具有获取地下信息及时、多样,分析解释快捷的特点。
初期录井服务包括深度测量、地质描述以及使用热导检测仪进行气测录井服务。
随着录井技术的发展,仪器的更新换代,计算机技术的应用,使得录井技术得到了迅速的发展,越来越多的高新技术及装备应用于录井,构成了现代录井技术。
在钻进过程中,随着泥浆一起被带至地面的地下岩石碎块叫做岩屑,俗称为砂样。
在钻进的过程中,按照一定的时间顺序。
取样间距以及迟到时间,将岩屑连续收集、观察并恢复井下剖面的过程即为岩屑录井。
通过岩屑录井可以掌握井下地层层序、岩性,初步了解钻遇地层的含油、气、水情况。
岩屑录井具有低成本、简便易行、及时了解井下地质情况、资料的系统性强等优点。
作好岩屑录井工作的几个基本条件:1、井深准确,即钻具丈量准确并且及时检查核对钻具长度;深度传感器正常工作。
2、迟到时间准确,即迟到时间准确,能够正确反映对应深度下的岩性,而且要牢牢掌握迟到时间的公式,理论计算法:t w=V/Q={π(D2-d2)/4Q}×H;需要掌握迟到时间的校对方法:(1)钻进接单根时,将电石指示剂从井口投入钻杆内,记下开泵时间;记录仪器检测到乙炔气体的时间,则可求得实际迟到时间。
(还有用玻璃纸、大米、碎砖头等食物投测);(2)利用钻时曲线校对迟到时间;大段泥岩中的砂岩夹层可以帮助我们判断迟到时间是否合适。
(反过来大段砂岩中的泥岩夹层同样适用)。
3、岩屑捞取准确;(1)捞取方法:采用垂直取样法取样,不允许只取上面或下面部分,取样后应将剩余部分清除干净;(2)定时、定点捞取;(3)为了保证岩屑资料的准确性,振动筛选用的筛布应比较合理,尤其在第三系疏松地层中要求使用的筛布不小于80目;(4)每次起钻前,应充分循环钻井液,保证取完井底的岩样;(5)下钻后在新钻岩屑返出井口之前,把振动筛清除干净。
油、气、水定层定性判别利用气测录井资料判断油、气、水层:一般而言,油气层在气测曲线的全烃含量和组分数值会出现异常显示,可根据气测曲线的全烃含量、峰形特征及组分情况判断油、气、水层。
油层具有全烃含量高,峰形宽且平缓及组分齐全等特征;气层具有全烃含量高,曲线呈尖峰状或箱状,组分主要为C1,C2以上重烃甚微且不全;含有溶解气的水层具有全烃含量低,曲线呈锯齿状,组分不全,主要为C1等特征;纯水层气测则无异常。
利用荧光录井判断油、气、水层利用发光明亮成都,发光颜色,含油显示面积、扩散产状、流动速度等荧光录井描述可定性对油、气、水层进行判别。
一般而言,油质越好颜色越亮,油质越差颜色越暗.轻质油荧光显示为蓝紫色、青蓝色、蓝色,正常原油荧光显示为黄橙、黄色、黄褐色,稠油荧光显示为棕色、深褐色、黑色。
扩散产状常见有晕状、放射状和溪流状,其中,晕状、放射状显示含油级别高,溪流状系那是含油级别低。
流动速度常见有快速、中速和慢速,其中,快速、中速显示含油级别高,慢速显示含油级别低。
含油显示面积大于60%显示含油级别高,30%~60%显示含油级别中等,小于30%显示含油级别低.利用岩屑录井判断油、气、水层:井底岩石别钻头破碎后,岩屑随钻井液返出井口,按规定的取样间隔和迟到时间,连续采集岩屑样品,济宁系统观察、分析、鉴定、描述和解释,并初步恢复地层剖面。
岩屑录井是地质录井的主要方法,根据岩屑录井描述可初步对储集层的含油、气、水情况作出判断.油、气、水层定量判别气测数据质量控制:T g=C1+2C2+3C3+4iC4+4nC4+5C5T g为全烃值,可以根据T g/(C1+2C2+3C3+4iC4+4nC4+5C5)比值对气测数据是否准确进行判断.如果该值为0。
8~2。
0,用气测数据定量判别油、气、水层效果较好,反之,判别结果与实际试油结论符合率较低,因此,当该比值为0.8~2。
0时,认为气测数据可比较真实地反映底层流体性质,可用气测数据结合一些优选的经验统计方法实现对油、气、水层较为准确的定量判别。
气测录井技术气测录井是直接测定钻井液中可燃气体含量的一种录井方法。
气测录井是在钻进过程中进行的,利用气测资料能及时发现油、气显示,并能预报井喷,在探井中广泛采用。
(一)气测录井的常见类型根据所用仪器不同,气测录井可分为两种,即半自动气测和色谱气测。
半自动气测是利用各种烃类气体的燃烧温度不同,将甲烷与重烃分开。
这种方法只能得到甲烷及重烃或全烃的含量。
色谱气测是利用色谱原理制成的分析仪器,它是一个连续进行、自动记录体系。
样品由进样口进入后被载气带进色谱柱进行分离,分离后各组分分别进入鉴定器,产生的信号在记录器上自动记录下来。
它可将天然气中各种组分(主要是甲烷至戊烷)分开,分析速度快,数据多而准确。
目前后者已基本取代半自动气测。
按气测录井方式可将气测录井分为两类,即随钻气测和循环气测。
随钻气测是在钻井过程中测定由于岩屑破碎进入钻井液中的气体含量和组分。
循环气测是在钻井液静止后再循环时,测定储集层在渗透和扩散的作用下进入钻井液中的气体含量和组分,故又称之为扩散气测。
(二)半自动气测资料解释由于半自动气测只提供了全烃和重烃的数据,因此只能定性的识别储层中流体性质。
主要根据油层气与气层气的不同特点,及烃类气体在石油中的溶解度不同进行解释。
1.区分油层和气层油层气体的重烃含量比气层高,而且包含了丙烷以上成分的烃类气体。
气层的重烃含量不仅低,而且重烃成分中只有乙烷、丙烷等成分,没有大分子的烃类气体。
所以油层在气测曲线上的反映是全烃和重烃曲线同时升高,两条曲线幅度差较小。
而气层在气测曲线上的反映是全烃曲线幅度很高、重烃曲线幅度很低,两条曲线间的幅度差很大。
2.分轻质油层和重质油层由于烃类气体在石油中的溶解度随基本上是随分子量的增大而增加的,所以在不同性质的油层中重烃的含量是不一样的。
轻质油的重烃含量要比重质油的重烃含量高。
因此,轻质油的油层气测异常明显的,而重质油的油层气测异常显示远不如轻质油的油层显示明显。
它们各自呈现完全不同的特征。
气测录井基础知识一、概念1)破碎岩石气在钻进的过程中,钻头机械的破碎岩石而释放到泥浆中的气体称为破碎气.破碎岩石的含气量的大小与许多因素有关,一般情况下,含油气多的地层往往有较多的显示,这是现场录井人员及时发现油气层的基础,有时在欠压实泥岩盖层的钻进中可能有较好的气显示。
如果泥浆压力大于地层孔隙压力,也可能没有明显的气显示。
2)压差气当井下地层孔隙压力大于井筒泥浆压力时,地层流体将按达西定律向井筒泥浆运移,由此产生的天然气成为压差气.压差气产生的原因又分下列四种情况。
(1)接单根气在接单根时的抽汲作用对井底压力降低,易形成压差气进入井筒,经过一个迟到时间就可以在录井仪器上检测到。
如果钻过不同岩性地层的大段井段,而没有接单根气显示,这属不正常现象。
(2)起下钻气——后效气起钻过程中,由于停泵、上提钻柱,必然会有泥浆静止或抽汲效应,这两个效应都会使井中泥浆压力下降,因而有利于压差气的产生。
在正常的起钻过程中,没有泥浆流出井口,因而也无从检测泥浆中的气体,停留在井筒内的气体要等到下钻后再次循环泥浆密度才能被检测到,这就是后效气。
(3)扩散气地层气可以以扩散方式进入井筒泥浆中,扩散气不受压力平衡状态影响,只与浓度有关,但扩散气的扩散过程较长,故在气显示上具有漫步性,这一特点使这种气显示与层位对应关系变得很模糊。
很少用来确定油气层层位,一般把它划入到背景气中.4)背景气在压力平衡条件下,钻头并未进入新的油气层,而是由于上部地层中一些气体浸入钻井液,使全烃曲线出现微量变化,称这段曲线的平均值为地层背景气,又称基值。
全烃—由全烃检测分析仪检测分析出循环钻井液中的所有烃类气体含量的总和.全量—--循环钻井液中所有气体含量的总和。
色谱组分-——-循环钻井液中所有烃类气体的各组分含量.非烃组分—--—主要指二氧化碳,氢气及惰性气体。
二、气测录井基础知识1、气测录井的作用.(1)气测录井--—气测录井就是利用气体检测系统或按一定周期检测分析通过钻井液脱气器从钻井液中脱离出的烃类气体含量的一种录井方法,它能及时发现油气显示、预报井涌、井喷、气侵,综合评价储集层。
气测录井技术(2012-03-0609:59:10)气测录井是直接测定钻井液中可燃气体含量的一种录井方法。
气测录井是在钻进过程中进行的,利用气测资料能及时发现油、气显示,并能预报井喷,在探井中广泛采用。
(一)气测录井的常见类型根据所用仪器不同,气测录井可分为两种,即半自动气测和色谱气测。
半自动气测是利用各种烃类气体的燃烧温度不同,将甲烷与重烃分开。
这种方法只能得到甲烷及重烃或全烃的含量。
色谱气测是利用色谱原理制成的分析仪器,它是一个连续进行、自动记录体系。
样品由进样口进入后被载气带进色谱柱进行分离,分离后各组分分别进入鉴定器,产生的信号在记录器上自动记录下来。
它可将天然气中各种组分(主要是甲烷至戊烷)分开,分析速度快,数据多而准确。
目前后者已基本取代半自动气测。
按气测录井方式可将气测录井分为两类,即随钻气测和循环气测。
随钻气测是在钻井过程中测定由于岩屑破碎进入钻井液中的气体含量和组分。
循环气测是在钻井液静止后再循环时,测定储集层在渗透和扩散的作用下进入钻井液中的气体含量和组分,故又称之为扩散气测。
(二)半自动气测资料解释由于半自动气测只提供了全烃和重烃的数据,因此只能定性的识别储层中流体性质。
主要根据油层气与气层气的不同特点,及烃类气体在石油中的溶解度不同进行解释。
1.区分油层和气层油层气体的重烃含量比气层高,而且包含了丙烷以上成分的烃类气体。
气层的重烃含量不仅低,而且重烃成分中只有乙烷、丙烷等成分,没有大分子的烃类气体。
所以油层在气测曲线上的反映是全烃和重烃曲线同时升高,两条曲线幅度差较小。
而气层在气测曲线上的反映是全烃曲线幅度很高、重烃曲线幅度很低,两条曲线间的幅度差很大。
2.分轻质油层和重质油层由于烃类气体在石油中的溶解度随基本上是随分子量的增大而增加的,所以在不同性质的油层中重烃的含量是不一样的。
轻质油的重烃含量要比重质油的重烃含量高。
因此,轻质油的油层气测异常明显的,而重质油的油层气测异常显示远不如轻质油的油层显示明显。
气测录井及其影响因素分析气测录井是一种用于测定地下油气储层气体性质和气候特征的技术,可以帮助工程师和地质学家进行地下油气资源储量评估和开发方案设计。
本文将对气测录井及其影响因素进行分析。
一、气测录井的原理气测录井是通过测量地下气体的物理和化学性质来获取气井和储层的相关信息。
主要包括测量气体的成分、压力、温度和流动性等参数。
气测录井采用的测量方法主要包括:1. 气体采样:通过在气井中采集气体样品,并进行实验室分析,以确定气体成分和含量。
2. 动态测量:在气井生产或注采作业期间,通过安装传感器或仪表,在实时监测气井中的参数变化,如气体流量、温度和压力等。
3. 静态测量:在气井停产期间,通过测量气井内气体的压力和温度等参数,来推断储层的物理性质和储量。
气测录井可以提供以下信息:1. 气体成分:通过测量气井中不同气体成分的含量,可以确定油气储层中的主要组分,如甲烷、乙烷、丙烷等。
2. 气体压力:测量气井中的气体压力可以判断储层中气体的运移能力和气井的产能。
3. 气体温度:测量气井中的气体温度变化可以推断储层的温度分布和热力学特性。
4. 气井产能:通过监测气井中的气体流量变化,可以评估气井的产能和产能衰减规律。
二、影响气测录井结果的因素气测录井结果受到多种因素的影响,下面将对其中几个主要因素进行分析。
1. 储层性质:储层的孔隙度、渗透率和孔隙结构等参数会直接影响气测录井结果。
孔隙度和渗透率高的储层通常具有较大的气体储量和产能。
2. 气体成分:不同的气井中气体成分的差异也会导致气测录井结果的不同。
不同成分的气体在储层中的分布和运移规律也有所差异,这对于油气资源的评估和开发方案的设计都有重要意义。
3. 管柱效应:在气测录井过程中,气体在井筒中的上升过程中会产生管柱效应,导致井筒中的气体压力和温度等参数的变化。
这些变化会对测量结果产生一定影响。
4. 测量错误:在气测录井中,由于测量设备或操作的误差,会产生一定的测量误差。
录井基本方法与技术详解用地球化学、地球物理、岩矿分析等方法,观察、收集、分析、记录钻井过程中的固体、液体、气体等返出物的信息,以此建立录井剖面,发现油气显示,评价油气层,并为钻井提供信息服务,这一过程称为录井。
录井包括常规录井,如岩屑录井、岩心录井、钻井工程参数录井、气测录井、萤光录井等,以及现代录井,如岩石热解地化录井、罐顶气轻烃分析录井、核磁共振分析录、离子色谱分析录井等。
录井的意义:一是获取井下地层、构造及流体等直接和间接信息,为认识油气藏及油气勘探开发决策提供依据。
二是提供钻井工程的信息,为提高钻井速度和保障钻井质量服务。
一、地质录井概述随钻记录地质资料的过程。
在钻井过程中,按顺序收集记录所钻经地层的岩性、物性、结构构造和含油气水情况等资料的工作。
直接录井:能直接观察来自地下地层的岩石和油气显示的录井,如岩心、岩屑等。
间接录井:用间接方法了解地下地层的岩石性质、油气显示的录井,如钻时、钻井液性能等。
记录的录井资料包含两部分:一是录井队自己采集的资料;自动采集数据:利用综合录井仪、气测录井仪、地质采集仪等记录的井深、钻时、气体等资料,人工或半自动采集数据:地层、岩性、含油、荧光等资料。
二是收集其他施工单位提供的资料。
如钻井、测井、试油等资料。
二、钻时录井1、概念:钻头钻进单位进尺所需的纯钻进时间。
单位:min/m,保留整数。
小于1分钟按1分钟计算。
连续测量、每米一点或特殊情况按需要加密。
2、要求:井深以钻具计算为准,单位为米(m),保留两位小数。
3、钻具管理:准确丈量钻具做到五清楚(钻具组合、钻具总长、方入、井深和下接单根)、两对口(钻井、录井)、一复查(全面复查钻具),单根允许误差±5mm,记录精确到0.01m;倒换钻具应记录清楚,严把倒换关确保井深准确无误。
4、井深校正:以钻具长度为基准及时校正仪器显示和记录的井深,每单根应校对井深,每次起下钻前后,应实测方入校对井深,录井深度误差应小于0.2m,不能有累计误差。
录井常用知识名词解释:1、迟到时间:岩屑从井底循环返到井口的时间。
2、下行时间:钻井液从井口循环到达井底的时间。
3、一周时间:钻井液从井口循环到达井底再返出到井口的时间.4、分离度:色谱柱分离烃组分的程度。
是检测色谱柱效能的重要参数。
录井规范要求色谱柱分离度要在0.5以上,实际使用中色谱柱分离度要在0.8以上才行。
分离度K=(C2峰高-C1回峰高)/C2峰高。
5、载气:携带样品气进入色谱柱的具有一定压力的气体,烃组分使用氢气做载气,非烃组分使用空气做载气。
6、保留时间:某一组分从阀体动作分析开始到出峰最大值所需要的时间。
7、ppm:浓度单位,表示百万分之一单位浓度。
1ppm=0.0001%;30ppm=0.003%;2000ppm=0.2%。
8、单根峰:在接单根过程中,由于停泵造成地层流体侵入钻井液中,再经过循环后这部分被气浸的钻井液返出到地面而测到的气测异常。
9、后效:在起下钻过程中,由于起钻的抽吸作用、钻井液静止时间较长,地层中的流体侵入到钻井液中,当下钻到底后再次开泵循环而出现的气测异常。
叙述题:1、全烃使用的鉴定器名称,烃组分使用的鉴定器名称,工作原理。
答:使用的都是氢火焰鉴定器,简写FID。
原理:当有机物随载气进入火焰燃烧,由于化学电离反应产生带电离子对.在电场作用下这些带电离子向两极定向运动,形成离子流。
通过微电流放大板放大,取出信号,进行记录,采集,处理,即可对有机物进行定性定量分析。
2、非烃组分使用的鉴定器名称,工作原理。
答:使用的是热导池鉴定器,简写TCD。
原理:在热导池中热敏元件的阻值变化用惠斯顿电桥原理进行测量.电桥四臂都由热敏元件组成,位于池体同一孔道中的R1,R3为测量臂,另一孔道中的R2,R4为参比臂.四个钨丝的阻值相同,以增加鉴定器的稳定性.由于组分的热导系数和纯载气的热导系数不同,有热传导带走的热量不同而引起热敏元件阻值的变化,使电桥失去平衡,产生不平衡电压输出信号.3、电动脱气器工作原理。
气测录井及其影响因素分析气测录井是指通过记录井中气体的成分、含量和分布情况来获取有关地下气体资源的信息的一种技术手段。
气测录井技术是一项应用于石油和天然气勘探开发领域的重要技术,它在勘探开发中发挥着不可替代的作用。
本文将探讨气测录井的原理、方法和影响因素,并分析其在石油和天然气勘探开发中的重要性。
一、气测录井原理和方法气测录井是利用装有气体探测传感器的录井仪器,记录井中气体的成分、含量和分布情况。
气测录井技术主要包括传感器的安装与操作、气体采样与分析、数据记录与处理等步骤。
传感器的安装位置通常选择在主气层、封盘层或含气气层附近的井段,通过传感器采集井内气体的相关数据。
随着录井仪器的下井和测井操作的进行,录井数据将会被实时记录,并通过数据处理系统进行处理和分析,最终得到有关地下气体资源的信息。
二、气测录井的影响因素气测录井的数据获取和解释受到多种因素的影响,其中包括地质构造、岩石性质、水文地质条件、录井仪器性能等。
这些因素对气测录井的准确性、可靠性和适用范围具有重要的影响。
地质构造是影响气测录井数据的重要因素之一。
地质构造的复杂性与多样性使得地下气体的储集和分布具有很大的差异性。
在构造复杂的地质区域,可能存在多个气体储集层和漏失层,导致录井数据的解释和预测更加困难。
而在构造简单的地质区域,地下气体的储集和分布往往更加规律和稳定,更有利于气测录井数据的准确性和可靠性。
岩石性质是影响气测录井数据的另一重要因素。
岩石的渗透性、孔隙度、孔隙连通性对地下气体的储集和分布具有重要的影响。
直接影响井中气体的释放和分布情况,从而影响气测录井数据的获取和解释。
三、气测录井在石油和天然气勘探开发中的重要性气测录井技术是现代石油和天然气勘探开发中不可或缺的重要技术手段。
它在地下气体资源勘探和开发中具有重要的应用价值。
气测录井技术可以提供有关地下气体的储集和分布情况的信息。
通过对井内气体成分和含量的分析,可以获取有关地下气体资源的主要信息,包括气体类型、气体储集层和漏失层、气体储量和产能等。
名词解释:1、迟到时间:岩屑从井底循环返到井口的时间。
2、下行时间:钻井液从井口循环到达井底的时间。
3、一周时间:钻井液从井口循环到达井底再返出到井口的时间.4、分离度:色谱柱分离烃组分的程度。
是检测色谱柱效能的重要参数。
录井规范要求色谱柱分离度要在0.5以上,实际使用中色谱柱分离度要在0.8以上才行。
分离度K=(C2峰高-C1回峰高)/C2峰高。
5、载气:携带样品气进入色谱柱的具有一定压力的气体,烃组分使用氢气做载气,非烃组分使用空气做载气。
6、保留时间:某一组分从阀体动作分析开始到出峰最大值所需要的时间。
7、ppm:浓度单位,表示百万分之一单位浓度。
1ppm=0.0001%;30ppm=0.003%;2000ppm=0.2%。
8、单根峰:在接单根过程中,由于停泵造成地层流体侵入钻井液中,再经过循环后这部分被气浸的钻井液返出到地面而测到的气测异常。
9、后效:在起下钻过程中,由于起钻的抽吸作用、钻井液静止时间较长,地层中的流体侵入到钻井液中,当下钻到底后再次开泵循环而出现的气测异常。
叙述题:1、全烃使用的鉴定器名称,烃组分使用的鉴定器名称,工作原理。
答:使用的都是氢火焰鉴定器,简写FID。
原理:当有机物随载气进入火焰燃烧,由于化学电离反应产生带电离子对.在电场作用下这些带电离子向两极定向运动,形成离子流。
通过微电流放大板放大,取出信号,进行记录,采集,处理,即可对有机物进行定性定量分析。
2、非烃组分使用的鉴定器名称,工作原理。
答:使用的是热导池鉴定器,简写TCD。
原理:在热导池中热敏元件的阻值变化用惠斯顿电桥原理进行测量.电桥四臂都由热敏元件组成,位于池体同一孔道中的R1,R3为测量臂,另一孔道中的R2,R4为参比臂.四个钨丝的阻值相同,以增加鉴定器的稳定性.由于组分的热导系数和纯载气的热导系数不同,有热传导带走的热量不同而引起热敏元件阻值的变化,使电桥失去平衡,产生不平衡电压输出信号.3、电动脱气器工作原理。
气测录井基础知识
一、概念
1)破碎岩石气
在钻进的过程中,钻头机械的破碎岩石而释放到泥浆中的气体称为破碎气。
破碎岩石的含气量的大小与许多因素有关,一般情况下,含油气多的地层往往有较多的显示,这是现场录井人员及时发现油气层的基础,有时在欠压实泥岩盖层的钻进中可能有较好的气显示。
如果泥浆压力大于地层孔隙压力,也可能没有明显的气显示。
2)压差气
当井下地层孔隙压力大于井筒泥浆压力时,地层流体将按达西定律向井筒泥浆运移,由此产生的天然气成为压差气。
压差气产生的原因又分下列四种情况。
(1)接单根气
在接单根时的抽汲作用对井底压力降低,易形成压差气进入井筒,经过一个迟到时间就可以在录井仪器上检测到。
如果钻过不同岩性地层的大段井段,而没有接单根气显示,这属不正常现象。
(2)起下钻气——后效气
起钻过程中,由于停泵、上提钻柱,必然会有泥浆静止或抽汲效应,这两个效应都会使井中泥浆压力下降,因而有利于压差气的产生。
在正常的起钻过程中,没有泥浆流出井口,因而也无从检测泥浆中的气体,停留在井筒内的气体要等到下钻后再次循环泥浆密度才能被检测到,这就是后效气。
(3)扩散气
地层气可以以扩散方式进入井筒泥浆中,扩散气不受压力平衡状态影响,只与浓度有关,但扩散气的扩散过程较长,故在气显示上具有漫步性,这一特点使这种气显示与层位对应关系变得很模糊。
很少用来确定油气层层位,一般把它划入到背景气中。
4)背景气
在压力平衡条件下,钻头并未进入新的油气层,而是由于上部地层中一些气体浸入钻井液,使全烃曲线出现微量变化,称这段曲线的平均值为地层背景气,又称基值。
全烃—由全烃检测分析仪检测分析出循环钻井液中的所有烃类气体含量的总和。
全量---循环钻井液中所有气体含量的总和。
色谱组分----循环钻井液中所有烃类气体的各组分含量。
非烃组分----主要指二氧化碳,氢气及惰性气体。
二、气测录井基础知识
1、气测录井的作用。
(1)气测录井---气测录井就是利用气体检测系统或按一定周期检测分析通过钻井液脱气器从钻井液中脱离出的烃类气体含量的一种录井方法,它能及时发现油气显示、预报井涌、井喷、气侵,综合评价储集层。
(2)气测录井的实质---通过分析钻井过程中进入钻井液中的可燃气体的组分及其含量,分析判断有无工业价值的油气层,也就是说通过分析钻井液中气体的含量,可以直接测量地层中的石油、天然气的含量及其组成。
2、气测录井的分类
(1)简易气测。
仅测量全烃,分析甲烷、重烃和非烃。
(2)色谱分析。
指全套气测,即测量全烃及组分甲烷、乙烷、丙烷、异丁烷、正丁烷和氢气、二氧化碳。
(3)定量分析。
测量项目同于色谱分析,与真空蒸馏相结合,可求出钻井液含气饱和度以及呈溶解状态的甲烷、乙烷、丙烷、异丁烷、正丁烷和氢气、二氧化碳。
3、色谱分析
(1)色谱分析。
样品进入色谱柱后各组分逐步分离的过程称为色谱分析。
(2)色谱分类。
A气相色谱:用气体作为流动相的色谱分析方法。
B液相色谱:用液体作为流动相的色谱分析方法。
(3)气相色谱分析原理。
当载气携带着样品进入色谱柱后,色谱柱中的固定相就会将样品气中的各组分分离开,色谱柱的固定相可以是液体也可以是固体,若为液体时为气液色谱,为固体时为气固色谱。
A气液分配色谱分析原理:在一定温度下,样品中的各组分在固定液中的溶解程度是不同的,也就是溶解系数K的大小不同,从而把烃类分离开来。
当样品气随载气进入装有固定液的色谱柱时,混合气中各组分都可溶解在固定液中,当载气不断通过色谱柱时,组分就随载气向前移动,经过多次溶解与挥发,K值小的组分向前移动的快,首先流出色谱柱,K值大的组分向前移动得较慢,后流出色谱柱从而达到分离各组分的目的。
B气固吸附色谱分析原理:利用吸附剂对被分离物质的吸附能力不同而将各组分分离的。
当被分离的气体混合物随载气通过装有固定相的色谱柱时,混合物中的各组分都可被吸附剂吸附,但由于吸附剂对各组分的吸附能力不同,吸附能力弱的组分容易从固体表面解吸出来,而吸附能力较强的组分不易解吸;当载气不断通过色谱柱进行洗脱时,吸附能力弱的的组分随载气向前移动的较快,而吸附能力较强的组分随载气向前移动的较慢;混合物进行不断地吸附和解吸,当色谱柱足够长时,各组分就被分离开,且随载气依次流出色谱柱。
三、气测资料的定性解释程序
1、分层
(1)确定储集层
(2)确定储集层的气测异常段。
根据全烃曲线、色谱曲线,划分出储集层的气测异常段。
一般全烃含量大于0.5%或高于基值2倍以上的井段均视作异常段。
全烃曲线的异常可能超前或滞后储集层,造成这种现象的主要原因可能是钻井液性能、地层压力、后效、和迟到时间计算误差引起的,应进行综合分析。
(3)划出非储集层异常段。
在不具备储集条件的地层,如泥质岩生油层系同样也会产生异常,对这类异常也许划分出来,以便区分是否产生异常。
2、取值异常值的高低是判断油气层的依据,正确取值是解释过程中的一个重要环节。
对于单层,全烃取异常段的最大值,而组分取全烃最大值的对应值;对于复合层,如油水同层,则按上油层,下水层,两个单层分别取值,取值方法同单层。
3、复算。
对于储集层要计算烃组成、地层含气量、含气饱和度以及地层压力梯度等物理量,用来估价储集层
4、经验定性解释
一般情况下油层异常幅值为基值的3-5倍,而气层则在6倍以上。
现场发现气测异常等于或大于上述幅度时可初步判为油气层。
但由于多因素的影响,油气层的异常幅度与常规不一致。
影响油气层异常幅度的因素很多,如油气比、井筒钻井液压力与地层压力的差值、上部油气层的后效、脱气器脱气功率、仪器的性能程度等。
现场多采用类比法,即收集本区邻井已有试油结论的气测解释资料,结合本井气测异常和构造情况,进行定性解释。
通常相同层位的油气比大体相当,与邻井气测异常幅度具较好的可比性。
一般油气水层的特征如下:油层:全烃含量高,峰宽且平缓,幅度比值较大,组分齐全,重烃含量较高,钻时低,后效反应明显,有时有反吹峰。
气测:全烃含量高,曲线呈尖峰状,幅度比值大,组分以甲烷为主,其次为乙烷,其它组分无或者微量,无反吹峰,钻时低,后效反应明显。
水层:不含溶解气的纯水层无气层异常,含有溶解气的水层一般全量值较低,组份不全,主要为甲烷,非烃组分较高,无后效反应或反应不明显。
5、图样分析
在数据处理的基础上,进行钻速指数图解、烃组成图解、烃含量图解、用以确定储集层,判断流体性质,预测储集层含气饱和度。
6、进行综合解释
在综合分析的基础上,作出评价油气水层的解释结论,为确定试油层位提供依据。