高二数学直线方程2
- 格式:pdf
- 大小:948.32 KB
- 文档页数:8
2023年高二上数学选择性必修一:直线的两点式方程一、基础巩固1.经过点A(3,2),B(4,3)的直线方程是()A.x+y+1=0B.x+y-1=0C.x-y+1=0D.x-y-1=0y-23-2=x-34-3,即x-y-1=0.2.若直线方程为x2−y3=1,则直线在x轴和y轴上的截距分别为()A.2,3B.-2,-3C.2,-3D.-2,3x轴交点的横坐标,与y轴交点的纵坐标,所以当x=0时,y=-3,当y=0时,x=2.故选C.3.如图,直线l的截距式方程是xa+yb=1,则()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0M(a,0),N(0,b),由题图知M在x轴正半轴上,N在y轴负半轴上,则a>0,b<0.4.已知△ABC的三个顶点分别为A(1,2),B(3,6),C(5,2),M为AB的中点,N为AC的中点,则中位线MN所在直线的方程为()A.2x+y-8=0B.2x-y+8=0C.2x+y-12=0D.2x-y-12=0M 的坐标为(2,4),点N 的坐标为(3,2),由两点式方程得y -24-2=x -32-3,即2x+y-8=0.5.已知点M (1,-2),N (m ,2),若线段MN 的垂直平分线的方程是x2+y =1,则实数m 的值是( ) A.-2B.-7C.3D.1,得线段MN 的中点坐标是(1+m 2,0).又点(1+m 2,0)在线段MN 的垂直平分线上,所以1+m 4+0=1,所以m=3,故选C .6.经过点(0,3),且在两坐标轴上截距之和等于5的直线方程是 .xa +yb =1,则{b =3,a +b =5,解得{a =2,b =3,则直线方程为x 2+y3=1,即3x+2y-6=0.x+2y-6=07.已知直线l 经过点P (-1,2),与x 轴、y 轴分别相交于A ,B 两点.若P 为线段AB 的中点,则直线l 的方程为 .A (x ,0),B (0,y ).由P (-1,2)为AB 的中点,∴{x+02=-1,0+y2=2,∴{x =-2,y =4.由截距式得l 的方程为x -2+y4=1,即2x-y+4=0.x-y+4=08.经过点(2,1),且与两坐标轴围成等腰直角三角形的直线方程为.xa+ya=1或xa+y-a=1(a≠0),把(2,1)代入直线方程得2a+1a=1或2a+1-a=1,解得a=3或a=1,所以所求直线的方程为x3+y3=1或x1+y-1=1,即x+y-3=0或x-y-1=0.3=0或x-y-1=09.求过点A(-5,2),且在x轴上的截距等于在y轴上的截距的2倍的直线方程.0时,设所求直线方程为y=kx,将(-5,2)代入y=kx中,得k=−25,此时直线方程为y=−25x,即2x+5y=0.当横截距、纵截距都不是0时,设所求直线方程为x2a+ya=1(a≠0),将(-5,2)代入x2a+ya=1中,得a=−12,此时直线方程为x+2y+1=0.综上所述,所求直线方程为x+2y+1=0或2x+5y=0.二、能力提升1.直线xa2−yb2=1在y轴上的截距是()A.|b|B.-b2C.b2D.±bx=0,得直线在y轴上的截距是-b2.2.两条直线l1:xa−yb=1和l2:xb−ya=1在同一直角坐标系中的图象可以是()3.已知光线从点A(-3,4)射出,到x轴上的点B后,被x轴反射,这时反射光线恰好过点C(1,6),则BC所在直线的方程为()A.5x-2y+7=0B.2x-5y+7=0C.5x+2y-7=0D.2x+5y-7=0A(-3,4)关于x轴的对称点A'(-3,-4)在直线BC上,又因为点C的坐标为(1,6),所以直线BC的方程为y-6-4-6=x-1-3-1,化为5x-2y+7=0.4.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是.AB的中点M的坐标为(x,y),则x=1+32=2,y=2+12=32,所以M(2,32).因为直线AB的斜率为2-11-3=−12,所以线段AB的垂直平分线的斜率k=2,线段AB的垂直平分线的方程为y−32=2(x−2),即4x-2y-5=0.x-2y-5=05.已知点A(-1,2),B(3,4),线段AB的中点为M,求过点M且平行于直线x4−y2=1的直线l的方程.M(1,3),直线x4−y2=1的方程化为斜截式为y=12x−2,其斜率为12,所以直线l的斜率为12.故直线l的方程是y-3=12(x−1),即x-2y+5=0.6.已知直线l经过点(1,6)和点(8,-8).(1)求直线l的两点式方程,并化为截距式方程;(2)求直线l 与两坐标轴围成的图形面积.因为直线l 的两点式方程为y -6-8-6=x -18-1, 所以y -6-14=x -17,即y -6-2=x −1,所以y-6=-2x+2,即2x+y=8. 所以x4+y8=1.故所求截距式方程为x4+y8=1.(2)如图,直线l 与两坐标轴围成的图形是直角三角形AOB ,且OA ⊥OB ,|OA|=4,|OB|=8, 故S △AOB =12·|OA|·|OB|=12×4×8=16.故直线l 与两坐标轴围成的图形面积为16.★7.已知一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,求此直线的方程.xa +yb =1. 因为A (-2,2)在直线上, 所以−2a +2b =1.①又因为直线与两坐标轴围成的三角形的面积为1, 所以12|a|·|b|=1. ②由①②可得(Ⅰ){a -b =1,ab =2或(Ⅱ){a -b =-1,ab =-2.由(Ⅰ)解得{a =2,b =1或{a =-1,b =-2.方程组(Ⅱ)无解. 故所求的直线方程为x2+y1=1或x-1+y-2=1, 即x+2y-2=0或2x+y+2=0.。
高中高二数学教案范文:直线的方程高中高二数学教案范文:直线的方程精选2篇(一)教案标题:直线的方程适用年级:高中高二教学目标:1.了解直线的定义和性质;2.学习如何确定直线的方程;3.掌握常见直线方程的求解方法;4.能应用直线方程解决实际问题。
教学重点:1.直线的斜率概念和计算方法;2.直线的截距概念和计算方法;3.应用直线的方程解决实际问题。
教学难点:1.理解和运用直线斜率的概念和计算方法;2.理解和运用直线截距的概念和计算方法。
教学准备:1.教学投影仪或白板;2.直线方程的相关练习册;3.实际问题的例题。
教学过程:Step 1:引入新知1.引导学生回顾中学阶段学过的直线相关知识,例如直线的特征和方向等。
2.通过图片展示和实际例子引导学生了解直线的斜率和截距的概念。
Step 2:直线斜率的计算1.引导学生回顾直线斜率的定义和计算方法。
2.通过具体的直线方程示例讲解斜率的计算步骤和方法。
3.提供一些练习题让学生独立计算直线斜率,并进行讲解和订正。
Step 3:直线截距的计算1.引导学生回顾直线截距的定义和计算方法。
2.通过具体的直线方程示例讲解截距的计算步骤和方法。
3.提供一些练习题让学生独立计算直线截距,并进行讲解和订正。
Step 4:确定直线方程1.综合斜率和截距的概念和计算方法,讲解如何确定直线方程。
2.通过具体例子展示直线方程的求解过程,并进行课堂讲解和操练。
Step 5:应用实例1.提供一些实际问题,例如几何问题、物理问题等,让学生运用所学知识解决问题。
2.引导学生分析问题、列出方程、计算并给出解答。
3.讲解实例中的解题思路和方法,并与学生进行讨论和分享。
Step 6:巩固练习1.提供一些练习题让学生巩固直线方程的求解方法。
2.鼓励学生独立完成练习并进行批改和订正。
3.针对学生常犯错误或难以理解的地方进行重点讲解和指导。
Step 7:课堂总结1.概括和总结本节课所学的直线方程的知识要点。
3.2.1 直线的方向向量与直线的向量方程(二) 1.用向量运算证明两条直线垂直或求两条直线所成的角设两条直线所成的角为θ,v1和v2分别是l1和l2的方向向量则l1⊥l2⇔________,cos θ=________________.2.求两直线所成的角应注意的问题:在已知的两条直线上(或同方向上)取两条直线的方向向量v1,v2,所以cos〈v1,v2〉=v1·v2|v1||v2|.但要注意,两直线的夹角与〈v1,v2〉并不完全相同,当〈v1,v2〉为钝角时,应取________作为两直线的夹角.探究点一两条直线垂直问题怎样利用向量证明两直线垂直?例1 已知正方体ABCD—A′B′C′D′中,点M、N分别是棱BB′与对角线CA′的中点.求证:MN⊥BB′;MN⊥A′C.跟踪1在棱长为a的正方体OABC—O1A1B1C1中,E、F分别是AB、BC上的动点,且AE =BF,求证:A1F⊥C1E.例2 已知三棱锥O—ABC(如图),OA=4,OB=5,OC=3,∠AOB=∠BOC=60°,∠COA =90°,M,N分别是棱OA,BC的中点.求直线MN与AC所成角的余弦值.跟踪2长方体ABCD—A1B1C1D1中,AB=4,BC=BB1=2,E,F分别是面A1B1C1D1与面B1BCC1的中心,求异面直线AF与BE所成角的余弦值.探究点三探索性问题例3已知正三棱柱ABC—A1B1C1的各棱长都为1,M为底面BC边的中点,N为侧棱CC1上的点.(1)当CNCC1为何值时,MN⊥AB1;(2)在棱A1C1上是否存在点D,使MD∥平面A1B1BA,若存在,求出D的位置;若不存在,说明理由跟踪3 如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD .问当CD CC 1的值等于多少时,A 1C ⊥BD 且 A 1C ⊥BC 1?【达标检测】1. 若直线l 1、l 2的方向向量分别为a =(1,2,-2),b =(-2,3,2),则 ( )A .l 1∥l 2B .l 1⊥l 2C .l 1、l 2相交但不垂直D .不能确定2.设l 1的方向向量a =(1,3,-2),l 2的方向向量b =(-4,3,m ),若l 1⊥l 2,则m 等于( )A .1B .52C .12D .33. 在正四面体ABCD 中,点E 为BC 中点, 点F 为AD 中点,则异面直线AE 与CF 所成角的余弦值为( )A. 13B. 12C. 23D. 634.如图所示,三棱柱OAB —O 1A 1B 1中,平面OBB 1O 1⊥平面OAB ,∠O 1OB =60°,∠AOB =90°,且OB =OO 1=2,OA =3,求异面直线A 1B 与AO 1所成角的余弦值.【课堂小结】用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量.共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.3.2.1 直线的方向向量与直线的向量方程(二)一、基础过关1.若直线l 1的方向向量与l 2的方向向量的夹角是150°,则l 1与l 2这两条异面直线所成的角等于( )A .30°B .150°C .30°或150°D .以上均错 2.如图,在正方体ABCD —A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于 ( )A .ACB .BDC .A 1D D .A 1A3.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成角的大小为( )A .60°B .90°C .105°D .75°4.已知A (3,0,-1)、B (0,-2,-6)、C (2,4,-2),则△ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .以上都不对5.A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( ) A.3010 B.12 C.3015 D.1510 6.在△ABC 中,已知AB →=(2,4,0),BC →=(-1,3,0),则∠ABC =________.二、能力提升7.设ABCD 、ABEF 都是边长为1的正方形,F A ⊥平面ABCD ,则异面直线AC 与BF 所成的角为________.8.已知空间三点A (0,0,1),B (-1,1,1),C (1,2,-3),若直线AB 上一点M ,满足CM ⊥AB ,则点M 的坐标为________.9.已知两点A (1,-2,3),B (2,1,-1),则AB 连线与xOz 平面的交点坐标是____________.10.在正方体ABCD —A 1B 1C 1D 1中,M 是棱DD 1的中点,O 为正方形ABCD 的中心,证明OA 1⊥AM .11.如图所示,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,N是A1A的中点.(1)求BN的长;(2)求异面直线BA1与CB1所成角的余弦值.12.直四棱柱ABCD—A1B1C1D1中,底面ABCD是矩形,AB=2,AD=1,AA1=3,M是BC的中点.在DD1上是否存在一点N,使MN⊥DC1?并说明理由.三、探究与拓展13.已知△ABC,∠C=90°,SA⊥面ABC,且AC=2,BC=13,SB=29,求异面直线CS与AB所成角的余弦值.。
高二数学教案 必修2 直线方程——两点式(截距式) 班级 姓名 教学目标(1)掌握直线方程的两点式、截距式,了解截距式是两点式的特殊情况;(2)能够根据条件选择恰当的方法求直线的方程;(3)能认识到等截距的多解性,并能很好的解决相关问题。
复习提问:上一节课,我们学习了直线的哪些表达式?创设问题情境,引出问题情境。
过两定点的直线方程该如何求解?已知直线l 经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2),如何求l 的方程.先求直线l 的斜率k =y 2-y 1x 2-x 1,再利用点斜式方程求解,得出y -y 1=y 2-y 1x 2-x 1(x -x 1). 已知直线过两点P 1(x 1,y 1)、P 2(x 2,y 2),则其方程为y -y 1y 2-y 1=x -x 1x 2-x 1 (x 1≠x 2且y 1≠y 2),称为直线的两点式方程.【精典范例】例1:已知直线l 与x 轴的交点(,0)a ,与y 轴的交点(0,)b ,其中0,0a b ≠≠,求直线l 的方程.【解】∵l 经过两点(,0)a ,(0,)b ,代入两点式得:000y x a b a --=--,即1x y a b+=. 点评:(1)以上方程是由直线在x 轴与y 轴上的截距确定,叫做直线方程的截距式;(2)截距式方程适用范围是0,0a b ≠≠.(3)当直线l 过原点时,在x 轴与y 轴上的截距都为0.例2:三角形的顶点是(5,0)A -、(3,3)B -、(0,2)C ,求这个三角形三边所在直线方程.点评:过两点1122(,),(,)P x y Q x y 的直线能写成两点式的条件是12x x ≠且12y y ≠,如果没有这个条件,就必须分类讨论,这点容易被忽略;只有当直线在坐标轴上的截距都不为零时,才可以用直线方程的截距式. 练习:1.直线324x y -=的截距式方程为1423x y +=-.2.根据下列条件,求直线的方程:(1)过点(3,4)A 和(3,2)B -;3x =; (2)在x 轴上、y 轴上的截距分别是2,3-;123x y -=;(3)过点(1,4)A -,且在x 轴上的截距为3.30x y +-=.3.求经过点(3,4)-且在两坐标轴上截距相等的直线方程是430x y +=10x y ++=或例3:求经过点(4,3)-且在两坐标轴上的截距绝对值相等的直线方程.分析: 涉及直线在坐标轴上的截距时,可选择直线方程的截距式.【解】设直线在x 轴与y 轴上的截距分别为,a b ,①当0,0a b ≠≠时,设直线方程为1x y a b +=, ∵直线经过点(4,3)-,∴431a b-=, ∵||||a b =,∴11a b =⎧⎨=⎩或77a b =⎧⎨=-⎩,∴直线方程为 10x y +-=或70x y --=;②当0a b ==时,则直线经过原点及(4,3)-,∴直线方程为 340x y +=,综上,所求直线方程为10x y +-=或70x y --=或340x y +=.点评:题设中涉及到了直线在两坐标轴上的截距,因此可考虑用截距式,但应注意到截距能否为零,这是应用截距式求直线方程最易出错和疏忽的地方.例4:直线l 与两坐标轴在第一象限围成的三角形面积为2,两截距之差为3,求直线l 的方程. 分析:根据题意,直线l 在两坐标轴上截距都大于零,因此可以用截距式方程.【解】由题意,直线l 在两坐标轴上截距都大于零, 故可设直线方程为1x y a b+=(0,0)a b >>, 由已知得:122||3ab a b ⎧=⎪⎨⎪-=⎩,解得14a b =⎧⎨=⎩或41a b =⎧⎨=⎩或14a b =-⎧⎨=-⎩(舍)或41a b =-⎧⎨=-⎩(舍) ∴直线方程为14x y +=或14y x +=. 练习:求过点(2,1)P -,在x 轴和y 轴上的截距分别为,a b ,且满足3a b =的直线方程.答案:分截距为零、不为零两种情况讨论,可得所求直线方程为310x y ++=或12y x =-.后记:高二数学学案 必修2 直线方程——两点式(截距式) 班级 姓名 我的学习目标(1)掌握直线方程的两点式、截距式,了解截距式是两点式的特殊情况;(2)能够根据条件选择恰当的方法求直线的方程;(3)能认识到等截距的多解性,并能很好的解决相关问题。