平面几何真题选讲(沈文选)
- 格式:pdf
- 大小:728.81 KB
- 文档页数:20
打星号的是强烈推荐的,其他的书也是非常值得一读的,但是时间有限的情况下,可以暂时搁置。
通用书籍:中等数学(无论是刚入门还是国家队)第零阶段知识拓展《数学选修4-1:几何证明选讲》《数学选修4-5:不等式选讲》《数学选修3-X(忘了哪本):初等数论初步》第一阶段:全国高中数学联赛各赛区预赛1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习专用高中数学联赛备考手册华东师范大学出版社*3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社*4、单樽《解题研究》*5、单樽《平面几何中的小花》(个别地区竞赛会考到平几)6、《平面几何》浙江大学出版社7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著第二阶段:全国高中数学联合竞赛第一部分:一试《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社*《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社《数学竞赛培优教程(一试)》浙江大学出版社3、命题人讲座《数列与数学归纳法》单樽4、《数列与数学归纳法》(小丛书第二版,冯志刚)5、《数列与归纳法》浙江大学出版社韦吉珠6、《解析几何的技巧》单樽(建议买华东师大出版的版本)7、《概率与期望》单樽8、《同中学生谈排列组合》苏淳9、《函数与函数方程》奥林匹克小丛书第二版10、《三角函数》奥林匹克小丛书第二版11、《奥林匹克数学中的几何问题》沈文选*12、《圆锥曲线的几何性质》13、《解析几何》浙江大学出版社第二部分:加试(我怎么可能会说二试这种词语呢)平几1、高中数学竞赛解题策略(几何分册)沈文选*2、《奥林匹克数学中的几何问题》沈文选*3、奥林匹克小丛书第二版《平面几何》4、浙大小红皮《平面几何》5、沈文选《三角形的五心》6、田廷彦《三角与几何》7、田廷彦《面积与面积方法》不等式1、《初等不等式的证明方法》韩神2、9、命题人讲座《代数不等式》计神3、10、《重要不等式》中科大出版社11、奥林匹克小丛书《柯西不等式与平均值不等式》数论(9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题)12、奥林匹克小丛书初中版《整除,同余与不定方程》13、13、奥林匹克小丛书《数论》14、命题人讲座《初等数论》冯志刚组合15、奥林匹克小丛书第二版《组合数学》16、奥林匹克小丛书第二版《组合几何》17、命题人讲座刘培杰《组合问题》18、《构造法解题》苏淳19、《从特殊性看问题》中科大出版社20、《抽屉原则》常庚哲第三部分:通用《中等数学增刊:高中数学联赛模拟题》*《多功能题典:高中数学竞赛》《数学奥林匹克研究教程》单樽奥林匹克小丛书第二版《高中数学竞赛中的解题方法与策略》第三阶段:中国数学奥林匹克(Chinese Mathematical Olympiad)及以上(本渣不自量力,竟然敢给这个阶段的大神推荐书籍,如果大神们虐题审美疲劳的话,也不妨一看)命题人讲座《圆》田廷彦《近代欧式几何学》《近代的三角形的几何学》《不等式的秘密》范建熊、隋振林《奥赛经典:奥林匹克数学中的数论问题》沈文选《奥赛经典:数学奥林匹克高级教程》叶军《初等数论难题集》命题人讲座《图论》奥林匹克小丛书第二版《图论》《走向IMO》今天仔细看了看。
专题08 平面解析几何(解答题)1.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由.2.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x yC a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.3.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.4.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.5.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已知|2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.6.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.7.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.8.【2018年高考全国Ⅰ文数】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.9.【2018年高考全国Ⅱ卷文数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.10.【2018年高考全国Ⅱ卷文数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r.11.【2018年高考北京卷文数】已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3,焦距为斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)44Q -共线,求k .12.【2018年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心||AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.13.【2018年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为7,求直线l 的方程.14.【2018年高考浙江卷】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.15.【2017年高考全国Ⅰ卷文数】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.16.【2017年高考全国Ⅱ卷文数】设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =u u u ru u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .17.【2017年高考全国Ⅱ卷文数】在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.18.【2017年高考北京卷文数】已知椭圆C 的两个顶点分别为A (−2,0),B (2,0),焦点在x 轴上, (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.19.【2017年高考天津卷文数】已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c . (i )求直线FP 的斜率; (ii )求椭圆的方程.20.【2017年高考山东卷文数】在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(a >b >0)的离心率为2,椭圆C 截直线y =1所得线段的长度为 (1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.21.【2017年高考浙江卷】如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点13(,)()22P x y x -<<.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求||||PA PQ ⋅的最大值.22.【2017年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l .(1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.。
数学《平面解析几何》高考复习知识点一、选择题1.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v ( ) A .-16B .0C .16D .32 【答案】B【解析】【分析】 先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r ,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点. 由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r ,∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r .故选B【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( ) A .16B .10C .12D .8【答案】C【解析】【分析】根据题意可知AD BD ⊥,利用抛物线的定义,可得30ABD ∠=︒,所以||||2612AF BF ==⨯=.【详解】解:因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1||||||2AD AF AB ==,所以30ABD ∠=︒.因为F 到准线的距离为6, 所以||||2612AF BF ==⨯=.故选:C .【点睛】本题考查抛物线的性质,抛物线的定义,考查转化思想,属于中档题.3.已知双曲线22:1124x y C -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,P Q .若POQ ∆为直角三角形,则PQ =( )A .2B .4C .6D .8 【答案】C【解析】【分析】由题意不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒,解三角形即可.【详解】不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒.则易知30POF ∠=︒,4OF =,∴23OP =POQ n 中,60POQ ∠=︒,90OPQ ∠=︒,23OP =∴36PQ OP ==.故选C【点睛】本题主要考查双曲线的性质,根据双曲线的特征设出P ,Q 位置,以及POQ V 的直角,即可结合条件求解,属于常考题型.4.已知P 是双曲线C 上一点,12,F F 分别是C 的左、右焦点,若12PF F ∆是一个三边长成等差数列的直角三角形,则双曲线C 的离心率的最小值为( )A .2B .3C .4D .5【答案】A【解析】【分析】设直角三角形三边分别为3,4,5x x x ,分23c x =,24c x =和25c x =三种情况考虑,即可算得双曲线离心率的最小值.【详解】如图,易知该直角三角形三边可设为3,4,5x x x .①若23c x =,则254a x x x =-=,得232c e a==; ②若24c x =,则2532a x x x =-=,得222c e a ==; ③若25c x =,则243a x x x =-=,得252c e a==. 故选:A【点睛】 本题主要考查双曲线的离心率的求法,体现了分类讨论的数学思想.5.过抛物线212x y =的焦点F 的直线交抛物线于点A 、B ,交抛物线的准线于点C ,若3AF FB =uu u r uu r ,则BC =( )A .4B .3C .6D .8 【答案】D【解析】【分析】作出图象,作BM CP ⊥,AN CP ⊥,BH AN ⊥,设BF x =,根据抛物线的性质可得BM BF HN x ===,3AN AF x ==,进而得到1sin 2ACN ∠=,则可求出x 的值,进而得到BC 的值.【详解】作BM CP ⊥,AN CP ⊥,BH AN ⊥,如图,因为3AF FB =uu u r uu r ,不妨设BF x =,所以33AF BF x ==,4AB x =, 根据抛物线的定义可得BM BF HN x ===,3AN AF x ==,6FP p ==, 则32AH AN HN x x x =-=-=,所以1sin sin 2AH ABH ACN AB ∠=∠==,则212CF FP ==,2CB x =, 则312CF CB BF x =+==,所以4x =,则28BC x ==,故选:D .【点睛】本题考查抛物线的性质,涉及抛物线定义的应用,考查数形结合思想,属于中档题.6.在平面直角坐标系中,已知双曲线的中心在原点,焦点在轴上,实轴长为8,离心率为,则它的渐近线的方程为( )A .B .C .D .【答案】D【解析】试题分析:渐近线的方程为,而,因此渐近线的方程为,选D.考点:双曲线渐近线7.如图所示,点F 是抛物线24y x =的焦点,点,A B 分别在抛物线24y x =及圆22(1)4x y -+=的实线部分上运动,且AB 总是平行于x 轴,则FAB ∆的周长的取值范围( )A .(4,6)B .[4,6]C .(2,4)D .[2,4]【答案】A【解析】 由题意知抛物线24y x =的准线为1x =-,设A B 、两点的坐标分别为1,0()A x y , 2,0()B x y ,则1||1AF x =+.由()222414y x x y ⎧=⎪⎨-+=⎪⎩ 消去y 整理得2230x x +-=,解得1x =, ∵B 在图中圆()2214x y -+=的实线部分上运动,∴213x <<.∴FAB ∆的周长为1212(1)2()3(4,6)AF FB BA x x x x ++=+++-=+∈. 选A .点睛:解决与抛物线有关的问题时,要注意抛物线定义的运用.特别是对于焦点弦的问题更是这样,利用定义可将抛物线上的点到焦点的距离(两点间的距离)转化成该点到准线的距离(点到直线的距离),然后再借助几何图形的性质可使问题的解决变得简单.8.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,1223F F = )A .2213x y += B .22132x y += C .22196x y += D .221129x y += 【答案】C【解析】【分析】 利用椭圆的性质,根据4AB =,1223F F =3c =22 4b a=,求解a ,b 然后推出椭圆方程.【详解】 椭圆2222 10x y a b a b+=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=, 222c a b =-,解得3a =,b =, 所以所求椭圆方程为:22196x y +=,故选C . 【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.9.若双曲线223mx my -=3的一个焦点是()0,2,则m 的值是A .-1B .1 C.20- D.2【答案】A【解析】 双曲线223mx my -=3的标准方程为22113x y m m-=, ∵焦点在y 轴上,∴134m m+=,且0m <, ∴ 1.m =-故选A .10.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为M 的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解.【详解】由直线的斜率为tan 60k ︒==y b =+.圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =,则由弦长公式得:圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与⎛⎫ ⎪ ⎪⎝⎭,故点M 的个数为3. 故选:C.【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.11.已知抛物线2:4C y x =,过其焦点F 的直线l 交抛物线C 于,A B 两点,若3AF FB =uu u r uu r ,则AOF V 的面积(O 为坐标原点)为( )A B C D .【答案】B【解析】【分析】首先过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥,易得30ABM ∠=o ,60AFH ∠=o .根据直线AF :1)y x =-与抛物线联立得到12103x x +=,根据焦点弦性质得到163AB =,结合已知即可得到sin 60AH AF ==o AOF S V 即可.【详解】如图所示:过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥.因为3AF BF =uuu r uu u r ,设BF k =,则3AF k =,11BB A M k ==. 所以2AM k =.在RT ABM V 中,12AM AB =,所以30ABM ∠=o . 则60AFH ∠=o . (1,0)F ,直线AF 为3(1)y x =-.223(1)310304y x x x y x⎧=-⎪⇒-+=⎨=⎪⎩,12103x x +=. 所以121016233AB x x p =++=+=,344AF AB ==. 在RT AFH V 中,sin 6023AH AF ==o 所以112332AOF S =⨯⨯=V 故选:B【点睛】本题主要考查抛物线的几何性质,同时考查焦点弦的性质,属于中档题.12.已知双曲线()2222100x y C a b a b-=:>,>的一条渐近线与圆22(23)4x y +-=相交于A ,B 两点,若|AB |=2,则C 的离心率为( )A 23B 3C .2D .4【答案】C【解析】【分析】求出双曲线的渐近线方程,圆的圆心与半径,利用距离公式得到a 、b 关系式,然后求解离心率即可.【详解】由题意可知不妨设双曲线的一条渐近线方程为:bx +ay =0,圆22(4x y +-=的圆心为(0,,半径为2,由题意及|AB |=2,可得22212+=,222123a a b =+,即b 2=3a 2,可得c 2﹣a 2=3a 2,即224c a = 所以e c a==2. 故选:C .【点睛】 本题主要考查求双曲线离心率的问题,此类问题的解题关键是建立,,a b c 的方程或不等关系,考查学生的运算求解能力,是一道中档题.13.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <u u u v u u u v ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,29λμ=,则该椭圆的离心率为( )A .35B .1213C .35或1213D .45【答案】A【解析】 分析:根据向量共线定理及29λμ=,AP BP <u u u v u u u v ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率. 详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v∴1λμ+= 又∵29λμ=∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩ ∵AP BP <u u u v u u u v ∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限) ∴2(,)b P c a ,2(,)b B c a - ∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点∴直线1l 的方程为为1x y a b +=- ∴()(,)a c b A c a+ ∵2133OP OA OB =+u u u r u u u r u u u r ∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+. ∴22224()2a c a ac c -=++,即223520a c ac --=.∴25230e e +-=∵(0,1)e ∈ ∴35e =故选A. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).14.已知双曲线222:41(0)x C y a a -=>2:2E y px =的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线1:4360l x y -+=和2:1l x =-距离之和的最小值为( )A .1B .2C .3D .4【答案】B 【解析】分析:由双曲线的右顶点到渐近线的距离求出234a =,从而可确定双曲线的方程和焦点坐标,进而得到抛物线的方程和焦点,然后根据抛物线的定义将点M 到直线2l 的距离转化为到焦点的距离,最后结合图形根据“垂线段最短”求解.详解:由双曲线方程22241(0)x y a a-=>可得,双曲线的右顶点为(,0)a ,渐近线方程为12y x a=±,即20x ay ±=. ∵双曲线的右顶点到渐近线的距离等于3, ∴2314a =+,解得234a =,∴双曲线的方程为224413x y -=,∴双曲线的焦点为(1,0).又抛物线2:2E y px =的焦点与双曲线C 的右焦点重合, ∴2p =,∴抛物线的方程为24y x =,焦点坐标为(1,0)F .如图,设点M 到直线1l 的距离为||MA ,到直线2l 的距离为||MB ,则MB MF =, ∴MA MB MA MF +=+.结合图形可得当,,A M F 三点共线时,MA MB MA MF +=+最小,且最小值为点F 到直线1l 的距离22416243d ⨯+==+.故选B .点睛:与抛物线有关的最值问题一般情况下都与抛物线的定义有关,根据定义实现由点到点的距离与点到直线的距离的转化,具体有以下两种情形:(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.15.已知1F ,2F 分别为双曲线C :22221(0,0)x y a b a b-=>>的左,右焦点,点P 是C 右支上一点,若120PF PF ⋅=u u u v u u u u v ,且124cos 5PF F ∠=,则C 的离心率为( ) A .257B .4C .5D .57【答案】C 【解析】 【分析】在12PF F △中,求出1PF ,2PF ,然后利用双曲线的定义列式求解.【详解】在12PF F △中,因为120PF PF ⋅=u u u r u u u u r ,所以1290F PF ∠=o, 1121248cos 255c PF F F PF F c =⋅∠=⋅=,2121236sin 255cPF F F PF F c =⋅∠=⋅=, 则由双曲线的定义可得128622555c c ca PF PF =-=-= 所以离心率5ce a==,故选C. 【点睛】本题考查双曲线的定义和离心率,解题的关键是求出1PF ,2PF ,属于一般题.16.已知F 是抛物线24x y =的焦点,P 为抛物线上的动点,且A 的坐标为()0,1-,则PF PA的最小值是( )A .14B .12C D 【答案】C 【解析】由题意可得,抛物线24x y =的焦点(0,1)F ,准线方程为1y =-.过点P 作PM 垂直于准线,M 为垂足,则由抛物线的定义可得PF PM =,则sin PF PM PAM PAPA==∠,PAM ∠为锐角.∴当PAM ∠最小时,PF PA 最小,则当PA 和抛物线相切时,PFPA最小.设切点)P a ,由214y x =的导数为12y x '=,则PA 的斜率为12⋅==.∴1a =,则(2,1)P .∴2PM =,PA =∴sin 2PM PAM PA∠==故选C .点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化, 这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题.17.已知椭圆22198x y +=的一个焦点为F ,直线220,220x y x y -+=--=与椭圆分别相交于点A 、B 、C 、D 四点,则AF BF CF DF +++=( )A .12B .6+C .8D .6【答案】A 【解析】 【分析】画出图像,根据对称性得到()()224AF BF CF DF AF AF DF DF a +++=+++=,得到答案. 【详解】画出图像,如图所示:直线220,220x y x y -+=--=平行,根据对称性知:()()22412AF BF CF DF AF AF DF DF a +++=+++==. 故选:A .【点睛】本题考查了椭圆的性质,意在考查学生对于椭圆知识的灵活运用.18.(2017新课标全国卷Ⅲ文科)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A 6B 3C .23D .13【答案】A 【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即22d a a b==+,整理可得223a b =,即()2223,a a c=-即2223ac =,从而22223c e a ==,则椭圆的离心率263c e a ===, 故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.19.已知椭圆()2222:10x y C a b a b+=>>的右焦点()(),0F c c b >,O 为坐标原点,以OF 为直径的圆交圆222x y b +=于P 、Q 两点,且PQ OF =,则椭圆C 的离心率为( ) A .33B .12C .22D .63【答案】D 【解析】 【分析】设点P 为两圆在第一象限的交点,利用对称性以及条件PQ OF =可得出点P 的坐标为,22c c ⎛⎫ ⎪⎝⎭,再将点P 的坐标代入圆222x y b +=的方程,可得出2b 与2c 的等量关系,由此可得出椭圆的离心率的值. 【详解】如下图所示,设点P 为两圆在第一象限的交点,设OF 的中点为点M ,由于两圆均关于x 轴对称,则两圆的交点P 、Q 也关于x 轴对称,又PQ OF c ==,则PQ 为圆M 的一条直径,由下图可知,PM x ⊥轴,所以点P 的坐标为,22c c ⎛⎫⎪⎝⎭,将点P 的坐标代入圆222x y b +=得22222c c b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,可得2222222c b a c ==-, 所以,2223a c =,因此,椭圆的离心率为22263c c e a a ==== D. 【点睛】本题考查椭圆离心率的计算,根据题意得出a 、b 、c 的等量关系是解题的关键,考查运算求解能力,属于中等题.20.设P 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点,延长1FP 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .22(x 2)y 28-+=B .22(x 2)y 7++=C .22(x 2)y 28++=D .22(x 2)y 7-+=【答案】C 【解析】 【分析】推导出12PF PF 2a +==2PQ PF =,从而11PFPQ FQ +==Q 的轨迹为圆,由此能求出动点Q 的轨迹方程. 【详解】P Q 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点, 延长1FP 至点Q ,使得2PQ PF =,12PF PF 2a ∴+==2PQ PF =,11PF PQ FQ ∴+==, Q ∴的轨迹是以()1F 2,0-为圆心,为半径的圆, ∴动点Q 的轨迹方程为22(x 2)y 28++=.故选:C . 【点睛】本题考查动点的轨迹方程的求法,考查椭圆的定义、圆的标准方程等基础知识,考查运算求解能力,是中档题.。
平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率(1)倾斜角的范围000180(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1//l2k1k2。
特别地,当直线l1,l2的斜率都不存在时,l1与l2的关系为平行。
(2)两条直线垂直如果两条直线l1,l2斜率存在,设为k1,k2,则l1l2k1k21注:两条直线l1,l2垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果l1,l2中有一条直线的斜率不存在,另一条直线的斜率为0时,l1与l2互相垂直。
二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式不包括垂直于x轴的直线为直线上一定点,k为斜率斜截式k为斜率,b是直线在y轴上的截距不包括垂直于x轴的直线两点式不包括垂直于x轴和y轴的是直线上两定点直线截距式a是直线在x轴上的非零截距,b是直不包括垂直于x轴和y轴或线在y轴上的非零截距过原点的直线一般式A,B,C为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式3.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
4.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知A(x,y),B(x,y),C(x,y),若x1x2x3或k AB k AC,则有A、B、C三点共112233线。
尺规作图 过圆外一点作圆的切线方法归纳胡小华(江苏省南京市金陵中学河西分校㊀210036)摘㊀要:尺规作图是初中平面几何中的重要知识ꎬ是中考的热门题型.本文阐述了用多种方法过圆外一点作圆的切线ꎬ对学生的数学知识㊁方法㊁经验和思维能力都有一定的要求.通过尺规作图既复习了基本作图知识ꎬ又对圆的性质㊁切线的性质㊁以及切线的判定等知识进行了复习.关键词:尺规作图ꎻ切线ꎻ切线的判定中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2019)35-0031-02收稿日期:2019-09-15作者简介:胡小华ꎬ女ꎬ江苏省泰兴人ꎬ本科ꎬ中学一级教师ꎬ从事初中数学教学研究.㊀㊀尺规作图是初中平面几何中的重要知识ꎬ是中考的热门题型ꎬ学生需综合运用所学的知识ꎬ多角度思考问题.在初三第一轮复习时ꎬ我设计了这样一个问题 过圆外一点A作☉O的切线ꎬ尺规作图ꎬ保留作图痕迹ꎬ并说明作图的依据ꎬ比一比谁的画法多 .学生作品展示图1方法一:利用直径所对的圆周角是直角.连接AOꎬ以AO为直径作☉Bꎬ☉B与☉O相交于D㊁E两点ꎬ则ADꎬAE即为所求作的切线.理由:☉B中ȵAO是直径ꎬʑøADO=90ʎ即ODʅAD.ȵAD经过半径OD的外端ꎬʑAD与☉O相切.该方法是由切线想到垂直ꎬ构造直角的常用方法之一是利用直径所对的圆周角是直角这一定理.再由切线图2的判定方法:过半径外端ꎬ并且垂直于半径的直线是圆的切线.切线的作法即转化为主要考虑作半径的垂线的方法ꎬ联系初三刚学过的知识ꎬ我们首先想到的是直径所对的圆周角是直角这一定理ꎬ这一方法也就顺其自然而产生.方法二:利用 等腰三角形三线合一 的性质作垂直.以O为圆心ꎬBC长为半径作弧ꎬ以A为圆心ꎬAO长为半径作弧ꎬ两弧交于点DꎬOD与☉O相交于点Eꎬ连接AEꎬ则AE即为☉O的切线.另一条切线也可以用同样的方法作出.理由:ȵAO=ADꎬOD=BC=2OEꎬʑE为OD的中点.ʑAEʅODꎬʑAE与☉O相切.要作切线想到垂直ꎬ而利用等腰三角形三线合一的性质也是我们常见的构造垂直的方法之一.方法三:利用勾股定理的逆定理构造垂直.分析:先假设切线画出来了ꎬ则斜边长为AO长ꎬ一条直角边长为半径rꎬ根据勾股定理可以求出另一条直角边的长.图3作øDCH=90ʎꎬ在CH上截取半径rꎬ交CH于点Gꎬ以G为圆心ꎬAO长为半径作弧ꎬ交CD于点Fꎬ则CF长即为所求作的切线长.以A为圆心ꎬCF长为半径作弧交圆O于点Eꎬ连接AEꎬ则AE即为所求作的一条切线.理由:ȵøC=90ʎꎬ13ʑFC2+CG2=FG2.又ȵAO=FGꎬCG=OEꎬFC=AEꎬʑAE2+OE2=AO2.ʑAEʅOEꎬʑAE是☉O的切线.图4该作图方法是利用勾股定理的逆定理构造直角ꎬ想法比较独特ꎬ通过先构造直角找到三边关系ꎬ再利用三边关系构造直角ꎬ从而创造切线.学生的思维让人眼前一亮.方法四:利用相似作垂直证半径.延长AO到Dꎬ使得OD=OA.以D为圆心ꎬ以☉O直径长为半径作弧ꎬ以O为圆心ꎬOA长为半径作圆ꎬ交弧于点Fꎬ连接AF.过O点作OEʅAFꎬ交AF于点Eꎬ则AE即为所求作的切线.证明:ȵAD为直径ꎬʑøAFD=90ʎ.ȵOEʅAFꎬʑOEʊDFꎬ㊀㊀ʑәAOEʐәADFꎬʑOEDF=AOAD=12ꎬʑOE=12DF=r.又ȵOEʅAFꎬʑAE是☉O的切线.前三种方法均是连半径ꎬ作垂直ꎬ第四种方法是作垂直证半径ꎬ刚好复习了初中阶段的证明切线的两种方法ꎬ也是学生综合运用知识解决问题能力的一种体现.在复习期间这样一个开放性的问题激发了学生学习的热情和潜能ꎬ围绕数学问题展开的思维碰撞ꎬ无不是学生学习主动性㊁能动性和创造性的综合体现.在解决问题的过程中复习了初中阶段常见的构造垂直的几种重要方法ꎬ我不禁感叹 只要给学生一个舞台ꎬ他们必将还我一片精彩 !㊀㊀参考文献:[1]沈文选.中学数学思想方法[M].长沙:湖南师范大学出版社ꎬ1999.[2]罗增儒.数学思想方法的教学[J].中学教研(数学)ꎬ2004(7):29-30.[责任编辑:李克柏]以情促教㊀践行自主课堂浅议培养初中生数学情感的策略芮亚琴㊀任㊀庆(江苏省宜兴市桃溪中学㊀214200)摘㊀要:数学情感就是学生在数学活动中对数学产生的求知欲及好奇心ꎬ它更多地倾向于数学兴趣ꎬ能对学生的学习产生积极的影响.注重学生数学情感的培养可以促进教学ꎬ是提高学生学习数学的自主性和主动性的必要条件.本文根据笔者多年的教学经验ꎬ结合教学实例ꎬ就如何培养学生的数学情感提出几点建议.关键词:数学情感ꎻ数学兴趣ꎻ主动学习中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2019)35-0032-02收稿日期:2019-09-15作者简介:芮亚琴(1982.2-)ꎬ女ꎬ江苏省宜兴人ꎬ本科ꎬ中学一级教师ꎬ从事初中数学教学研究.任庆(1979.9-)ꎬ男ꎬ江苏省宜兴人ꎬ本科ꎬ中学一级教师ꎬ从事初中数学教学研究.㊀㊀情感是人与生俱来的一种心理活动ꎬ是人们对客观事物是否符合个体需要而产生的态度体验.情感对教学质量有一定的影响ꎬ积极的情感能让学生主动㊁快乐地学习ꎬ养成良好的习惯ꎬ获得一定的成就ꎬ消极的情感则会影响学生的学习效果.当新课标对学生的情感态度目标提出培养要求时ꎬ 数学情感 便作为数学学科上的专有名词被提了出来.初中学生正处在身心快速发展的时期ꎬ在教学中强化情感对学生的学习主动性及自觉性都有着积极的作用.在初中数学教学中ꎬ如何培养学生的数学情感ꎬ对此ꎬ笔者有以下几点粗浅的看法ꎬ供同仁们参考.㊀㊀一㊁渗透情感意义ꎬ体会情感价值什么是数学情感?为何要渗透数学情感的教育?数学情感对数学学习而言有着怎样的意义?让学生明白这些问题的本质是培养学生数学情感的第一步.教师在进行教学时可以将上述问题渗透至教学中ꎬ让学生体会数学情感的价值.如笔者在初二开学的起始阶段ꎬ专门开设了一堂主23。
三年专题 平面解析几何(选择题、填空题)1.【2022年全国甲卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→⋅BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1C .x 23+y 22=1 D .x 22+y 2=12.【2022年全国甲卷】椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22C .12D .133.【2022年全国乙卷】设F 为抛物线C:y 2=4x 的焦点,点A 在C 上,点B(3,0),若|AF |=|BF |,则|AB |=( ) A .2B .2√2C .3D .3√24.【2022年全国乙卷】双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 的两支交于M ,N 两点,且cos∠F 1NF 2=35,则C 的离心率为( )A .√52B .32C .√132D .√1725.【2021年甲卷文科】点()3,0到双曲线221169xy -=的一条渐近线的距离为( )A .95B .85C .65D .456.【2021年乙卷文科】设B 是椭圆22:15x C y +=的上顶点,点P 在C 上,则P B的最大值为( )A .52B C D .27.【2021年乙卷理科】设B 是椭圆2222:1(0)x y C a b ab+=>>的上顶点,若C 上的任意一点P 都满足||2P B b ≤,则C 的离心率的取值范围是( )A .12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .0,2⎛⎝⎦D .10,2⎛⎤ ⎥⎝⎦8.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12M F M F ⋅的最大值为( )A .13B .12C .9D .69.【2021年新高考2卷】抛物线22(0)y p x p =>的焦点到直线1y x =+p=( )A .1B .2C .D .410.【2020年新课标1卷理科】已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2B .3C .6D .9 11.【2020年新课标1卷理科】已知⊙M :222220xyx y +---=,直线l :220xy ++=,P为l 上的动点,过点P 作⊙M 的切线,P A P B ,切点为,A B ,当||||PM AB ⋅最小时,直线A B的方程为( ) A .210xy --= B .210xy +-=C .210xy -+= D .210xy ++=12.【2020年新课标1卷文科】已知圆2260x yx +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .4 13.【2020年新课标1卷文科】设12,F F 是双曲线22:13y Cx-=的两个焦点,O 为坐标原点,点P 在C 上且||2O P =,则12P F F △的面积为( )A .72B .3C .52D .214.【2020年新课标2卷理科】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A 5B 5C 5D 515.【2020年新课标2卷理科】设O 为坐标原点,直线x a=与双曲线2222:1(0,0)x y Ca b ab-=>>的两条渐近线分别交于,D E 两点,若O D E的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .3216.【2020年新课标3卷理科】设O 为坐标原点,直线2x =与抛物线C :22(0)yp x p =>交于D ,E 两点,若O D O E⊥,则C 的焦点坐标为( )A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫⎪⎝⎭C .(1,0)D .(2,0)17.【2020年新课标3卷理科】设双曲线C :22221x y ab-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A .1B .2C .4D .818.【2020年新课标3卷文科】在平面内,A ,B 是两个定点,C 是动点,若=1A CBC ⋅,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线19.【2020年新课标3卷文科】点(0,﹣1)到直线()1y kx =+距离的最大值为( )A .1BC D .220.【2022年新高考1卷】已知O 为坐标原点,点A(1,1)在抛物线C:x 2=2py(p >0)上,过点B(0,−1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =−1 B .直线AB 与C 相切 C .|OP|⋅|OQ|>|OA |2D .|BP|⋅|BQ|>|BA|221.【2022年新高考2卷】已知O 为坐标原点,过抛物线C:y 2=2px(p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M(p,0),若|AF|=|AM|,则( ) A .直线AB 的斜率为2√6 B .|OB|=|OF|C .|AB|>4|OF|D .∠OAM +∠OBM <180°22.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线A B 的距离大于2C .当P B A ∠最小时,P B = D .当P B A ∠最大时,P B =23.【2021年新高考2卷】已知直线2:0l a x b y r+-=与圆222:Cxyr+=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 24.【2020年新高考1卷(山东卷)】已知曲线22:1C m xn y+=.( )A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =±D .若m =0,n >0,则C 是两条直线25.【2022年全国甲卷】设点M 在直线2x +y −1=0上,点(3,0)和(0,1)均在⊙M 上,则⊙M 的方程为______________. 26.【2022年全国甲卷】记双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的离心率为e ,写出满足条件“直线y =2x 与C 无公共点”的e 的一个值______________. 27.【2022年全国甲卷】若双曲线y 2−x 2m 2=1(m >0)的渐近线与圆x 2+y 2−4y +3=0相切,则m =_________.28.【2022年全国乙卷】过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为____________.29.【2022年新高考1卷】写出与圆x 2+y 2=1和(x −3)2+(y −4)2=16都相切的一条直线的方程________________. 30.【2022年新高考1卷】已知椭圆C:x 2a2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE|=6,则△ADE 的周长是________________.31.【2022年新高考2卷】设点A(−2,3),B(0,a),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是________. 32.【2022年新高考2卷】已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且|MA|=|NB|,|MN|=2√3,则l 的方程为___________. 33.【2021年甲卷文科】已知12,F F 为椭圆C :221164xy +=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12P QF F =,则四边形12P F Q F 的面积为________.34.【2021年乙卷文科】双曲线22145xy -=的右焦点到直线280xy +-=的距离为________.35.【2021年乙卷理科】已知双曲线22:1(0)xC y m m-=>0m y +=,则C 的焦距为_________.36.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y p x=(0p>)的焦点为F ,P 为C 上一点,P F 与x 轴垂直,Q 为x 轴上一点,且P Q O P⊥,若6F Q =,则C 的准线方程为______.37.【2021年新高考2卷】若双曲线22221x y ab-=的离心率为2,则此双曲线的渐近线方程___________.38.【2020年新课标1卷理科】已知F 为双曲线2222:1(0,0)x y Ca b ab-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________.39.【2020年新课标3卷文科】设双曲线C :22221x y ab-= (a >0,b >0)的一条渐近线为y x ,则C 的离心率为_________.40.【2020年新高考1卷(山东卷)C :y 2=4x 的焦点,且与C交于A ,B 两点,则A B=________.三年专题 平面解析几何(解答题)1.【2022年全国甲卷】设抛物线C:y 2=2px(p >0)的焦点为F ,点D (p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3. (1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程.2.【2022年全国乙卷】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,−2),B (32,−1)两点. (1)求E 的方程;(2)设过点P (1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ .证明:直线HN 过定点. 3.【2022年新高考1卷】已知点A(2,1)在双曲线C:x 2a2−y 2a 2−1=1(a >1)上,直线l 交C 于P ,Q 两点,直线AP,AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan∠PAQ =2√2,求△PAQ 的面积. 4.【2022年新高考2卷】已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x . (1)求C 的方程;(2)过F 的直线与C A ,B 两点,点P (x 1,y 1),Q (x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立: ①M 在AB 上;②PQ ∥AB ;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.5.【2021年甲卷文科】抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C于P ,Q 两点,且O P O Q⊥.已知点()2,0M ,且M与l 相切.(1)求C ,M的方程;(2)设123,,AA A 是C 上的三个点,直线12AA ,13AA 均与M相切.判断直线23AA 与M的位置关系,并说明理由.6.【2021年乙卷文科】已知抛物线2:2(0)C yp x p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9P Q Q F=,求直线O Q 斜率的最大值.7.【2021年乙卷理科】已知抛物线()2:20Cxp yp =>的焦点为F ,且F 与圆22:(4)1M xy ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,P A P B 是C 的两条切线,,A B 是切点,求P A B △面积的最大值.8.【2021年新高考1卷】在平面直角坐标系x O y 中,已知点()1F -、()21202F M F M F -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x=上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且T A T B T P T Q⋅=⋅,求直线A B 的斜率与直线P Q 的斜率之和.9.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b ab+=>>,右焦点为0)F ,且3.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线M N 与曲线222(0)x yb x +=>相切.证明:M ,N ,F 三点共线的充要条件是||M N=10.【2020年新课标1卷理科】已知A 、B 分别为椭圆E :2221x ya+=(a >1)的左、右顶点,G 为E 的上顶点,8A G GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.11.【2020年新课标2卷理科】已知椭圆C 1:22221x y ab+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程. 12.【2020年新课标2卷文科】已知椭圆C 1:22221x y ab+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.13.【2020年新课标3卷理科】已知椭圆222:1(05)25xy C m m+=<<4,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x=上,且||||B PB Q =,B PB Q⊥,求A P Q的面积.14.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b ab+=>>的离心率为2,且过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且A M A N⊥,A DM N⊥,D 为垂足.证明:存在定点Q ,使得D Q为定值.15.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b ab+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 ,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.。