小学奥数之包含与排除(一)
- 格式:doc
- 大小:140.00 KB
- 文档页数:4
和倍问题基本公式和÷(倍数和)=1倍数1倍数⨯倍数=几倍数例1 某校四年级选出48人到区里参加珠算竞赛,其中女同学是男同学的2倍,问:这个学校参加珠算竞赛的男、女生各多少人?练1 五年级学生参加文艺小组和科技小组的共有108人,参加文艺小组的人数是参加科技小组人数的2倍,参加两个小组的各有多少人?练2 师徒二人共加工零件42件,师傅加工数是徒弟的5倍,师徒各加工多少件?例2 小明买了14张画片,小刚买了10张画片,小明送给小刚几张后,小刚的画片张数是小明的3倍?练1 甲、乙两个数之和为72,甲数除乙数商是2,甲、乙两个数各是多少?练2 父子年龄的和是50岁,再过5年父亲的年龄是儿子的4倍,父子现在的年龄各是多少岁?例3 甲、乙二人共有钱810元,甲比乙的3倍还多10元,甲、乙二人各有钱多少元?练1 两个数的和是29,大数除以小数商是4,余数也是4,两个数各是多少?练2 一个除法算式,商是18,余数是4,被除数与除数的和是270,问:除数、被除数各是多少?例4 两个整数相除得商数是12,余数是26,被除数、除数、商数及余数的和等于454。
除数是多少?被除数是多少?练1 被除数比除数的3倍多1,并且被除数、除数、商、余数的和是81,求被除数、除数各是多少?练2 某公社有两个仓库共存粮84吨,已知甲仓库存粮比乙仓库的4倍少1吨,甲、乙两仓库各存粮多少吨?练3 甲站有车192辆,乙站有车48辆,每日从甲站开往乙站的有21辆,从乙站开往甲站的有24辆。
问:如此经过几天后,甲站车辆是乙站车辆的7倍?例5 白、红、黄三种棋子共56颗,白棋子是红棋子的2倍,红棋子是黄棋子的2倍,三种棋子各是多少颗?练1 红、黄、白三种棋子共48颗,红的是黄的3倍,白的是黄的2倍,三种棋子各是多少颗?练2 三个生产队合挖一条长1902米的水渠,第一队挖的是第二队的2倍,第三队挖的是第二队的3倍,三个队各挖了多少米?例6 甲、乙、丙三个数,甲数是乙数的2倍多100,乙数是丙数的2倍多50,已知三个数的和是950,三个数各是多少?练1 胜利化肥厂3天共生产2540袋,第二天生产的比第一天生产的2倍少60袋,第三天生产的比第一天生产的3倍少100袋,三天各生产了多少袋?练2 甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的2倍小2岁,三个人年龄之和是109岁,分别求出三个人的年龄。
三年级奥数基础教程-包含与排除_小学包含与排除同学们对这个题目可能很陌生,为了搞清楚什么是“包含与排除”,大家先一起回答两个问题:(1) 两个面积都是4厘米2的正方形摆在桌面上(见左下图),它们遮盖住桌面的面积是8厘米2吗?(2)一个正方形每条边上有6个点(见右上图),四条边上一共有24个点吗?聪明的同学马上就会发现:(1)两个正方形的面积和是8厘米2,现在它们有一部分重叠了。
因此盖住桌面的面积应当从两个正方形的面积和中减去重叠的这部分面积,所以盖住桌面的面积应少于8厘米2。
(2)四个角上的点每个点都在两条边上,因此被重复计算了,在求四条边上共有多少点时,应当减去重复计算的点,所以共有 6×4-4= 20(个)点。
这两个问题,在计算时,都采用了“去掉”重复的数值(面积或个数)的方法。
一般地,若已知A,B,C三部分的数量(见右图),其中C为A,B的重复部分,则图中的数量就等于A+ B- C。
因为A,B有互相包含(重复)的部分C,所以,在求A和B合在一起的数量时,就要在A+B中减去A和B互相包含的部分C。
这种方法称为包含排除法。
实际上,我们前面已经遇到过包含与排除的问题。
如,第10讲“植树问题”的例3和例4,只不过那时我们没有明确提出“包含排除法”。
例1 把长38厘米和53厘米的两根铁条焊接成一根铁条。
已知焊接部分长4厘米,焊接后这根铁条有多长?解:因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长38+ 53- 4= 87(厘米)。
例2某小学三年级四班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加。
这个班有多少人参加了语文或数学兴趣小组?分析与解:如上页左下图所示,A圆表示参加语文兴趣小组的人,B圆表示参加数学兴趣小组的人,A与B重合的部分(阴影部分)表示同时参加两个小组的人。
图中A圆不含阴影的部分表示只参加语文兴趣小组未参加数学兴趣小组的人,有28-12=16(人);图中B圆不含阴影的部分表示只参加数学兴趣小组未参加语文兴趣小组的人,有29-12=17(人)(见上页右下图)。
包含与排除(一)包含与排除问题也叫容斥原理。
“容”是容纳、包含的意思,“斥”是排斥、排除的意思,从题目名称上看,比较抽象,下面我们结合具体实例来说明这种问题的思考方法。
【典型例题】例1:如下图,桌面上放着两个正方形,求盖住桌面的面积。
(单位:厘米)752分析与解:这是一个组合图形,是由两个正方形组成的,中间重合部分是一个长方形,要想求出盖住桌面的面积,可以有三种不同方法:方法一:75256422+-⨯=(平方厘米)方法二:72556422-⨯+=(平方厘米)方法三:52576422-⨯+=(平方厘米)答:盖住桌面的面积是64平方厘米。
例2:四(1)班同学中有37人喜欢打乒乓球,26人喜欢打羽毛球,21人既爱打乒乓球又爱打羽毛球。
问全班喜欢打乒乓球或羽毛球活动的有多少人?分析与解:根据题意可画图如下乒羽37 21 26?人此类问题画集合图比画线段图更直观,更形象一些。
方法一:37 + 26—21 = 42(人)方法二:37—21 + 26 = 42(人)方法三:37 +(26—21)= 42(人)以上三种方法是紧密联系的,都是要从中减去重叠部分,可以从其中一部分中减去,再与另一部分合并,也可以从两部分之和中减去重叠部分。
三种方法比较,你喜欢哪一种解法呢?我们根据以上两个例题可以得出这样的数量关系:第一部分+ 第二部分—重叠部分= 两部分之和例3:四年级一班在期末考试中,语文得“优”的有15人,数学得“优”的有17人,老师请得“优”的同学都站起来,数了数有24人。
两科都得“优”的有几人?分析与解:根据“第一部分+ 第二部分—重叠部分= 两部分之和”可以求出两科都得“优”的人数。
15 + 17—24 = 8(人)另外,从下图中我们还能得出两种不同方法语文数学15人?人17人24人方法二:17—(24—15)= 8(人)15—(24—17)= 8(人)答:两科都得优的有8人。
例4:图新小学四年级二班有24人参加了美术小组,有18人参加了音乐小组,其中11人两个小组都参加,还有5人什么组都没参加。
在小学五年级的奥数中,速算与技巧是很重要的一部分。
通过掌握一些速算技巧,孩子们能够更加高效地解决数学问题,提高计算速度。
首先,我要介绍的是加法的速算技巧。
当我们进行两个两位数相加的时候,可以通过分解其中一个数来简化计算。
例如,73+57,我们可以将57分解成50和7,然后将50加到73上得到123,最后再加7,结果是130。
这样的速算技巧可以节省计算的步骤,提高计算的效率。
接下来是减法的速算技巧。
当我们进行两个两位数相减的时候,也可以通过借位来简化计算。
例如,68-27,我们可以先将27变成30然后减去68,得到2、这样比一步一步借位计算要快。
此外,还有一种减法口诀,借十退一,借百退十,可以帮助孩子们更快地进行减法运算。
除了加法和减法的速算技巧,还有一些其他的技巧也很有用。
例如,乘法的速算技巧。
当我们进行两个两位数相乘的时候,可以通过交叉相乘再相加的方法来简化计算。
例如,36乘以48,我们可以先将6和48相乘得到288,然后将3和48再相乘得到144,最后将这两个结果相加得到432、这个方法虽然需要一些计算,但是相比于一位一位相乘的方法要快速一些。
另外,对于除法,我们也可以通过一些技巧来简化计算。
例如,除以5的倍数的时候,我们可以将被除数的末尾一位数去掉,然后再除以5、例如,45除以5,我们可以先去掉5的倍数的末尾一位得到4,然后再将4除以5,结果是0.8、这样的计算方法可以减少计算的步骤。
除了速算技巧外,包含与排除也是很重要的思维方法。
在解决一些问题的时候,我们可以通过包含与排除的思维来缩小范围,找到正确的答案。
例如,解决一个数的问题的时候,我们可以从最小的可能性开始尝试,逐渐增加,不断排除不符合条件的数,最终找到符合条件的数。
这样的思维方法可以帮助孩子们更加有条理地解决问题。
总之,在小学五年级的奥数中,速算与技巧以及包含与排除是很重要的内容。
通过掌握一些速算技巧,孩子们可以更加高效地计算,提高解决问题的能力。
华杯赛计数专题:4包含与排除基础知识:1.包含与排除的思想,是为了解决计数分类的过程中,出现重复计数的情况.2.基本的想法:减去重复计算的,多算了几次,就减几次,常用工具文氏图.3.两个对象及三个对象的容斥原理,利用文氏图帮助理解.4.容斥原理中的最值问题,可以利用线段图.引子:从7本不同的数学书和8本不同的语文书中,选出6本书,不能全是同一种的书,那么有多少种不同的选法?用前面学的知识能解决吗?还有别的方法吗?总结:当正面计数比较繁琐、困难时,可以从反面考虑,即从总的数量减去不符合要求的数量.例1.学生要从八门课中选学三门,如果数学课与钢琴课时间冲突,不能同时学,那么共有几种选课的方法?【答案】50(种)【解答】所有的选课方法一共有种,数学课和钢琴课都选学的方法有种,其中代表数学课和钢琴课都选学,其中代表从剩余的课程中再选学1门.所以符合题意的选课方法一共有种.例2.从4台不同型号的TCL电视机和5台不同型号的Haier电视机中任意取出3台,其中至少要有TCL与Haier电视机各1台,不同的取法共有多少种?【答案】70(种)【解答】9台不同的电视,随意选取3台,一共有种方法.其中包括只选取Haier的方法一共种,还包括只选取TCL的方法一共种.所以符合题意的方法一共有84-10-4=70种.例3.7个同学站成一排,要求其中的甲不排头,乙不排尾,有多少种排法?思考:答案是吗?为什么【答案】3720(种)【解答】7个同学随意排列,共有种排法,若甲排在头,则剩下的6个同学全排列,一共有种排法,同理,若乙排在尾,一共有种排法,若同时满足甲在排头、乙在排尾,共有种排法,根据容斥原理,符合题意的排法共有种.例4.板报组有10名同学,每个人至少擅长绘画或写文章中的一种,已知其中7个人擅长绘画,5个人擅长写文章,要从中选出两个人担任组长,要求其中既有擅长绘画的也有擅长写文章的,那么有多少种选组长的方法?如果要从中选出两名同学去参赛,分别参加绘画比赛和作文比赛,那么有多少种参赛方法?【答案】32(种)【解答】因为10名同学中7个人擅长绘画,5个人擅长写文章,所以既擅长绘画又擅长写文章的有5+7-10=2个人,所以只擅长绘画的有5个人,只擅长写文章的有3个人, 选组长可以分为三类:第一类:先从擅长绘画的人中选1个,再从剩下的人中选1个,共有5×5=25种选法;第二类:从既擅长绘画又擅长写文章的2个人选1个,再从擅长写文章的3个人中选1个,共有2×3=6种选法;第三类:选2个既擅长绘画又擅长写文章的,共有1种选法;综合共有25+6++1=32种.例5.一次考试共有A、B、C三道题,一共有100个人参加了这次考试.其中,答对A 题的有50人,答对B题的有60人,答对C题的有20人.已知答对C题的人在A、B两道题中至少还答对了一道题,且只答对A题的有24人,只答对A题和B题的有10人,还有10个人A、B均未答对.那么有________个人只答对了B题.【答案】36(人)【解答】因为100人中有10人A、B两题均未答对,所以有90人至少答对A,B中的一道.又因为50人答对A题,60人答对B题,所以至少答对A、B两题的有50+60-90=20人.即答对AB两题或答对ABC三题的人合起来有20个.而只答对AB两题的人有10个,所以ABC三个题全答对的人有20-10=10个.由于有24人只答对A题,所以还有50-24=26人答对A题和至少另外一道题.这26人答对的题目只有3种可能:AB、AC和ABC.由上面的结论知只答对AC两题的应该有26-20=6个人.由于答对C的人在A、B两题中至少答对一道,所以答对C的20个人答对的题目也只有三种可能:AC、BC和ABC.那么只答对BC两题的有20-6-10=4人.现在已知答对AB两题的有10人,答对BC两题的有4人,答对ABC的有10人,而至少答对B一个题目的一共有60人,所以只答对B一个题的有60-10-4-10=36人.例6.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有种.【答案】14(种)【解答】6个人中选4个,共有种选法,选4个男生,共有种选法,所以符合题意的选法共有种.例7.从6双手套中取出4只,则至少取出一双的方法有种.【答案】255(只)【解答】有6双手套,即12只,从12只中任选4只,共有种,若选出的4只均不同双,则分步进行,第一步,从6双中选出4双,共有种;第二步,在选出的4双中分别选出左手或右手,共有,根据乘法原理:若选出的4只均不同双的选法共有种,所以符合题意的选法共有种.例8.在4×4的方格表里写上两个A和两个B(每个方格里至多写一个字母),那么相同字母既不同行也不同列的写法有多少种?【答案】3960(种)【解答】写入两个A既不同行也不同列的写法共有种,同理写入两个B既不同行也不同列的写法共有种,依次写入A、B,共有种写法.若A、B写入同一个方格中,可以分为两类考虑,第一类:A、B有两个格子均重合,共有72种写法;第二类,A、B中有一个格子重合,共有种写法;所以若A、B写入同一个方格中共有种写法,综上符合题意的共有种写法。
五年级奥数-包含与排除1.某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。
那么有多少人两个小组都不参加?2.50名同学面向老师站成一行,老师先让大家从左至右按1,2,3, (49)50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。
问:现在面向老师的同学还有多少名?3.在从1至100的自然数中,既不能被5除尽也不能被7除尽的数有多少个?4.在前1000个自然数(不包括0)中,既不是平方数也不是立方数的自然数有多少个?5.有三个面积各为20平方厘米的圆纸片放在桌上,见下图。
三个纸片共同重叠的面积是8平方厘米,三个纸片盖住桌面的总面积是36平方厘米。
问:图中阴影部分的面积之和是多少?五年级奥数-包含与排除答案1.解析:40=--人。
(+)171015182.解析:面向老师的学生包括报数既不是4的倍数也不是6的倍数、报数既是4的倍数也是6的倍数即12的倍数的同学,共计38+[=-+50-人。
)]44812(3.解析:1000=(-+-个。
142686200)284.解析:前1000个自然数中,平方数有:1,4,9,16,25,36, (900)961,共计31个;立方数有1,8,27,64,125,216,343,521,729,1000,共计10个;既是平方数又是立方数的有1,64,729,共计3个。
所以既不是平方数也不是立方数的有9621000=+-个。
-)3(10315.解析:2⨯-=-⨯。
88236320cm。
五年级奥数:包含与排除五年级奥数:包含与排除1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。
那么有多少人两个小组都不参加?解:两个小组共有(15+18)-10=23(人),都不参加的有40-23=17(人)答:有17人两个小组都不参加。
解:45-29-10+3=9(人)答:语文成绩得满分的有9人。
解:4的倍数有50/4商12个,6的倍数有50/6商8个,既是4又是6的倍数有50/12商4个。
4的倍数向后转人数=12,6的倍数向后转共8人,其中4人向后,4人从后转回。
面向老师的人数=50-12=38(人)答:现在面向老师的同学还有38名。
解:2的倍数有100/2商50个,3的倍数有100/3商33个,2和3人倍数有100/6商16个。
领2支的共准备(50-16)*2=68,领3支的共准备(33-16)*3=51,重复领的共准备16*(2+3)=80,其余准备100-(50+33-16)*1=33共需要68+51+80+33=232(支)答:游艺会为该项活动准备的奖品铅笔共有232支。
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。
问绳子共被剪成了多少段?解:3厘米的记号:180/3=60,最后到头了不划,60-1=59个4厘米记号:180/4=45,45-1=44个,重复的记号:180/12=15,15-1=14个,所以绳子中间实际有记号59+44-14=89个。
剪89次,变成89+1=90段答:绳子共被剪成了90段。
解:1,2,3,4,5年级共有16,1,2,3,4,6年级共有15,5,6年级共有25所以总共有(16+15+25)/2=28(幅),1,2,3,4年级共有28-25=3(幅)答:其他年级的画共有3幅。
7、有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占2/3,标有4的倍数的卡片占3/4,标有12的倍数的卡片有15张。
“包含与排除” 学生姓名授课日期 教师姓名授课时长包含与排除是小学奥数中一个非常重要的知识点,很多杯赛和小升初选拔考试中都会有相关考察内容,是考察学生逻辑思维能力,以及理解利用新知识的一个非常重要的方面,其中容斥原理更是最关键的点,而且与数论和几何的综合性题目是历年考察的重点。
一、容斥原理公式1、若已知A 、B 、C 三部分的数量(如图),其中C 为重复部分,则图中的数量等于A+B-C. 即:A ∪B=A+B- A ∩B ,其中A ∩B=C.2、若已知A 、B 、C 三部分的数量(如图), 则图中的数量等于A+B+C-(A 与B 重叠部分+ B 与C 重叠部分+ C 与A 重叠部分)+A 、B 、C 三者重叠的部分.即:A ∪B ∪C=A+B+C-(A ∩B+B ∩C+C ∩A )+ A ∩B ∩C.以上概念中符号解释:“∪”表示并集,“A ∪B ”表示A 并B ,通俗的讲表示所有或属于A 、或属于B 的元素的数量(集合),“A ∪B ∪C ” 通俗的讲表示所有或属于A 、或属于B 、或属于C 的元素数量.“∩”表示交集,“A ∪B ”表示A 交B ,通俗的讲表示所有即属于A 、又属于B 的元素的数量(集合),“A ∩B ∩C ”通俗的讲表示所有即属于A ,又属于B ,还属于C 的元素数量C B A C B A【试题来源】【题目】某小学三年级四班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加。
这个班有多少人参加了语文或数学兴趣小组?【试题来源】【题目】在桌面上放置着三个两两重叠的圆纸片(如图,三个圆等大),它们的面积都是100cm2,并知A、B两圆重叠的面积是20cm2,A、C两圆重叠的面积为45cm2,B、C两圆重叠的面积为31cm2,三个圆共同重叠的面积为15cm2,求盖住桌子的总面积。
【试题来源】【题目】东方大学有外语老师120名,其中教英语的有50名,教日语的45名,教法语的有40名,有15名教师既教英语又教日语,有10名教师既教英语又教法语,有8名教师既教日语又教法语,有4名教师会教英语、日语和法语三门课,求不教这三门课的外教有多少名?【试题来源】【题目】五年级三班有46名学生参加三项课外活动,其中24人参加了绘画小组,20人参加了合唱小组,参加朗诵小组的人数是既参加绘画小组又参加朗诵小组人数的3.5倍,又是三项活动都参加人数的7倍,既参加朗诵小组又参加合唱小组的人数相当于三项都参加人数的2倍,既参加绘画小组又参加合唱小组的有10人,求参加朗诵小组的人数。
包含与排除(一)包含与排除问题也叫容斥原理。
“容”是容纳、包含的意思,“斥”是排斥、排除的意思,从题目名称上看,比较抽象,下面我们结合具体实例来说明这种问题的思考方法。
【典型例题】例1:如下图,桌面上放着两个正方形,求盖住桌面的面积。
(单位:厘米)分析与解:这是一个组合图形,是由两个正方形组成的,中间重合部分是一个长方形,要想求出盖住桌面的面积,可以有三种不同方法:方法一:方法二:方法三:答:盖住桌面的面积是64平方厘米。
例2:四(1)班同学中有37人喜欢打乒乓球,26人喜欢打羽毛球,21人既爱打乒乓球又爱打羽毛球。
问全班喜欢打乒乓球或羽毛球活动的有多少人?分析与解:根据题意可画图如下此类问题画集合图比画线段图更直观,更形象一些。
方法一:37 + 26—21 = 42(人)方法二:37—21 + 26 = 42(人)方法三:37 +(26—21)= 42(人)以上三种方法是紧密联系的,都是要从中减去重叠部分,可以从其中一部分中减去,再与另一部分合并,也可以从两部分之和中减去重叠部分。
三种方法比较,你喜欢哪一种解法呢?我们根据以上两个例题可以得出这样的数量关系:第一部分 + 第二部分—重叠部分 = 两部分之和例3:四年级一班在期末考试中,语文得“优”的有15人,数学得“优”的有17人,老师请得“优”的同学都站起来,数了数有24人。
两科都得“优”的有几人?分析与解:根据“第一部分 + 第二部分—重叠部分 = 两部分之和”可以求出两科都得“优”的人数。
15 + 17—24 = 8(人)另外,从下图中我们还能得出两种不同方法方法二:17—(24—15)= 8(人)15—(24—17)= 8(人)答:两科都得优的有8人。
例4:图新小学四年级二班有24人参加了美术小组,有18人参加了音乐小组,其中11人两个小组都参加,还有5人什么组都没参加。
这个班共有学生多少人?分析与解:这个题与例2相比,多了一个已知条件,那就是“有5个人什么组都没参加”。
六年级奥数—包含与排除(含答案)A卷1.有长8厘米,宽6厘米的长方形与边长为5厘米的正方形,如图10-1,放在桌面上(阴影是图形的重叠部分),那么这两个图形盖住桌面的面积是平分厘米。
2.一个班有45个小学生,统计借课外书的情况是:全班学生都有借语文或数学课外书,借语文课外书的有39人,借数学课外书的有32人,语文、数学两种课外书都借的有人。
3.某班有30名男生,其中20人参加足球队,12人参加篮球队,10人参加排球队,已知没有一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加篮球队,有2人既参加篮球队又参加排球队,那么既参加足球队又参加排球队的有人。
4.在100个学生中,音乐爱好者有56人,体育爱好者有75人,那么既爱好音乐又爱好体育的人最少人,最多有人。
5.某校有500名学生报名参加学科竞赛,数学竞赛参加者共312名,作文竞赛参加者共353名,其中这两科都参加的有292名,那么这两科都没有参加的人数为人。
6.全班有48人,每人至少订有一份《小学生报》或一份《少年先锋报》。
张老师在统计订报纸人数的时候,发现有38人订了《小学生报》,42人订了《少年先锋队》。
请你算一算,有同学订了两种报纸。
7.文凤小学五年级(1)班的同学都到学校图书馆借科技书和故事书,有45人借了科技书,35人借了故事书,30人既借了科技书,又借了故事书,这个班共有名学生。
8.有两个正方形,一个边长是4厘米,一个边长是6厘米。
把他们按如图10-2放置。
中间重叠的部分是一个边长为2厘米的小正方形。
被这两个正方形盖住的面积是。
9.在1~100中,是2或3的倍数的整数一共有个。
10.五年级(1)班有46人,其中有12人没有参加语文竞赛和数学竞赛。
参加语文竞赛的有20人,参加数学竞赛的有18人,既参加语文竞赛又参加数学竞赛的有人。
B卷1.在一次运动会中,甲班参加田赛的有15人,参加径赛的有12人,既参加田赛又参加径赛的有7人,没有参加比赛的有21人,那么甲班共有人。
小学五年级奥数题——速算与巧算在平常生活和解答数学识题时,常常要进行计算,在数学课里我们学习了一些简易计算的方法 ,但假如擅长察看、勤于思虑 ,计算中还可以找到更多的奇妙的计算方法 ,不单使你能算得好、算得快 ,还可以够让你变得聪慧和机警 .例 1:计算: 9.996+ 29.98+ 169.9+ 3999.5算式中的加法看来没法用数学课中学过的简算方法计算,可是 ,这几个数每个数只需增加一点 ,就成为某个整十、整百或整千数,把这几个数“凑整”此后,就简单计算了.自然要记住 ,“凑整”时增添了多少要减回去.9.996+ 29.98+ 169.9+ 3999.5=10+ 30+ 170+ 4000-( 0.004+ 0.02+ 0.1+ 0.5)=4210- 0.624=4209.376例 2:计算: 1+ 0.99- 0.98- 0.97+ 0.96+ 0.95- 0.94-0.93 ++ 0.04+ 0.03- 0.02- 0.01 式子的数是从 1 开始 ,挨次减少0.01, 直到最后一个数是0.01, 所以 ,式中共有100 个数而式子中的运算都是两个数相加接着减两个数,再加两个数 ,再减两个数这样的次序摆列的 .因为数的摆列、运算的摆列都很有规律,依据规律能够考虑每 4 个数为一组添上括号 ,每组数的运算结果能否也有必定的规律?能够看到把每组数中第 1 个数减第 3 个数 ,第 2 个数减第 4 个数 ,各得 0.02, 合起来是 0.04,那么 ,每组数(即每个括号)运算的结果都是0.04,整个算式 100 个数正好分红 25 组 ,它的结果就是25 个 0.04 的和 .1+ 0.99- 0.98- 0.97+ 0.96+ 0.95 - 0.94- 0.93 ++ 0.04+0.03 -0.02 -0.01=( 1+ 0.99- 0.98- 0.97)+( 0.96+ 0.95 -0.94- 0.93 )++( 0.04+ 0.03- 0.02- 0.01 )=0.04× 25=1假如能够灵巧地运用数的互换的规律,也能够按下边的方法分组添上括号计算:1+ 0.99- 0.98- 0.97+ 0.96+ 0.95 - 0.94- 0.93 ++ 0.04+0.03 -0.02 -0.01=1+( 0.99- 0.98- 0.97+ 0.96)+(0.95 -0.94- 0.93 + 0.92)++( 0.03- 0.02- 0.01 )=1例 3:计算: 0.1+ 0.2+ 0.3++ 0.8 +0.9+0.10 + 0.11+ 0.12++ 0.19+ 0.20这个算式的数的摆列像一个等差数列,但认真察看 ,它实质上由两个等差数列构成,0.1+0.2+ 0.3++ 0.8+ 0.9 是第一个等差数列,后边每一个数都比前一个数多0.1,而 0.10+ 0.11 +0.12++ 0.19+ 0.20 是第二个等差数列,后边每一个数都比前一个数多0.01, 所以 ,应分为两段按等差数列乞降的方法来计算.0.1+ 0.2+ 0.3++ 0.8+0.9+ 0.10+ 0.11 + 0.12++0.19+ 0.20=( 0.1+ 0.9)×9÷ 2+( 0.10+0.20 )× 11÷2=4.5+ 1.65=6.15例 4:计算: 9.9× 9.9+ 1.99算式中的 9.9× 9.9 两个因数中一个因数扩大10 倍 ,另一个因数减小10 倍 ,积不变 ,即这个乘法可变为99× 0.99; 1.99 能够分红0.99+ 1 的和 ,这样变化此后 ,计算比较简易.9.9× 9.9+ 1.99=99× 0.99+ 0.99+ 1=( 99+ 1)× 0.99 +1=100例 5:计算: 2.437× 36.54+ 243.7× 0.6346固然算式中的两个乘法计算没有相同的因数,但前一个乘法的 2.437 和后一个乘法的243.7 两个数的数字相同,不过小数点的地点不一样 ,假如把此中一个乘法的两个因数的小数点.按相反方向挪动相同多位,使这两个数变为相同的,就能够运用乘法分派律进行简算了2.437× 36.54+ 243.7× 0.6346=2.437× 36.54+ 2.437× 63.46=2.437×( 36.54+ 63.46)=243.7* 例 6:计算: 1.1×1.2 ×1.3× 1.4×1.5算式中的几个数固然是一个等差数列,但算式不是乞降,不可以用等差数列乞降的方法来计算这个算式的结果.平常注意累积计算经验的同学或许会注意到7、 11 和 13 这三个数连乘的积是1001,而一个三位数乘1001,只需把这个三位数连续写两遍就是它们的积,比如 578× 1001=578578,这一题参照这个方法计算,能奇妙地算出正确的得数.1.1× 1.2× 1.3× 1.4× 1.5=1.1× 1.3× 0.7× 2× 1.2× 1.5=1.001× 3.6=3.6036计算以下各题并写出简算过程:1. 5.467+ 3.814+ 7.533+ 4.1862. 6.25× 1.25× 6.43. 3.997+ 19.96+ 1.9998 + 199.74. 0.1+ 0.3++ 0.9+ 0.11+ 0.13+ 0.15++ 0.97+ 0.995. 199.9× 19.98- 199.8× 19.976. 23.75× 3.987+ 6.013× 92.07+ 6.832× 39.87*7 . 20042005 × 20052004 - 20042004 ×20052005 *8 .(1+ 0.12+ 0.23)×( 0.12+ 0.23+ 0.34)-( 1+ 0.12+ 0.23+ 0.34)×( 0.12+ 0.23 )计算以下各题并写出简算过程:1. 6.734- 1.536+ 3.266- 4.4642. 0.8÷ 0.1253. 89.1+ 90.3+ 88.6+ 92.1+ 88.9+ 90.84. 4.83× 0.59+ 0.41× 1.59- 0.324× 5.95. 37.5× 21.5× 0.112+ 35.5× 12.5× 0.112包括与清除1、某班有40 名学生 ,此中有 15 人参加数学小组,18 人参加航模小组,有 10 人两个小组都参加. 那么有多少人两个小组都不参加?两个小组共有(15+18) -10=23 (人) ,都不参加的有40-23=17(人)答:有 17 人两个小组都不参加 .--2、某班45 个学生参加期末考试,成绩宣布后 ,数学得满分的有 10 人 ,数学及语文成绩均得满分的有 3 人 ,这两科都没有得满分的有29 人.那么语文成绩得满分的有多少人?45-29-10+3=9 (人)答:语文成绩得满分的有9 人 .3、 50 名同学面向老师站成一行.老师先让大家从左至右按1,2,3,,49,50 挨次报数;再让报数是 4 的倍数的同学向后转,接着又让报数是 6 的倍数的同学向后转 .问:此刻面向老师的同学还有多少名 ?4 的倍数有 50/4 商 12 个 ,6 的倍数有 50/6 商 8个,既是 4又是 6的倍数有 50/12 商 4 个.4 的倍数向后转人数 =12,6 的倍数向后转共8 人 ,此中 4 人向后 ,4 人从后转回 .面向老师的人数 =50-12=38(人)答:此刻面向老师的同学还有38 名.4、在游艺会上 ,有 100 名同学抽到了标签分别为 1 至 100 的奖券 .按奖券标签号发放奖品的规则以下:( 1)标签号为 2 的倍数 ,奖 2 支铅笔;( 2)标签号为 3 的倍数 ,奖 3 支铅笔;( 3 )标签号既是 2 的倍数 ,又是 3 的倍数可重复领奖;( 4)其余标签号均奖 1 支铅笔 .那么游艺会为该项活动准备的奖品铅笔共有多少支?2 的倍数有100/2 商 50 个 ,3 的倍数有100/3 商 33 个 ,2 和 3 人倍数有100/6 商 16 个 .领 2 支的共准备( 50— 16)*2=68, 领 3 支的共准备( 33— 16)*3=51, 重复领的共准备16*( 2+3)=80,其余准备100-( 50+33-16 ) *1=33共需要 68+51+80+33=232(支)答:游艺会为该项活动准备的奖品铅笔共有232 支.5、有一根长为180 厘米的绳索 ,从一端开始每隔后将标有记号的地方剪断.问绳索共被剪成了多少段3 厘米作一记号?,每隔 4 厘米也作一记号,然3 厘米的记号:180/3=60, 最后到头了不划,60-1=59 个4 厘米记号: 180/4=45,45-1=44 个 ,重复的记号:180/12=15,15-1=14 个 ,所以绳索中间实质有记号 59+44-14=89 个 .剪 89 次 ,变为 89+1=90 段答:绳索共被剪成了 90 段 .6、东河小学画展上展出了很多幅画,此中有 16 幅画不是六年级的 ,有 15 幅画不是五年级的 . 现知道五、六年级共有25 幅画 ,那么其余年级的画共有多少幅?1,2,3,4,5 年级共有 16,1,2,3,4,6 年级共有 15,5,6 年级共有 25所以总合有( 16+15+25) /2=28 (幅) ,1,2,3,4 年级共有28-25=3 (幅)答:其余年级的画共有 3 幅.---7、有若干卡片 ,每张卡片上写着一个数 ,它是 3 的倍数或 4 的倍数 ,此中标有 3 的倍数的卡片占 2/3, 标有 4 的倍数的卡片占 3/4, 标有 12 的倍数的卡片有15 张 .那么 ,这些卡片一共有多少张?12 的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)答:这些卡片一共有36 张.----8、在从 1 至 1000 的自然数中 ,既不可以被 5 除尽 ,又不可以被7除尽的数有多少个?1000/355 的倍数有1000/5 商 200 个 ,7 的倍数有 1000/7 商 142 个,既是 5 又是 7 的倍数有商 28 个 .5 和 7 的倍数共有 200+142-28=314 个 .1000-314=686答:既不可以被 5 除尽 ,又不可以被 7 除尽的数有686 个.---9、五年级三班学生参加课外兴趣小组,每人起码参加一项 .此中有 25 人参加自然兴趣小组 ,35 人参加美术兴趣小组 ,27 人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12 人, 参加自然同时又参加美术兴趣小组的有8 人 ,参加自然同时又参加语文兴趣小组的有9 人,语文、美术、自然 3 科兴趣小组都参加的有 4 人 .求这个班的学生人数 .25+35+27-( 8+12+9) +4=62(人)答:这个班的学生人数是62 人.-- --10、如图 8-1,已知甲、乙、丙 3 个圆的面积均为 30,甲与乙、乙与丙、甲与丙重合部分的面积分别为 6,8,5,而 3 个圆覆盖的总面积为 73.求暗影部分的面积 .甲、乙、丙三者重合部分面积=73+( 6+8+5) -3*30=2暗影部分面积=73-( 6+8+5) +2*2=58答:暗影部分的面积是58.11、四年级一班有 46 名学生参加 3 项课外活动 .此中有 24 人参加了数学小组 ,20 人参加了语文小组 ,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍 ,又是 3 项活动都参加人数的 7 倍 ,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍 , 既参加数学小组又参加语文小组的有10 人 .求参加文艺小组的人数 .设参加文艺小组的人数是X,24+20+X-( X/305+2/7*X+10 ) +X/7=46, 解得 X=21答:参加文艺小组的人数是21 人.________________________________________-12、图书馆有 100 本书 ,借阅图书者需要在图书上署名.已知在 100 本书中有甲、乙、丙署名的分别有 33,44 和 55 本 ,此中同时有甲、乙署名的图书为29 本 ,同时有甲、丙署名的图书有25 本,同时有乙、丙署名的图书有36 本 .问这批图书中最罕有多少本没有被甲、乙、丙中的任何一人借阅过 ?三个人一共看过的书的本数是:甲 +乙 +丙(-甲乙 +甲丙 +乙丙)+甲乙丙 =33+44+55(- 29+25+36)+甲乙丙 =42+甲乙丙 ,当甲乙丙最大时 ,三人看过的书最多,因为甲、丙共同看过的书只有25 本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25 本.三人总合看过最多有42+25=67(本) ,都没看过的书最罕有100-67=33 (本)答:这批图书中最罕有33 本没有被甲、乙、丙中的任何一人借阅过.________________________________________13、如图 8-2,5 条相同长的线段拼成了一个五角星.假如每条线段上恰有1994 个点被染成红色,那么在这个五角星上红色点最罕有多少个?五条线上右发有 5*1994=9970 个红点 ,假如全部交错点上都放一个红点,则红点最少 ,这五条线有 10 个交错点 ,所以最罕有9970-10=9960 个红点答:在这个五角星上红色点最罕有9960 个 .14、甲、乙、丙同时给100 盆花浇水 .已知甲浇了 78 盆 ,乙浇了 68 盆 ,丙浇了 58 盆 ,那么 3 人都浇过的花最罕有多少盆?甲和乙必有 78+68-100=46 盆共同浇过 ,丙有 100-58=42 没浇过 ,所以 3 人都浇过的最罕有46-42=4(盆)答: 3 人都浇过的花最罕有 4 盆 .15、甲、乙、丙都在读同一本故事书 ,书中有100 个故事 .每一个人都从某一个故事开始,按次序今后读 .已知甲读了 75 个故事 ,乙读了 60 个故事 ,丙读了 52 个故事 .那么甲、乙、丙 3 人共同读过的故事最罕有多少个?乙和丙共同读过的故事起码有60+52-100=12(个) ,甲不论从哪里开始都必然要读这12 个故事.答:甲、乙、丙 3 人共同读过的故事最罕有12 个.15、甲、乙、丙都在读同一本故事书 ,书中有100 个故事 .每一个人都从某一个故事开始,按次序今后读 .已知甲读了 75 个故事 ,乙读了 60 个故事 ,丙读了 52 个故事 .那么甲、乙、丙 3 人共同读过的故事最罕有多少个?乙和丙共同读过的故事起码有60+52-100=12(个) ,甲不论从哪里开始都必然要读这12 个故事.答:甲、乙、丙 3 人共同读过的故事最罕有12 个.________________________________________-8、在从 1 至 1000 的自然数中 ,既不可以被5 除尽 ,又不可以被 7 除尽的数有多少个 ?5 的倍数有 1000/5 商 200 个 ,7 的倍数有1000/7 商 142 个,既是 5 又是 7 的倍数有 1000/35 商 28 个 .5 和 7 的倍数共有 200+142-28=314 个 .1000-314=686答:既不可以被5除尽 ,又不可以被7 除尽的数有686 个 .题中的除尽应当是整除吧.11、四年级一班有46 名学生参加 3 项课外活动 .此中有 24 人参加了数学小组,20 人参加了语文小组 ,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍 ,又是 3 项活动都参加人数的7 倍 ,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍 , 既参加数学小组又参加语文小组的有10 人 .求参加文艺小组的人数.设参加文艺小组的人数是X,24+20+X-( X/305+2/7*X+10 ) +X/7=46, 解得 X=21答:参加文艺小组的人数是21 人.。
第六单元包含与排除第一课时基础篇【知识要点】1、概念;包含与排除问题也叫重叠问题。
它是集合方面的知识2、容斥原理(1)总量=A+B-AB(2)总量A+B+C-AB-BC-CA+ABC【准备知识】1、六(5)班同学中,有36人参加兴趣小组,有42人参加语文兴趣小组,有26人两样都参加。
六(5)班有多少人?2、六(6)班有56人,其中36人参加数学组,42人参加语文组,两样都参加的有多少人?例1、1到500的全部自然数中,不是7的倍数,也不是9的倍数的数有多少?想:(1)7的倍数;500÷7=71……3 即=71(个)9的倍数;500÷9=55(个)7,9的倍数500÷(7×9)=7(个)即77+55-7=119(个)(2)不是7,9的倍数;500-119=381(个)练:1.在1到200的自然数中,能被3或5整除的数共有多少个?2.在1~1000的自然数中,不能被5或7整除的数共有多少个?3.在从1到1998的自然数中,能被2整除,但不能被3或7整除的数有多少个?例2.李老师出了两道数学题,全班40人中,第一题有30人做对,第二题有12人末做对,两题都做对的的20人.问第二道题对第一题不对的有几个人?两题都不对的有几个人?想;(1)画图(2)A表示对1错2, B表示错1对2,C表示1,2都对, D表示1,2都错(3)列式;A+B+C+D=40 A+C=30A+D=12 D=20(4)类比法;比较(2)与(4)(3)与(5)A=10,D=2 即B=8整理;答对2错1的8人,两题都有错的有2人练;1.有40名运动员,其中有25人会摔跤,有20人会击剑,有10人击剑、摔跤都不会,问既会摔跤又会击剑的运动员有多少人?2.100个人参加测试,要求回答五道题,并且规定凡答对3题或3题以上的为测试合格.测试结果是:答对第一题的有81人,答对第二题的有91人,答对第三题的有85人,答对第四题的有79人,答对第五题的有74人,那么至少有多少人及格?3.在100名学生中,爱好音乐的有56人,爱好体育的有75人.那么既爱好音乐又爱好体育的人,最少有多少人?最多有多少人?作业;1.某班有36个同学,在一次测验中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人.那么两题都不对的有多少人?2.五一班期末考试语文得“优”的有15人,数学得“优”的有18人,两门功课都得“优”的有8人,两门功课都没得“优”的有20人,这个班共有多少人参加期末考试?3.六年级90名学生,每人至少订《少年报》和《小学生学习报》不的一种.有2/3的人订了《少年报》,有1/2的人订了《小学生学习报》.两种报刊都订的有多少人?第二课时较复杂的容斥问题【准备知识】将A,B,C,(AB),(AC),(BC),(ABC)标在图中,说给同座位同学听。
小学奥数之包含与抛弃(一)包含与抛弃 (一)包含与抛弃是小学奥数中常见的问题类型之一。
通过理解和掌握这个概念,学生可以在解题过程中更加灵活和高效。
包含在小学奥数中,包含是一种集合关系,表示一个集合完全包含另一个集合。
通常用符号“⊃”表示。
例如,集合A={1,2,3,4},集合B={2,3}。
我们可以说集合A包含集合B,记作A⊃B。
在解决包含问题时,我们需要找出两个集合之间的共同特征。
也就是说,我们需要找到集合A中所有集合B的元素。
抛弃与包含相反,抛弃是指从一个集合中排除掉另一个集合。
使用符号“-”表示。
例如,集合A={1,2,3,4},集合B={2,3}。
我们可以说集合A抛弃集合B,记作A-B={1,4}。
抛弃问题需要注意的是,我们需要剔除集合B中的元素,保留集合A中剩余的元素。
解题技巧在解决包含与抛弃问题时,有一些技巧可以帮助我们更好地理解并解决问题。
1. 画集合图:通过画集合的图示,可以更直观地看到两个集合的关系,并帮助我们快速确定包含和抛弃的元素。
2. 利用已知条件:如果题目给出了某些元素属于或不属于某个集合,我们可以利用这些已知条件来推导出包含和抛弃的关系。
3. 用集合运算符:在解答过程中,可以灵活运用集合运算符(如并、交、差)来表示包含与抛弃的关系。
4. 练巩固:进行大量的练是掌握包含与抛弃概念的关键。
只有在反复实践中,我们才能更加熟练地解决各种类型的问题。
通过掌握包含与抛弃的概念和解题技巧,小学生可以更好地应对与此相关的奥数问题。
这也为他们今后研究更高级的数学知识奠定了坚实的基础。
总结:包含与抛弃是小学奥数中的一种重要问题类型,掌握这个概念对学生的数学能力提升非常有帮助。
在解决问题时,我们需要找到集合之间的共同特征,利用集合运算符进行计算,通过大量的练来巩固这一知识点。
>注意:以上内容仅供参考,具体解题方法请根据实际情况进行分析和应用。
包含与排除(一)
包含与排除问题也叫容斥原理。
“容”是容纳、包含的意思,“斥”是排斥、排除的意思,从题目名称上看,比较抽象,下面我们结合具体实例来说明这种问题的思考方法。
【典型例题】
例1:如下图,桌面上放着两个正方形,求盖住桌面的面积。
(单位:厘米)
7
5
2
分析与解:
这是一个组合图形,是由两个正方形组成的,中间重合部分是一个长方形,要想求出盖住桌面的面积,可以有三种不同方法:
方法一:75256422+-⨯=(平方厘米)
方法二:72556422-⨯+=(平方厘米)
方法三:52576422-⨯+=(平方厘米)
答:盖住桌面的面积是64平方厘米。
例2:四(1)班同学中有37人喜欢打乒乓球,26人喜欢打羽毛球,21人既爱打乒乓球又爱打羽毛球。
问全班喜欢打乒乓球或羽毛球活动的有多少人?
分析与解:
根据题意可画图如下 乒 羽
37 21 26
?人
此类问题画集合图比画线段图更直观,更形象一些。
方法一:37 + 26—21 = 42(人)
方法二:37—21 + 26 = 42(人)
方法三:37 +(26—21)= 42(人)
以上三种方法是紧密联系的,都是要从中减去重叠部分,可以从其中一部分中减去,再与另一部分合并,也可以从两部分之和中减去重叠部分。
三种方法比较,你喜欢哪一种解法呢?
我们根据以上两个例题可以得出这样的数量关系:
第一部分 + 第二部分 — 重叠部分 = 两部分之和
例3:四年级一班在期末考试中,语文得“优”的有15人,数学得“优”的有17人,老师请得“优”的同学都站起来,数了数有24人。
两科都得“优”的有几人?
分析与解:
根据“第一部分+ 第二部分—重叠部分= 两部分之和”可以求出两科都得“优”的人数。
15 + 17—24 = 8(人)
另外,从下图中我们还能得出两种不同方法
语文数学
15人?人17人
24人
方法二:17—(24—15)= 8(人)
15—(24—17)= 8(人)
答:两科都得优的有8人。
例4:图新小学四年级二班有24人参加了美术小组,有18人参加了音乐小组,其中11人两个小组都参加,还有5人什么组都没参加。
这个班共有学生多少人?
分析与解:
这个题与例2相比,多了一个已知条件,那就是“有5个人什么组都没参加”。
如果按前面的画图方式,这5人无法在图上表示,根据题意,我们可以这样画图。
全班
5人
美术音乐
24人11人18人
全班?人
要求全班有多少人,除了知道有5人什么组都没参加外,还要求出参加课外小组的有多少人。
24 + 18—11 = 31(人)
31 + 5 = 36(人)
答:这个班共有学生36人。
例5:某班学生参加音乐组的有11人,参加美术组的有8人,参加英语组的有12人,既参加音乐组又参加美术组的有5人,既参加音乐组又参加英语组的有3人,既参加美术组又参加英语组的有4人,三个组都参加的只有1人,问:至少参加一个组的有多少人?
分析与解:
根据题意画图如下:
音乐美术
11人8人
12人
英语
?人
如果我们把三个集合圈看成三张纸片,参加两个组的部分是2层,参加三个组的部分是3层,要求至少参加一个组的人数,就是求三张纸片盖住桌面的大小,因此要从三组人数之和中减去重叠部分的人数
11 + 8 + 12—5—3—4 + 1 = 20(人)
答:至少参加一个组的有20人。
【模拟试题】(答题时间:30分钟)
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。
问订阅《少年文摘》或《学与玩》的有多少人?
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
(2)是2的倍数或是3的倍数的数有多少个?
(3)是2的倍数但不是3的倍数的数有多少个?
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功课都得100分的有3人,两门功课都未得100分的有26人。
这个班共有学生多少人?
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。
这个班两队都参加的有多少人?
【试题答案】
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。
问订阅《少年文摘》或《学与玩》的有多少人?
19 + 24—13 = 30(人)
答:订阅《少年文摘》或《学与玩》的有30人。
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?
只学钢琴人数:58—37 = 21(人)
只学画画人数:43—37 = 6(人)
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
既是3的倍数又是2的倍数,一定是6的倍数
100÷6 = 16 (4)
所以,既是2的倍数又是3的倍数有16个
(2)是2的倍数或是3的倍数的数有多少个?
100÷2 = 50,100÷3 = 33 (1)
50 + 33—16 = 67(个)
所以,是2的倍数或是3的倍数的数有67个。
(3)是2的倍数但不是3的倍数的数有多少个?
50—16 = 34(个)
答:是2的倍数但不是3的倍数的数有34个。
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功课都得100分的有3人,两门功课都未得100分的有26人。
这个班共有学生多少人?
12 + 10—3 + 26 = 45(人)
答:这个班共有学生45人。
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
50—(30 + 21—8)= 7(人)
答:两样都不会的有7人。
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。
这个班两队都参加的有多少人?
30 + 25—42 = 13(人)
答:这个班两队都参加的有13人。