深圳宝安区展华实验学校数学整式的乘法与因式分解单元测试卷附答案
- 格式:doc
- 大小:1.05 MB
- 文档页数:11
深圳市宝安区实验学校数学整式的乘法与因式分解单元达标训练题(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.把多项式2425m -分解因式正确的是( )A .(45)(45)m m +-B .(25)(25)m m +-C .(5)(5)m m -+D .(5)(5)m m m -+【答案】B【解析】利用公式法分解因式的要点,根据平方差公式:()()22a b a b a b -=+-,分解因式为:()()()222425252525m m m m -=-=+-.故选B.3.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为 ( )A .6B .7C .8D .9【答案】C【解析】【分析】设2为a ,3为b ,则根据5张边长为2的正方形纸片的面积是5a 2,4张边长分别为2、3的矩形纸片的面积是4ab ,6张边长为3的正方形纸片的面积是6a 2,得出a 2+4ab+4b 2=(a+2b )2,再根据正方形的面积公式将a 、b 代入,即可得出答案.【详解】解:设2为a ,3为b ,则根据5张边长为2的正方形纸片的面积是5a 2,4张边长分别为2、3的矩形纸片的面积是4ab ,6张边长为3的正方形纸片的面积是6b 2,∵a 2+4ab+4b 2=(a+2b )2,(b >a )∴拼成的正方形的边长最长可以为a+2b=2+6=8,故选C .【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出a 2+4ab+4b 2=(a+2b )2,用到的知识点是完全平方公式.4.下列能用平方差公式分解因式的是( )A .21x -B .()21x x +C .21x +D .2x x - 【答案】A【解析】根据平方差公式:()()22a b a b a b -=+-,A 选项:()()2111x x x -=+-,可知能用平方差公式进行因式分解.故选:A.5.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).6.下列各式不能用公式法分解因式的是( )A .92-xB .2269a ab b -+-C .22x y --D .21x -【答案】C【解析】【分析】根据公式法有平方差公式、完全平方公式,可得答案.【详解】A 、x 2-9,可用平方差公式,故A 能用公式法分解因式;B 、-a 2+6ab-9 b 2能用完全平方公式,故B 能用公式法分解因式;C 、-x 2-y 2不能用平方差公式分解因式,故C 正确;D 、x 2-1可用平方差公式,故D 能用公式法分解因式;故选C .【点睛】本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.7.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .8.下列运算正确的是( )A .()2224a a -=-B .()222a b a b +=+C .()257a a =D .()()2224a a a -+--=- 【答案】D【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】22(2)4a a -=,故选项A 不合题意;222()2a b a ab b +=++,故选项B 不合题意;5210()a a =,故选项C 不合题意;22(24)()a a a -+--=-,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.9.如果是个完全平方式,那么的值是( ) A .8 B .-4 C .±8 D .8或-4【答案】D【解析】试题解析:∵x 2+(m -2)x +9是一个完全平方式,∴(x ±3)2=x 2±2(m -2)x +9,∴2(m -2)=±12,∴m =8或-4.故选D .10.若33×9m =311 ,则m 的值为 ( )A .2B .3C .4D .5【答案】C【解析】【分析】根据同底数幂的乘法的性质,幂的乘方的性质,可得关于m 的方程,解方程即可求得答案.【详解】∵33×9m =311 ,∴33×(32)m=311,∴33+2m=311,∴3+2m=11,∴2m=8,解得m=4,故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.若a-b=1,则222a b b--的值为____________.【答案】1【解析】【分析】先局部因式分解,然后再将a-b=1代入,最后在进行计算即可.【详解】解:222--a b b=(a+b)(a-b)-2b=a+b-2b=a-b=1【点睛】本题考查了因式分解的应用,弄清题意、并根据灵活进行局部因式分解是解答本题的关键.12.5(m-n)4-(n-m)5可以写成________与________的乘积.【答案】 (m-n)4,(5+m-n)【解析】把多项式5(m-n)4-(n-m)5运用提取公因式法因式分解即可得5(m-n)4-(n-m)5=(m -n)4(5+m-n).故答案为:(m-n)4,(5+m-n).13.已知(a﹣2016)2+(2018﹣a)2=20,则(a﹣2017)2的值是 .【答案】9【解析】(a﹣2016)2+(2018﹣a)2=20,(a﹣2016)2+(a-2018)2=20,令t=a-2017,∴(t+1)2+(t-1)2=20,2t2=18,t2=9,∴(a﹣2017)2=9.故答案为9.点睛:掌握用换元法解方程的方法.14.若m+1m =3,则m 2+21m=_____. 【答案】7【解析】 分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.15.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.分解因式6xy 2-9x 2y -y 3 = _____________.【答案】-y(3x -y)2【解析】【分析】先提公因式-y ,然后再利用完全平方公式进行分解即可得.【详解】6xy 2-9x 2y -y 3=-y(9x 2-6xy+y 2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.17.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.若(2x ﹣3)x+5=1,则x 的值为________.【答案】2或1或-5【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立;(2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立; (3)当x+5=0时,x=−5,此时()0103--=1,等式成立.综上所述,x 的值为:2,1或−5.故答案为2,1或−5.19.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.【答案】70.【解析】【分析】由周长和面积可分别求得a+b 和ab 的值,再利用因式分解把所求代数式可化为ab (a+b ),代入可求得答案【详解】∵长、宽分别为a 、b 的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10, ∴a 2b+ab 2=ab (a+b )=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab (a+b )是解题的关键.20.分解因式:32231827m m n mn -+=____________________【答案】23(3)m m n -【解析】【分析】先提公因式3m ,然后再利用完全平方公式进行分解即可得.【详解】3322m 18m n 27mn -+=3m(m 2-6mn+9n 2)=3m(m-3n)2,故答案为:3m(m-3n)2.【点睛】本题考查了提公因式法与公式法的综合运用,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.。
《整式的乘法与因式分解》单元测试卷(时间:120分钟满分:150分)一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×10174.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±15.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 06. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 667.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=38.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3二、填空题9.若x+=3,分式(x-)2=________.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.11.已知8×2m×16m=211,则m的值为____.12.若27m÷9÷3=321,则m=_____.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.16.计算(﹣A 2B )3=__.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.18.计算:(x+3)(x-5)-x(x-2).19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?参考答案一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B[答案]B[解析]大正方形的面积=(A -B )2,还可以表示为A 2-2A B +B 2,∴(A -B )2=A 2-2A B +B 2.故选B .2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B[答案]A[解析][分析]先将式子展开,再根据展开后的式子求m和n.[详解](x-A )(x+B )=x2+mx+n故选A[点睛]此题重点考察学生对整式乘法的理解,整式乘法的法则是解题的关键.3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×1017[答案]D[解析]试题分析:根据题意得:第⑧个式子为5555555552-4444444452=(555555555+444444445)×(555555555-444444445)=1.1111111×1017.故选D .考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数.4.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±1[答案]B[解析]试题分析:根据同底数幂相乘除和幂的乘方,直接计算可得x m+1x m-1÷(x m) 2=1.故选:B点睛:此题主要考查了幂的运算性质,解题时直接应用幂的运算性质,再根据幂的混合运算的顺序计算即可.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.5.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 0[答案]B[解析][分析]先把27x×9y 进行转换再求值.[详解]故选B[点睛]此题重点考察学生对整式乘法的应用,根据规律化简是解题的关键.6. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 66[答案]B[解析]试题分析:归纳总结得到展开式中第三项系数即可.解:解:(A +B )2=A 2+2A B +B 2;(A +B )3=A 3+3A 2B +3A B 2+B 3;(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4;(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5;(A +B )6=A 6+6A 5B +15A 4B 2+20A 3B 3+15A 2B 4+6A B 5+B 6;(A +B )7=A 7+7A 6B +21A 5B 2+35A 4B 3+35A 3B 4+21A 2B 5+7A B 6+B 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(A +B )10的展开式第三项的系数为45.故选B .考点:完全平方公式.[此处有视频,请去附件查看]7.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=3 [答案]C[解析]试题解析:∵(x-5)(2x-n)=2x2+mx-15,∴2x2+(-n-10)x-5n=2x2+mx-15∴5n=-15,-n-10=m,解得:n=-3,m=7,故选C .[点睛]此题主要考查了因式分解法的应用,正确得出各项对应相等是解题关键.8.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3[答案]C[解析][分析]先用整式乘法将式子展开,再根据展开式中不含的要求求出k的值.[详解](y2-ky+2y)(-y)=要使展开式中不含的项,则故选C[点睛]此题重点考察学生对整式乘法的理解,因式分解是解题的关键.二、填空题9.若x+=3,分式(x-)2=________.[答案]5[解析]因为x+=3,(x-)2=x2-2+()2= x2-2+()2+4-4= x2+2+()2-4=(x-)2-4=9-4=5.故答案是:5.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.[答案]-32[解析][分析]先化简再把A =-2带入求值.[详解]:解:(B -A )(A +B )(A 2+B 2)-(A 4+B 4)= (B 2-A 2)(A 2+B 2)-(A 4+B 4)=(B 4-A 4) -(A 4+B 4)=-2A 4∵A =-2,∴原式=-2×(-2)4=-32.故答案为:-32.[点睛]此题重点考察学生对整式乘法的理解,会正确使用平方差公式是解题的关键.11.已知8×2m×16m=211,则m的值为____.[答案][解析][分析]先把式子左边化简成2n的形式,即可求得m的值.[详解]8×2m×16m=211故答案为[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.12.若27m÷9÷3=321,则m=_____.[答案]8[解析][分析]先把式子左边化简成3n的形式,即可求得m的值.[详解]27m÷9÷3=321故答案为8[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).[答案](A +B )2-4A B[解析][分析]根据图形先求出大正方形的面积,然后再减去四个长方形的面积.[详解]小正方形的边长为:(A -B ),∴面积为(A -B )2,小正方形的面积=大正方形的面积-4×长方形的面积=(A +B )2-4A B故答案为(A +B )2-4A B[点睛]此题重点考察学生对整式乘法中完全平方公式的理解,关键公式计算小正方形面积是解题的关键. 14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.[答案](B -2n)(A -m)[解析][分析]利用平移的方法先找出空地的长和宽,再计算面积即可.[详解]利用平移的方法可知:空地长为A -m,宽为B -2n,图中空地面积用含有A 、B 、m、n的代数式表示是(B -2n)(A -m)[点睛]解题的关键在于找到空地的长和宽,再利用长方形面积计算公式列出式子.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.[答案] (1). (1)-(x2-x);(2). (2)-(2xy2-3x2-2y2);(3). (3)-(A 3-2A 2+A -1);(4). (4)-(3x2y2+2x3-y3).[解析][分析]要使(1)(2)(3)(4)的最高次项系数变为正数,仔细观察每个最高次项系数都是负数,则直接在整个式子前加负号即可.[详解](1)-x2+x=-(x2-x);(2)3x2-2xy2+2y2=-(2xy2-3x2-2y2);(3)-A 3+2A 2-A +1=-(A 3-2A 2+A -1);(4)-3x2y2-2x3+y3=-(3x2y2+2x3-y3);故答案为(1)-(x2-x);(2)-(2xy2-3x2-2y2);(3)-(A 3-2A 2+A -1);(4)-(3x2y2+2x3-y3).[点睛]此题重点考察学生对多项式最高次数项的认识,抓住最高次项系数为正数是解题的关键.16.计算(﹣A 2B )3=__.[答案]−A 6B 3[解析][分析]根据积的乘方的运算方法:(A B )n=A n B n,求出(-A 2B )3的值是多少即可.[详解](-A 2B )3=(−)3⋅(A 2)3⋅B 3=−A 6B 3.故答案为:−A 6B 3.[点睛]本题考查了幂的乘方与积的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方的运算法则.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.[答案]224.[解析][分析]先把A =2,n=3带入x=3A n,y=-A 2n-1求出x和y,再带入A n x-A y计算即可.[详解]A n x-A y=A n×3A n-A ×(-A 2n−1)=3A 2n+A 2n=A 2n∵A =2,n=3,∴A 2n =×26=224.[点睛]此题重点考察学生对整式乘法的应用能力,熟练整式乘法法则是解题的关键.18.计算:(x+3)(x-5)-x(x-2).[答案]-15.[解析][分析]先利用整式乘法进行展开,再合并同类项进行计算.[详解]原式=x2-5x+3x-15-x2+2x=-15.[点睛]此题重点考察学生对整式乘法的应用,熟悉整式乘法是解题的关键.19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.[答案](1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)216.[解析]试题分析:(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(A +B )(A -B )=A 2-B 2;(3)从左到右依次利用平方差公式即可求解.试题解析:(1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.[点睛]运用了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?[答案]天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.[解析][分析]根据题意直接列式解答即可,注意整式乘法的运算法则.[详解]依题意得(3.4×102)×22÷(5×102)=3.4×22÷5=14.96.答:天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?[答案]至少要1.35×107mm2的铁皮.[解析][分析]求出正方体表面积即可知道需要多少铁皮.[详解]正方体的表面积为6×(1.5×103)2=6×2.25×106=1.35×107mm2.答:至少要1.35×107mm2的铁皮.[点睛]此题重点考察学生对整式乘法的实际应用能力,会计算正方体表面积是解题的关键.。
(第10题图)第十四章 整式的乘法与因式分解一、选择题1.下列各式由左边到右边的变形为因式分解的是( )A.a 2-b 2+1=(a+b)(a-b)+1B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t2.分解因式:x 3-x,结果为( )A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1)4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 26.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .17、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。
A 、222b ab a ++;B 、222b ab a +--;C 、222b ab a -+-;D 、222b ab a ++-9、已知x 2+kxy+64y 2是一个完全式,则k 的值是( )A 、8B 、±8C 、16D 、±1610、如下图(1),边长为a 的大正方形中一个边长为b小正方形,小明将图(1)的阴影部分拼成了一个矩形,如图(2)。
这一过程可以验证( )A 、a 2+b 2-2ab=(a -b)2 ;B 、a 2+b 2+2ab=(a+b)2 ;C 、2a 2-3ab+b 2=(2a -b)(a -b) ;D 、a 2-b 2=(a+b) (a -b)二、填空题11.若单项式-3x 4a-b y 2与3x 3y a+b 是同类项,则这两个单项式的积为 . 图1 图212.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.13.若16b2+a2+m是完全平方式,则m= .14.分解因式:x3﹣x= .15.因式分解:43a﹣122a+9a= .16、若4x2+kx+25=(2x-5)2,那么k的值是三、解答题17.(8分)因式分解:(1)3a2-27b2; (2)x2-8(x-2).18. (10分)计算:(1)已知a+b=3,ab=-2,求a2+b2和a2-ab+b2的值;(2)已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值;(3)已知a-b=1,a2+b2=25,求ab的值.19.已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2-2ab+b2-4a+4b+4=0,求a,b的值.20、李老师给学生出了一道题:当a=0.35,b= -0.28时,求3323323a ab a b a a b a b a-+++--的值.题目出完后,小聪说:“老师给76336310的条件a=0.35,b= -0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?21、如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b4答案BDCCA BACDD11.-9x 6y 412.013.±8ab14.x (x+1)(x ﹣1).15.a 2(23)a -16.-20;17.解 (1)3a 2-27b 2=3(a 2-9b 2)=3(a+3b)(a-3b);(2)x 2-8(x-2)=x 2-8x+16=(x-4)2.18 (1)a 2+b 2=(a+b)2-2ab=32-2×(-2)=13;a 2-ab+b 2=(a+b)2-3ab=32-3×(-2)=15.(2)∵(x+y)2=x 2+y 2+2xy=1,(x-y)2=x 2+y 2-2xy=49,即解得(3)∵a-b=1,∴(a-b)2=a 2+b 2-2ab=1.∵a 2+b 2=25,∴25-2ab=1,解得ab=12.19.解 ∵长方形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a 2-2ab+b 2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得方程组解得 20.原式=332(7310)(66)(33)0a a b a b +-+-++-=,合并得结果为0,与a 、b 的取值无关,所以小明说的有道理.21.4;6;4;。
一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出2()a b +、2()a b -、ab 之间的等量关系是______;(2)根据(1)中的结论,若5x y +=,94x y ⋅=,则x y -=______; (3)拓展应用:若22(2019)(2020)7m m -+-=,求(2019)(2020)m m --的值.【答案】(1)22()()4a b a b ab +=-+;(2)4,-4:(3)-3【解析】【分析】(1)观察图2,大正方形由4个矩形和一个小正方形组成,根据面积即可得到他们之间的关系.(2)由(1)的结论可得(x-y) ²=16,然后利用平方根的定义求解即可.(3)从已知等式的左边看,左边配成两数和的平方来求解.【详解】解:(1)由题可得,大正方形的面积2()a b =+,大正方形的面积2()4a b ab =-+,∴22()()4a b a b ab +=-+,(2)∵22()()4x y x y xy +=-+, ∴229()()4254164x y x y xy -=+-=-⨯=, ∴4x y -=或-4, (3)∵22(2019)(2020)7m m -+-=,又2(20192020)m m -+-22(2019)(2020)2(2019)(2020)m m m m =-+-+-- ∴172(2019)(2020)m m =+--∴(2019)(2020)3m m --=-故答案为:(1)22()()4a b a b ab +=-+;(2) 4,-4:(3)-3【点睛】本题通过观察图形发现规律,并运用规律求值,使问题简单化是解题关键.2.利用我们学过的知识,可以导出下面这个等式:()()()12222222a b c ab bc ac a b b c c a ⎡⎤++---=-+-+-⎣⎦. 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:222201820192020201820192019202020182020++-⨯-⨯-⨯.【答案】(1)见解析;(2)3.【解析】【分析】(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)12[(a-b )2+(b-c )2+(c-a )2] =12(a 2-2ab+b 2+b 2-2bc+c 2+a 2-2ac+c 2) =12×(2a 2+2b 2+2c 2-2ab-2bc-2ac ) =a 2+b 2+c 2-ab-bc-ac ,故a 2+b 2+c 2-ab-bc-ac=12[(a-b )2+(b-c )2+(c-a )2]正确; (2)20182+20192+20202-2018×2019-2019×2020-2018×2020 =12×[(2018-2019)2+(2019-2020)2+(2020-2018)2] =12×(1+1+4) =12×6 =3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.3.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到()()22322a ab b a b a b ++=++.请回答下列问题:(1)写出图2中所表示的数学等式是 ;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x , y 的式子表示) ;(3)通过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填“ 大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“ 大”或“小”).【答案】(1)22(2)(2)225a b a b a b ab ++=++;(2)22()()4x y x y xy +=-+; (3)大 小【解析】【分析】(1)图2面积有两种求法,可以由长为2a+b ,宽为a+2b 的矩形面积求出,也可以由两个边长为a 与边长为b 的两正方形,及4个长为a ,宽为b 的矩形面积之和求出,表示即可;(2)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式224()()xy x y x y =+--,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;【详解】(1)看图可知,22(2)(2)225a b a b a b ab ++=++(2)22()()4x y x y xy +=-+(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键.4.你会对多项式(x 2+5x+2)(x 2+5x+3)﹣12分解因式吗?对结构较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),能使复杂的问题简单化、明朗化.从换元的个数看,有一元代换、二元代换等.对于(x 2+5x+2)(x 2+5x+3)﹣12.解法一:设x 2+5x =y ,则原式=(y+2)(y+3)﹣12=y 2+5y ﹣6=(y+6)(y ﹣1)=(x 2+5x+6)(x 2+5x ﹣1)=(x+2)(x+3)(x 2+5x ﹣1).解法二:设x 2+5x+2=y ,则原式=y(y+1)﹣12=y 2+y ﹣12=(y+4)(y ﹣3)=(x 2+5x+6)(x 2+5x ﹣1)=(x+2)(x+3)(x 2+5x ﹣1).解法三:设x 2+2=m ,5x =n ,则原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n ﹣3)=(x 2+5x+6)(x 2+5x ﹣1)=(x+2)(x+3)(x 2+5x ﹣1).按照上面介绍的方法对下列多项式分解因式:(1)(x 2+x ﹣4)(x 2+x+3)+10;(2)(x+1)(x+2)(x+3)(x+6)+x 2;(3)(x+y ﹣2xy)(x+y ﹣2)+(xy ﹣1)2.【答案】(1) (x+2)(x-1) (2 x x ++1)(2)(266x x ++)2(3) (x+y-xy-1)2【解析】【分析】(1)令m=2x x +,原式=()()4m 310m -++因式分解即可;(2)()()()()21236x x x x x +++++=(276x x ++)(256x x ++)+2x ,令n=256x x ++,再将原式=(n+2)n+x 2进行因式分解即可;(3)令a=x+y,b=xy ,代入原式即可因式分解.【详解】(1)令m=2x x +,原式=()()4m 310m -++=m 2-m-2=(m-2)(m+1)= (2x x +-2)(2x x ++1)=(x+2)(x-1) (2x x ++1)(2)()()()()21236x x x x x +++++=(276x x ++)(256x x ++)+2x , 令n=256x x ++,原式=(n+2)n+x 2=n 2+2n+x 2=(n+x)2=(266x x ++)2(3) 令a=x+y,b=xy ,原式=()()()2221a b a b --+-=(a-b)2-2(a-b)+1=(x+y-xy-1)2【点睛】此题主要考查复杂的因式分解,解题的关键是读懂材料学会材料中因式分解的方法.5.阅读下列因式分解的过程,解答下列问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述分解因式的方法是____________,共应用了________次;(2)若分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需要应用上述方法________次,结果是________;(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).【答案】(1)提取公因式法,2;(2)2019,(1+x)2020;(3) (1+x)n+1.【解析】【分析】(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.【详解】(1)提取公因式法,2(因式分解的方法是提公因式法,共应用了2次)(2)2019,(1+x)2020(分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需应用上述方法2019次,结果是(1+x)2020)(3)原式=(1+x)[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-1]=(1+x)2[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-2]=(1+x)3[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-3]=(1+x)n(1+x)=(1+x)n+1.【点睛】本题考查的知识点是因式分解-提公因式法,解题的关键是熟练的掌握因式分解-提公因式法.6.阅读理解:把两个相同的数连接在一起就得到一个新数,我们把它称为“连接数”,例如:234234,3939…等,都是连接数,其中,234234称为六位连接数,3939称为四位连接数.(1)请写出一个六位连接数,它(填“能”或“不能”)被13整除.(2)是否任意六位连接数,都能被13整除,请说明理由.(3)若一个四位连接数记为M,它的各位数字之和的3倍记为N,M﹣N的结果能被13整除,这样的四位连接数有几个?【答案】(1)证明见解析(2)abcabc能被13整除(3)这样的四位连接数有1919,2525,3131,一共3个分析:(1)根据六位连接数的定义可知123123为六位连接数,再将123123进行因数分解,判断得出它能被13整除;(2)设abcabc 为六位连接数,将abcabc 进行因数分解,判断得出它能被13整除; (3)设xyxy 为四位连接数,用含x 、y 的代数式表示M 与N ,再计算M ﹣N ,然后将13M N -表示为77x +7y +3413x y +,根据M ﹣N 的结果能被13整除以及M 与N 都是1~9之间的整数,求得x 与y 的值,即可求解.详解:(1)123123为六位连接数;∵123123=123×1001=123×13×77,∴123123能被13整除;(2)任意六位连接数都能被13整除,理由如下:设abcabc 为六位连接数.∵abcabc =abc ×1001=abc ×13×77,∴abcabc 能被13整除;(3)设xyxy 为四位连接数,则M =1000x +100y +10x +y =1010x +101y ,N =3(x +y +x +y )=6x +6y ,∴M ﹣N =(1010x +101y )﹣(6x +6y )=1004x +95y ,∴13M N -=10049513x y +=77x +7y +3413x y +.∵M ﹣N 的结果能被13整除,∴3413x y +是整数.∵3x +4y 取值范围大于3小于63,所以能被13整除的数有13,26,39,52,∴x =1,y =9;x =2,y =5;x =3,y =1;x =8,y =7;x =9,y =3;x =5,y =6;x =6,y =2;满足条件的四位连接数的3131,2525,6262,9393,8787,5656,1919共7个. 点睛:本题考查了因式分解的应用,整式的运算,理解“连接数”的定义是解题的关键.7.对于任意两个数a 、b 的大小比较,有下面的方法:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.请根据以上材料完成下面的题目:(1)已知:228A x y y =+,8B xy =,且A B >,试判断y 的符号;(2)已知:a 、b 、c 为三角形的三边,比较222a c b +-和2ac 的大小.【答案】(1)y >0;(2)222a c b +-<2ac【解析】【分析】(1)根据题意得到22880x y y xy +->,因式分解得到22(2)0y x ->,进而得到y 的符号即可;(2)将222a c b +-和2ac 作差,结合已知及三角形的两边之和大于第三边可求.【详解】解:(1)因为A >B ,所以A-B >0,即22880x y y xy +->,∴222(44)2(2)0y x x y x +-=->,因为2(2)0x -≥,∴y >0(2)因为a 2−b 2+c 2−2ac =a 2+c 2−2ac−b 2=(a−c )2−b 2=(a−c−b )(a−c +b ), ∵a +b >c ,a <b +c ,所以(a−c−b )(a−c +b )<0,所以a 2−b 2+c 2−2ac 的符号为负.∴222a c b +-<2ac【点睛】本题考查了作差法比较两个式子的大小以及因式分解,解题的关键是理解题中的“求差法”比较两个数的大小,并熟练掌握因式分解的方法.8.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式: .(2)利用(1)中得到的结论,解决下面的问题:若a+b+c =10,ab+ac+bc =35,则a 2+b 2+c 2= .(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片拼出一个面积为(2a+b )(a+2b )长方形,则x+y+z = .(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: .【答案】(1)(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ;(2)30;(3)9;(4)x 3﹣x =(x+1)(x ﹣1)x【解析】【分析】(1)依据正方形的面积=(a+b+c )2;正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc ,可得等式;(2)依据a 2+b 2+c 2=(a+b+c )2﹣2ab ﹣2ac ﹣2bc ,进行计算即可;(3)依据所拼图形的面积为:xa 2+yb 2+zab ,而(2a+b )(a+2b )=2a 2+4ab+ab+2b 2=2a 2+5b 2+2ab ,即可得到x ,y ,z 的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c )2;正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc , ∴(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ,故答案为:(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ;(2)∵(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ,∵a+b+c =10,ab+ac+bc =35,∴102=a 2+b 2+c 2+2×35,∴a 2+b 2+c 2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b )(a+2b )=xa 2+yb 2+zab ,∴2a 2+5ab+2b 2=xa 2+yb 2+zab ,∴225x y z =⎧⎪=⎨⎪=⎩,∴x+y+z =9,故答案为:9;(4)∵原几何体的体积=x 3﹣1×1•x =x 3﹣x ,新几何体的体积=(x+1)(x ﹣1)x ,∴x 3﹣x =(x+1)(x ﹣1)x .故答案为:x 3﹣x =(x+1)(x ﹣1)x .【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.9.下面是某同学对多项式()()22676114x x x x -+-++进行因式分解的过程.解:设26x x y -=,原式(7)(11)4y y =+++(第一步) 21881y y =++(第二步)2(9)y =+(第三步)()2269x x =-+.(第四步) 请你回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______;A .提公因式法B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果不彻底,请直接写出因式分解的最后结果_______; (3)仿照以上方法因式分解:()()222221x x x x --++.【答案】(1)C ;(2)4(3)-x ;(3)4(1)x -【解析】【分析】(1)根据公式法分解因式可得答案;(2)先将269x x -+分解因式得2(3)x -,由此得到答案;(3)设22x x y -=,得到原式()21y =+,将22x x y -=代回得到()2221x x -+,再将括号内根据完全平方公式分解即可得到答案.【详解】解:(1)由21881y y ++2(9)y =+是运用了因式分解的两数和的完全平方公式,故选:C ;(2)∵269x x -+=2(3)x -,∴()2269x x -+=4(3)-x ,故答案为:4(3)-x ;(3)设22x x y -=, 原式()21y y =++,221y y =++,()21y =+, ()2221x x =-+, 4(1)x =-.【点睛】此题考查特殊方法分解因式,完全平方公式分解因式法,分解因式时注意应分解到不能再分解为止.10.在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.【答案】(1)可以形成的数字密码是:212814、211428;(2)m的值是56,n的值是17.【解析】【分析】(1)先将多项式进行因式分解,然后再根据数字密码方法形成数字密码即可;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),当x=27时可以得到其中一个密码为242834,得到方程解出p、q、r,然后回代入原多项式即可求得m、n【详解】(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),当x=21,y=7时,x+y=28,x﹣y=14,∴可以形成的数字密码是:212814、211428;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),∵当x=27时可以得到其中一个密码为242834,∴27+p=24,27+q=28,27+r=34,解得,p=﹣3,q=1,r=7,∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴3517m nn-=⎧⎨-=-⎩得,5617mn=⎧⎨=⎩即m的值是56,n的值是17.【点睛】本题属于阅读理解题型,考查知识点以因式分解为主,本题第一问关键在于理解题目中给到的数字密码的运算规则,第二问的关键在于能够将原多项式设成(x+p)(x+q)(x+r),解出p、q、r。
人教版数学八年级上学期《整式的乘法与因式分解》单元测试(时间:120分钟满分:150分)一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a42.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y23.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-154.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 86.计算:(a-b+3)(a+b-3)=()A. a2+b2-9B. a2-b2-6b-9C. a2-b2+6b-9D. a2+b2-2ab+6a+6b+97.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()学_科_网...学_科_网...A. (a+b)2=a2+2ab+b2B. (a-b)2=a2-2ab+b2C. a2-b2=(a+b)(a-b)D. (a+2b)(a-b)=a2+ab-2b28.若m=2200,n=2550,则m,n的大小关系是()A. m>nB. m<nC. m=nD. 无法确定9.多项式77x2-13x-30可分解成(7x+a)(bx+c),其中a,b,c均为整数,求a+b+c之值为何?()A. 0B. 10C. 12D. 2210.观察下列各式及其展开式:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;……请你猜想(a+b)10的展开式第三项的系数是()A. 36B. 45C. 55D. 66二、填空题(每小题3分,共24分)11.计算:(-5a4)·(-8ab2)=______.12.分解因式:ab4-4ab3+4ab2=_______.13.若(2x+1)0=(3x-6)0,则x的取值范围是_______.14.已知|x-y+2|+(x+y-2)2=0,则x2-y2的值为_____.15.已知a m=3,a n=2,则a2m-3n=_____.16.若一个正方形的面积为a2+a+,则此正方形的周长为______.17.已知△ABC的三边长为整数a,b,c,且满足a2+b2-6a-4b+13=0,则c为_____.18.观察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根据上述规律,第n个等式应表示为______.三、解答题(共66分)19.计算:(1) y(2x-y)+(x+y)2;(2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘法公式计算:(1)982;(2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.已知m2=n+2,n2=m+2(m≠n),求m3-2mn+n3的值.25.已知a,b,c为△ABC的三条边的长,试判断代数式a2-2ac+c2-b2的值的符号,并说明理由.26.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法另写一个含有a,b的代数恒等式,并画出与之对应的几何图形.参考答案一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a4【答案】D【解析】A.a3与a2不能合并,故A错误;B. a2⋅a3=a5,故B错误;C. (3a)3=27a3,故C错误;D. (a2)2=a4,故D正确.故选:D.2.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y2【答案】D【解析】【分析】根据积的乘方的运算法则即可解答.【详解】根据积的乘方的运算法则可得:(-x3y)2= x6y2.故选D.【点睛】本题主要考查了积的乘方的运算法则:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘.3.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-15【答案】C【解析】【分析】根据零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则依次计算各项,即可解答.【详解】选项A,根据零指数幂的性质可得(-2)0=1,选项A正确;选项B,根据单项式除以单项式的运算法则可得28x4y2÷7x3=4xy2,选项B正确;选项C,根据多项式除以单项式的运算法则可得(4xy2-6x2y+2xy)÷2xy=2y-3x+1,选项C错误;选项D,根据多项式乘以多项式的运算法则可得(a-5)(a+3)=a2-2a-15,选项D正确.故选C.【点睛】本题考查了零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则,熟记法则是解题的关键.4.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)【答案】B【解析】试题解析:A、原式=a2b(a2-6a+9)=a2b(a-3)2,错误;B、原式=(x-)2,正确;C、原式不能分解,错误;D、原式=(2x+y)(2x-y),错误,故选B考点:因式分解-运用公式法;因式分解-提公因式法.5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 8【答案】B【解析】试题分析:把等式右边根据平方差公式去括号后即可得到结果。
人教版数学八年级上学期《整式的乘法与因式分解》单元测试考试时间:100分钟;满分:100分第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(2019春•苍南县期末)下列计算正确的是()A.a3+a3=a6B.(﹣ab3)2=a2b6C.﹣2a2b3•4ab2c=﹣8a3b5D.﹣a8÷a2=﹣a42.(2019春•山亭区期末)下列各式从左到右的变形属于因式分解的是()A.(x+2(x﹣2)=x2﹣4B.x2﹣4+4x=(x+2)(x﹣2)+4xC.x2(x)(x)D.x2x(x)23.(2018秋•浦东新区期末)若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有()A.5个B.4个C.3个D.2个4.(2018秋•杭锦后旗期末)下列可以运用平方差公式运算的有()①(a+b)(﹣b+a);②(﹣a+b)(a﹣b);③(a+b)(﹣a﹣b);④(a﹣b)(﹣a﹣b)A.1个B.2个C.3个D.4个5.(2019春•莘县期末)计算(﹣3)m+2×(﹣3)m﹣1,得()A.3m﹣1B.(﹣3)m﹣1C.﹣(﹣3)m﹣1D.(﹣3)m6.(2019春•芷江县期末)若3×32m×33m=321,则m的值为()A.2 B.3 C.4 D.57.(2019春•桂林期末)已知(a+b)2=36,(a﹣b)2=16,则代数式a2+b2的值为()A.36 B.26 C.20 D.168.(2018春•龙华区期末)将边长分别为a和b的两个正方形如图所示放置,则图中阴影部分的面积是()A.b2B.a2C.a2b2D.ab9.(2018秋•沛县期末)设a=255,b=333,c=422,则a、b、c的大小关系是()A.c<a<b B.a<b<c C.b<c<a D.c<b<a10.(2019春•嘉兴期末)如图,有甲、乙、丙三种纸片各若干张,其中甲、乙分别是边长为a(cm)、b(cm)的正方形,丙是长为b(cm),宽为a(cm)的长方形.若同时用甲、乙、丙纸片分别为4张、1张、4张拼成正方形,则拼成的正方形的边长为()A.(a+2b)cm B.(a﹣2b)cm C.(2a+b)cm D.(2a﹣b)cm第Ⅱ卷(非选择题)二.填空题(共6小题,满分24分,每小题4分)11.(2019春•杭州期末)若多项式9x2﹣mx+1(m是常数)是一个关于x的完全平方式,则m的值为12.(2018秋•巢湖市期末)已知a+b=6,ab=3,则ab=.13.(2018秋•宽城区月考)在边长为a的正方形中剪掉一个边长为b的小正方形(a>b),再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是.14.(2019春•灌云县期末)若a m=2,a n,则a3m﹣2n=.15.(2018秋•蔡甸区期末)已知:x2﹣8x﹣3=0,则(x﹣1)(x﹣3)(x﹣5)(x﹣7)的值是.16.(2019春•碑林区校级期末)运用因式分解简便计算2×2022+4×202×98+2×982=.(要求:写出运算过程)评卷人得分三.解答题(共6小题,满分46分)17.(6分)(2018秋•岳麓区校级月考)计算题:(1)(﹣2x2)3•(﹣3x3)2•(x2)3÷x8(2)(﹣x)5÷x3n﹣1•x3n•(﹣x)3(3).18.(6分)(2018秋•高平市期末)下面是某同学对多项式(x2﹣2x﹣1)(x2﹣2x+3)+4进行因式分解的过程,解:设x2﹣2x=y原式=(y﹣1)(y+3)+4(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2﹣2x+1)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?(填“彻底”或者“不彻底”)若不彻底.请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.19.(8分)(2018春•东海县期末)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,25)=,(5,1)=,(3,)=.(2)小明在研究这种运算时发现一个特征:(3n,4n)=(3,4),(3)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).试解决下列问题:①计算(8,1000)﹣(32,100000)②请你尝试运用这种方法证明下面这个等式:(3,20)﹣(3,4)=(3,5)20.(8分)(2019春•娄星区期末)小明在做一道计算题目(2+1)(22+1)(24+1)(28+1)(216+1)的时候是这样分析的:这个算式里面每个括号内都是两数和的形式,跟最近学的两大公式作对比,发现跟平方差公式很类似,但是需要添加两数的差,于是添了(2﹣1),并做了如下的计算:(2+1)(22+1)(24+1)(28+1)(216+1)=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22﹣1)(22+1)(24+1)(28+1)(216+1)=232﹣1请按照小明的方法,计算(3+1)(32+1)(34+1)(38+1)(316+1)21.(8分)(2019春•迁西县期末)请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:;方法2:.(2)从中你能发现什么结论?请用等式表示出来:;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.22.(10分)(2019春•平川区期末)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b),是否可以因式分解呢?当然可以,而且也很简单.如:x2+4x+3=x2+(1+3)x+1×3=(x+1)(x+3);x2﹣4x﹣5=x2+(1﹣5)x+1×(﹣5)=(x+1)(x﹣5)请你仿照上述方法分解因式;(1)x2﹣7x﹣18;(2)x2+12xy﹣13y2;参考答案一.选择题(共10小题,满分30分,每小题3分)1.(2019春•苍南县期末)下列计算正确的是()A.a3+a3=a6B.(﹣ab3)2=a2b6C.﹣2a2b3•4ab2c=﹣8a3b5D.﹣a8÷a2=﹣a4【解析】解:A.a3+a3=2a3,错误;B.(﹣ab3)2=a2b6,正确;C.﹣2a2b3•4ab2c=﹣8a3b5c,错误;D.﹣a8÷a2=﹣a6,错误.故选:B.【点睛】本题考查了同底数幂乘法,幂的乘方与积的乘方,单项式的乘法,合并同类项,熟练掌握法则并准确计算是解题关键.2.(2019春•山亭区期末)下列各式从左到右的变形属于因式分解的是()A.(x+2(x﹣2)=x2﹣4B.x2﹣4+4x=(x+2)(x﹣2)+4xC.x2(x)(x)D.x2x(x)2【解析】解:因式分解把一个多项式化为几个整式的积的形式,故A、B错,C选项右边含有分式,不是几个整式的积的形式,故C错误,D选项为完全平方式正确,故选:D.【点睛】此题考查了因式分解的概念,熟练掌握和理解因式分解的概念是解题关键.3.(2018秋•浦东新区期末)若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有()A.5个B.4个C.3个D.2个【解析】解:如果(x+6)x+1=1成立,则x+1=0或x+6=1或﹣1,即x=﹣1或x=﹣5或x=﹣7,当x=﹣1时,(x+6)0=1,当x=﹣5时,1﹣4=1,当x=﹣7时,(﹣1)﹣6=1,故选:C.【点睛】本题主要考查了零指数幂的意义和1的指数幂.4.(2018秋•杭锦后旗期末)下列可以运用平方差公式运算的有()①(a+b)(﹣b+a);②(﹣a+b)(a﹣b);③(a+b)(﹣a﹣b);④(a﹣b)(﹣a﹣b)A.1个B.2个C.3个D.4个【解析】解:①(a+b)(﹣b+a)=(a+b)(a﹣b),符合平方差公式;②(﹣a+b)(a﹣b)=﹣(a﹣b)2,不符合平方差公式;③(a+b)(﹣a﹣b)=﹣(a+b)2,不符合平方差公式;④(a﹣b)(﹣a﹣b)=﹣(a﹣b)(a+b),符合平方差公式;所以有①④两个可以运用平方差公式运算.故选:B.【点睛】此题考查了平方差公式的结构.解题的关键是准确认识公式,正确应用公式.5.(2019春•莘县期末)计算(﹣3)m+2×(﹣3)m﹣1,得()A.3m﹣1B.(﹣3)m﹣1C.﹣(﹣3)m﹣1D.(﹣3)m【解析】解:(﹣3)m+2×(﹣3)m﹣1=(﹣3)m﹣1(﹣3+2)=﹣(﹣3)m﹣1.故选:C.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.6.(2019春•芷江县期末)若3×32m×33m=321,则m的值为()A.2 B.3 C.4 D.5【解析】解:已知等式整理得:35m+1=321,可得5m+1=21,解得:m=4,故选:C.【点睛】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.7.(2019春•桂林期末)已知(a+b)2=36,(a﹣b)2=16,则代数式a2+b2的值为()A.36 B.26 C.20 D.16【解析】解:已知等式整理得:(a+b)2=a2+b2+2ab=36①,(a﹣b)2=a2+b2﹣2ab=16②,①+②得:2(a2+b2)=52,则a2+b2=26,故选:B.【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.8.(2018春•龙华区期末)将边长分别为a和b的两个正方形如图所示放置,则图中阴影部分的面积是()A.b2B.a2C.a2b2D.ab【解析】解:∵S阴影=a2+b2b2(a+b)a(a﹣b)a∴S阴影b2故选:A.【点睛】本题考查了完全平方公式的几何背景,关键是利用面积法解决问题9.(2018秋•沛县期末)设a=255,b=333,c=422,则a、b、c的大小关系是()A.c<a<b B.a<b<c C.b<c<a D.c<b<a【解析】解:∵a=255=(25)11=3211,b=333=(33)11=2711c=422=(42)11=1611,∴c<b<a.故选:D.【点睛】此题主要考查了负整数指数幂的性质以及有理数的大小比较,正确将原式变形是解题关键.10.(2019春•嘉兴期末)如图,有甲、乙、丙三种纸片各若干张,其中甲、乙分别是边长为a(cm)、b(cm)的正方形,丙是长为b(cm),宽为a(cm)的长方形.若同时用甲、乙、丙纸片分别为4张、1张、4张拼成正方形,则拼成的正方形的边长为()A.(a+2b)cm B.(a﹣2b)cm C.(2a+b)cm D.(2a﹣b)cm【解析】解;4张边长为a的正方形纸片的面积是4a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,1张边长为b的正方形纸片的面积是b2,∵4a2+4ab+b2=(2a+b)2,∴拼成的正方形的边长为(2a+b),故选:C.【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出4a2+4ab+b2=(2a+b)2,用到的知识点是完全平方公式.二.填空题(共6小题,满分24分,每小题4分)11.(2019春•杭州期末)若多项式9x2﹣mx+1(m是常数)是一个关于x的完全平方式,则m的值为±6【解析】解:∵9x2﹣mx+1是一个完全平方式,∴﹣mx=±2•3x•1,∴m=±6,故答案为:±6【点睛】本题考查了完全平方式,能熟记完全平方式的特点是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2﹣2ab+b2.12.(2018秋•巢湖市期末)已知a+b=6,ab=3,则ab=12.【解析】解:∵a+b=6,∴(a+b)2=a2+2ab+b2=36,∵ab=3,∴a2+2×3+b2=36,解得a2+b2=36﹣6=30.所以:,故答案为:12.【点睛】本题是对完全平方公式的考查,学生经常漏掉乘积二倍项而导致出错.13.(2018秋•宽城区月考)在边长为a的正方形中剪掉一个边长为b的小正方形(a>b),再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是a2﹣b2=(a+b)(a﹣b).【解析】解:由题可得:a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2=(a+b)(a﹣b).【点睛】本题主要考查了平方差公式的几何表示,表示出图形阴影部分面积是解题的关键.14.(2019春•灌云县期末)若a m=2,a n,则a3m﹣2n=128.【解析】解:∵a m=2,a n,∴a3m﹣2n=(a m)3÷(a n)28128.故答案为:128【点睛】本题主要考查了同底数幂的除法以及幂的乘方,熟练掌握幂的运算法则是解答本题的关键.15.(2018秋•蔡甸区期末)已知:x2﹣8x﹣3=0,则(x﹣1)(x﹣3)(x﹣5)(x﹣7)的值是180.【解析】解:∵x2﹣8x﹣3=0,∴x2﹣8x=3(x﹣1)(x﹣3)(x﹣5)(x﹣7)=(x2﹣8x+7)(x2﹣8x+15),把x2﹣8x=3代入得:原式=(3+7)(3+15)=180.故答案是:180.【点睛】本题考查了整式的混合运算,正确理解乘法公式,对所求的式子进行变形是关键.16.(2019春•碑林区校级期末)运用因式分解简便计算2×2022+4×202×98+2×982=180000.(要求:写出运算过程)【解析】解:2×2022+4×202×98+2×982=2(2022+2×202×98+982)=2(202+98)2=2×3002=2×90000=180000.故答案为:180000【点睛】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.三.解答题(共6小题,满分46分)17.(6分)(2018秋•岳麓区校级月考)计算题:(1)(﹣2x2)3•(﹣3x3)2•(x2)3÷x8(2)(﹣x)5÷x3n﹣1•x3n•(﹣x)3(3).【解析】解:(1)(﹣2x2)3•(﹣3x3)2•(x2)3÷x8=﹣8x6•9x6•x6÷x8=﹣72x6+6+6﹣8=﹣72x10;(2)(﹣x)5÷x3n﹣1•x3n•(﹣x)3=x5÷x3n﹣1•x3n•x3=x5﹣3n+1+3n+3=x9;(3)=﹣2﹣2018×22019=﹣2﹣2018+2019=﹣2.【点睛】考查了单项式乘单项式,同底数幂的除法以及幂的乘方与积的乘方,难度不大,但需要熟记相关的计算法则.18.(6分)(2018秋•高平市期末)下面是某同学对多项式(x2﹣2x﹣1)(x2﹣2x+3)+4进行因式分解的过程,解:设x2﹣2x=y原式=(y﹣1)(y+3)+4(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2﹣2x+1)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了C.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?不彻底(填“彻底”或者“不彻底”)若不彻底.请直接写出因式分解的最后结果(x﹣1)4.(3)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.【解析】解:(1)运用了两数和的完全平方公式,故选:C;(2)原式=[(x﹣1)2]2=(x﹣1)4,故答案为:不彻底,(x﹣1)4;(3)设x2﹣4x=y,原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4,即(x2﹣4x)(x2﹣4x+8)+16=(x﹣2)4.【点睛】本题考查了分解因式,能正确运用完全平方公式进行分解因式是解此题的关键,注意:a2+2ab+b2=(a+b)2,a2﹣2ab+b2=(a﹣b)2.19.(8分)(2018春•东海县期末)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,25)=2,(5,1)=0,(3,)=﹣2.(2)小明在研究这种运算时发现一个特征:(3n,4n)=(3,4),(3)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).试解决下列问题:①计算(8,1000)﹣(32,100000)②请你尝试运用这种方法证明下面这个等式:(3,20)﹣(3,4)=(3,5)【解析】解:(1)∵52=25,∴(5,25)=2;∵50=1,∴(5,1)=0;∵3﹣2,∴(3,)=﹣2;故答案为2,0,﹣2;(3)①(8,1000)﹣(32,100000)=(23,103)﹣(25,105)=(2,10)﹣(2,10)=0;②设3x=4,3y=5,则3x•3y=3x+y=4×5=20,所以(3,4)=x,(3,5)=y,(3,20)=x+y,∴(3,20)﹣(3,4)=x+y﹣x=y=(3,5),即:(3,20)﹣(3,4)=(3,5)【点睛】本题考查了幂的乘方,熟练掌握幂的乘方根式是解题的关键.20.(8分)(2019春•娄星区期末)小明在做一道计算题目(2+1)(22+1)(24+1)(28+1)(216+1)的时候是这样分析的:这个算式里面每个括号内都是两数和的形式,跟最近学的两大公式作对比,发现跟平方差公式很类似,但是需要添加两数的差,于是添了(2﹣1),并做了如下的计算:(2+1)(22+1)(24+1)(28+1)(216+1)=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22﹣1)(22+1)(24+1)(28+1)(216+1)=232﹣1请按照小明的方法,计算(3+1)(32+1)(34+1)(38+1)(316+1)【解析】解:原式(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)(32﹣1)(32+1)(34+1)(38+1)(316+1)(34﹣1)(34+1)(38+1)(316+1)(38﹣1)(38+1)(316+1)(316﹣1)(316+1)(332﹣1).【点睛】本题考查平方差公式的应用,熟悉平方差公式的结构是解题的关键.21.(8分)(2019春•迁西县期末)请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:a2+b2;方法2:(a+b)2﹣2ab.(2)从中你能发现什么结论?请用等式表示出来:a2+b2=(a+b)2﹣2ab;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.【解析】解:(1)由题意可得:方法1:a2+b2方法2:(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)a2+b2=(a+b)2﹣2ab,故答案为:a2+b2=(a+b)2﹣2ab;(3)∵阴影部分的面积=S正方形ABCD+S正方形CGFE﹣S△ABD﹣S△BGF=a2+b2a2(a+b)b∴阴影部分的面积a2b2ab[(a+b)2﹣2ab]ab,∵a+b=ab=4,∴阴影部分的面积[(a+b)2﹣2ab]ab=2.【点睛】本题考查了完全平方公式的几何背景,用代数式表示图形的面积是本题的关键.22.(10分)(2019春•平川区期末)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b),是否可以因式分解呢?当然可以,而且也很简单.如:x2+4x+3=x2+(1+3)x+1×3=(x+1)(x+3);x2﹣4x﹣5=x2+(1﹣5)x+1×(﹣5)=(x+1)(x﹣5)请你仿照上述方法分解因式;(1)x2﹣7x﹣18;(2)x2+12xy﹣13y2;【解析】解:(1)x2﹣7x﹣18=(x+2)(x﹣9);(2)x2+12xy﹣13y2=(x+13y)(x﹣y).【点睛】本题考查因式分解的应用,解题的关键是学会逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,进行因式分解,属于中考常考题型.。
一、选择题1.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2-B .2C .1-D .12.下列有四个结论,其中正确的是( ) ①若1(1)1x x +-=,则x 只能是2;②若()2(1)1x x ax -++的运算结果中不含2x 项,则1a = ③若10,16a b ab +==,则6a b -= ④若4,8x y a b ==,则232x y -可表示为a bA .①②③④B .②③④C .①③④D .②④ 3.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=-4.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++B .222x xy y -+-C .221449x xy y -++ D .22193x x -+5.下列计算一定正确的是( ) A .235a b ab += B .()235610a b a b -=C .623a a a ÷=D .()222a b a b +=+6.如图是一所楼房的平面图,下列式子中不能表示它的面积的是( )A .x 2+3x +6B .(x +3)(x +2)﹣2xC .x (x +3)+6D .x (x +2)+x 2 7.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .298.已知51x =,51y =,则代数式222x xy y ++的值为( ).A .20B .10C .45D .259.下列计算正确的是( )A .a 3+a 3=a 6B .a 3·a=a 4C .a 3÷a 2=a 3D .(2a 2)3 =6a 5 10.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( ) A .1B .0C .1或2D .0或411.下列各式计算正确的是( ) A .5210a a a =B .()428=a a C .()236a ba b = D .358a a a +=12.已知x =7+1,y =7﹣1,则xy 的值为( ) A .8B .48C .27D .6二、填空题13.若2330x x --=,则()()()123x x x x ---的值为______.14.已知a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,则2021a bxcd cd+-+的值为_______. 15.计算:248(21)(21)(21)(21)1+++++=___________. 16.已知2m a =,5n a =,则2m n a -=___________.17.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________. 18.已知228a ab +=-,2214b ab +=,则2262a ab b ++=________. 19.若210x x --=,则3225x x -+的值为________. 20.已知a +b =5,且ab =3,则a 3+b 3=_____.三、解答题21.因式分解(1)m 3﹣36m (2)(m 2+n 2)2-4m 2n 222.如图1,将一个长为4a ,宽为2b 的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a ,b 的式子表示) (2)若2a+b=7,且ab=6,求图2中的空白正方形的面积;(3)观察图2,用等式表示出(2a-b )2,ab 和(2a+b )2的数量关系. 23.阅读下列文字,并解决问题.已知x 2y =3,求2xy (x 5y 2﹣3x 3y ﹣4x )的值.我们知道,满足x 2y =3的x ,y 的值可能较多,不可能逐一代入求解,而运用整体思想能使问题化繁为简,化难为易,运用整体代入的方法能巧妙地解决一些代数式的求值问题,于是将x 2y =3整体代入. 解:2xy (x 5y 2﹣3x 3y ﹣4x ) =2x 6y 3﹣6x 4y 2﹣8x 2y =2(x 2y )3﹣6(x 2y )2﹣8x 2y =2×33﹣6×32﹣8×3 =﹣24.请你用上述方法解决问题:(1)已知ab =4,求(2a 3b 2﹣3a 2b+4a )•(﹣2b )的值; (2)已知x ﹣1x=5,求1x x +的值.24.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积. 25.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y +-=.26.已知2,3x y a a ==,求23x y a +的值【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.2.D解析:D 【分析】根据零次幂、多项式乘多项式、完全平方公式及同底数幂的除法法则分别对每一项进行分析,即可得出答案. 【详解】解:①若(x-1)x+1=1,则x=-1或x=2,故本选项错误;②(x-1)(x 2+ax+1)的运算结果中x 2项的系数为a-1,∵不含x 2项,则a=1,故本选项正确;③∵(a-b )2=(a+b )2-4ab=102-4×16=36,∴6a b -=±,故本选项错误; ④∵4x =a ,∴22x =a ,∵8y =b ,∴23y =b , ∴22x-3y =22x ÷23y ab=;故本选项正确; 故选:D . 【点睛】本题考查了零次幂、多项式乘多项式、完全平方公式以及同底数幂的除法,熟练掌握运算法则是解题的关键.3.A解析:A 【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A . 【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键.4.C解析:C 【分析】直接利用完全平方公式分解因式得出答案. 【详解】A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意;B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意;故选:C . 【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 5.B解析:B 【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可. 【详解】A 、2a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、(-a 3b 5)2=a 6b 10,故选项B 符合题意;C 、a 6÷a 2=a 4,故选项C 不符合题意;D 、(a+b )2=a 2+2ab+b 2,故选项D 不合题意. 故选B . 【点睛】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.6.D解析:D 【分析】根据S 楼房的面积=S 矩形ABCD +S 矩形DEFC +S 矩形CFHG 代入数值求出图形面积,再根据计算各整式判断即可. 【详解】S 楼房的面积=S 矩形ABCD +S 矩形DEFC +S 矩形CFHG =AD •AB +DC •DE +CF •FH .∵AB =DC =AD =x ,DE =CF =3,FH =2, ∴S 楼房的面积=x 2+3x +6.∵(x+3)(x+2)﹣2x= x 2+3x +6,x (x +3)+6= x 2+3x +6,x (x +2)+x 2=2 x 2+2x , 故选:D ..【点睛】此题考查列整式求图形面积,整式的混合运算,掌握整式的运算法则是解题的关键.7.D解析:D 【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值. 【详解】解:∵()2222a b a b ab +=++, ∴()2222a b a b ab +=+-,∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=.故选:D . 【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.8.A解析:A 【分析】利用完全平方公式计算即可得到答案. 【详解】 ∵1x =,1y =,∴x+y=∴222x xy y ++ =2()x y +=2 =20, 故选:A . 【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.9.B解析:B 【分析】直接利用合并同类项法则、同底数幂的乘除运算法则以及幂的乘方运算法则、积的乘方运算法则分别化简得出答案. 【详解】A 、3332a a a +=,故此选项错误;B 、34·a a a =,故此选项正确;C 、32a a a ÷=,故此选项错误;D 、236(2)8a a =,故此选项错误; 故选:B . 【点睛】本题主要考查了同底数幂的乘除运算以及幂的乘方运算、积的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.10.D解析:D 【分析】依据绝对值的性质,即可得到m ﹣3n =2020或2018,进而得出m ﹣3n 的值,再根据平方运算,即可得到(2020﹣m +3n )2的值. 【详解】∵|m ﹣3n ﹣2019|=1, ∴m ﹣3n ﹣2019=±1, 即m ﹣3n =2020或2018,∴2020﹣m +3n =2020﹣(m ﹣3n )=0或2, ∴(2020﹣m +3n )2的值为0或4, 故选:D .本题考查绝对值的性质和代数式求值,利用整体思想求出m﹣3n的值且注意去绝对值时的两种情况.11.B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A、a5•a2=a7,此选项计算错误,故不符合题意;B、(a2)4=a8,此选项计算正确,符合题意;C、(a3b)2=a6b2,此选项计算错误,故不符合题意;D、a3与a5不能合并,此选项计算错误,故不符合题意.故选:B.【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.12.D解析:D【分析】利用平方差公式计算即可.【详解】当x+1,y1时,xy+11))2﹣12=7﹣1=6,故选:D.【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键.二、填空题13.15【分析】原式利用多项式乘以多项式以及单项式乘以多项式法则化简把已知等式代入计算即可求出值【详解】∵x2−3x−3=0∴x2=3x+3则原式=(x2−x)(x2−5x+6)=(2x+3)(−2x+解析:15【分析】原式利用多项式乘以多项式,以及单项式乘以多项式法则化简,把已知等式代入计算即可【详解】 ∵x 2−3x−3=0, ∴x 2=3x +3,则原式=(x 2−x )(x 2−5x +6) =(2x +3)(−2x +9) =−4x 2+12x +27 =−4(3x +3)+12x +27 =−12x−12+12x +27 =15. 故答案为:15 【点睛】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键.14.0或-2【分析】根据ab 互为相反数cd 互为倒数x 是数轴上到原点的距离为1的点表示的数可以得到a+b=0cd=1x=±1从而可以求得所求式子的值【详解】解:∵ab 互为相反数cd 互为倒数x 是数轴上到原点解析:0或-2 【分析】根据a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,可以得到a+b=0,cd=1,x=±1,从而可以求得所求式子的值. 【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数, ∴a+b=0,cd=1,x=±1, ∴x 2021=±1, ∴2021a bxcd cd+-+=1-1+0 =0; 或2021a bxcd cd+-+=-1-1+0 =-2.故答案为:0或-2. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解. 【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++ =448(21)(21)(21)1-+++ =88(21)(21)1-++ =16(21)1-+ =216. 故答案是:216. 【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.16.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可. 【详解】∵2m a =,5n a =,2m na-=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键.17.【分析】多项式的首项和末项分别是x 和2的平方那么中间一项是加上或减去x 与2积的2倍由此得到答案【详解】∵∴b=故答案为:【点睛】此题考查完全平方式掌握完全平方式的构成特点是解题的关键 解析:4±【分析】多项式的首项和末项分别是x 和2的平方,那么中间一项是加上或减去x 与2积的2倍,由此得到答案. 【详解】∵222(2)444x x x x bx ±±=+=++,∴b=4±,故答案为:4±.【点睛】此题考查完全平方式,掌握完全平方式的构成特点是解题的关键.18.20【分析】将变形为然后利用整体思想代入求解【详解】解:∵∴原式=故答案为:20【点睛】本题考查代数式求值掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键解析:20【分析】将2262a ab b ++变形为2222(2)a ab b ab +++,然后利用整体思想代入求解.【详解】解:2222226222+422(+2)a ab b a ab b ab a ab b ab ++=++=++∵228a ab +=-,2214b ab +=∴原式=821420-+⨯=故答案为:20.【点睛】本题考查代数式求值,掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键. 19.【分析】首先将已知条件变形为再把要求的式子变形然后整体代入即可求解【详解】解:∵即∴故答案为:4【点睛】此题主要考查了代数式求值把所给代数式进行恰当变形是解答此题的关键解析:【分析】首先将已知条件210x x --=变形为21x x -=,21x x -=,再把要求的式子变形,然后整体代入即可求解.【详解】解:∵210x x --=,即21x x -=,21x x -=,∴()323222514x x x x x -+=---+ ()()2214x x x x =---+4x x =-+4=.故答案为:4.【点睛】此题主要考查了代数式求值,把所给代数式进行恰当变形是解答此题的关键.20.80【分析】先求出再将a +b =5代入a3+b3公式中计算即可【详解】∵a +b =5且ab =3∴∴∴故答案为:80【点睛】此题考查完全平方公式的变形计算立方和公式正确掌握立方和的计算公式是解题的关键解析:80【分析】先求出2216a b ab +-=,再将a +b =5,2216a b ab +-=代入a 3+b 3公式中计算即可.【详解】∵a +b =5,且ab =3,∴2222()253219a b a b ab +=+-=-⨯=,∴2222()353316a b ab a b ab +-=+-=-⨯=,∴3322()()51680a b a b a ab b +=+-+=⨯=故答案为:80.【点睛】此题考查完全平方公式的变形计算,立方和公式,正确掌握立方和的计算公式是解题的关键.三、解答题21.(1)m (m +6)(m -6);(2)(m +n )2(m -n )2【分析】(1)首先提取公因式法进行因式分解,再利用平方差公式因式分解即可;(2)首先利用平方差公式分解因式,再利用完全平方公式进行因式分解即可.【详解】解:(1)m 3﹣36m= m (m 2﹣36)=m(m+6)(m-6)(2)(m 2+n 2)2-4m 2n 2=(m 2+n 2)2-(2mn )2=(m 2+n 2+2mn )(m 2+n 2-2mn )=(m+n )2(m-n )2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 22.(1)2a-b ;(2)1;(3)22(2)(2)8a b a b ab +=-+【分析】(1)观察由已知图形,求出小长方形的长为2 a ,宽为b ,那么图2中的空白部分的正方形的边长是小长方形的长—小长方形的宽;(2)通过观察图形,大正方形的边长为小长方形的长和宽的和.图2中空白部分的正方形的面积为大正方形的面积 - 四个小长方形的面积;(3)通过观察图形知:(2 a +b )2 ,(2 a -b )2 , 8 a b .分别表示的是大正方形、空白部分的正方形及小长方形的面积,据此即可解答.【详解】解:()1长为4a ,宽为2b 的长方形分成四个小长方形,则小长方形的长为422a a ÷=,宽为22b b ÷=,图2的空白部分的边长=小长方形的长 - 小长方形的宽,即图2的空白部分的边长是2a b -;()2由图2可知,S 空白小正方形=()()222=28a b a b ab -+-, 27a b +=,且6ab =,∴S 空白小正方形=()()222=28a b a b ab -+-=()2786=1-⨯; ()3由图2可以看出,大正方形面积=空白部分的正方形的面积+四个小长方形的面积, 即:22(2)(2)8a b a b ab +=-+.【点睛】此题考查了学生观察、分析图形解答问题的综合能力,以及对列代数式、代数式求值的理解与掌握.关键是通过观察图形找出各图形之间的关系.23.(1)-192;(2)129x x +=± 【分析】(1)根据单项式乘多项式的运算法矩形计算,根据积的乘方法则变形,把已知数据代入计算即可;(2)根据完全平方公式把原式变形,把已知数据代入计算即可.【详解】解:(1)∵ab =4,∴(2a 3b 2﹣3a 2b+4a )•(﹣2b )=﹣4a 3b 3+6a 2b 2﹣8ab=﹣4(ab )3+6(ab )2﹣8ab=﹣4×43+6×42﹣8×4=﹣192;(2)∵x ﹣1x=5, ∴22211()()45429x x x x +=-+=+=. 129x x∴+=±【点睛】本题考查的整式的混合运算及完全平方公式,正确理解题意掌握相关运算顺序和计算法则正确计算是解题的关键.24.(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192.【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长;(2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =, 由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =, ∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.25.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()230x +=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 26.108【分析】首先根据已知条件可得a 2x 、a 3y 的值,然后利用同底数幂的乘法运算法则求出代数式的值.【详解】 解:2,3x y a a ==,∴()()23232323108x y xy a a a +=⨯=⨯=. 【点睛】 本题主要考查了幂的乘方和同底数幂的乘法,利用性质转化为已知条件的形式是解题的关键.。
一、选择题1.如果249x mx -+是一个完全平方式,则m 的值是( )A .12±B .9C .9±D .122.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+- B .()2211a a a a --=-- C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+⎪⎝⎭3.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52-B .52C .5D .-54.已知25y x -=,那么()2236x y x y --+的值为( ) A .10B .40C .80D .2105.下列运算正确的是( ). A .()2326aba b =B .()325aa =C .236a a a ⋅=D .347a a a +=6.下列分解因式正确的是( ) A .xy ﹣2y 2=x (y ﹣2x ) B .m 3n ﹣mn =mn (m 2﹣1) C .4x 2﹣24x +36=(2x ﹣6)2 D .4x 2﹣9y 2=(2x ﹣3y )(2x +3y )7.数151025N =⨯是( ) A .10位数 B .11位数C .12位数D .13位数8.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n ),其中正整数n ≥2,下列说法正确的是( ) A .A 5<A 6 B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <100820159.已知1x =,1y =,则代数式222x xy y ++的值为( ).A .20B .10C .D .10.长和宽分别为a ,b 的长方形的周长为16,面积为12,则22 a b ab +的值为( ) A .24B .48C .96D .19211.下列运算中错误的是( ).A .-(-3a n b)4=-81a 4n b 4B .(a n+1+b n )4 = a 4n+4b 4nC .(-2a n )2.(3a 2)3 = -54a 2n+6D .(3x n+1-2x n )5x=15x n+2-10x n+112.a ,b ,c 在数轴上的位置如下图所示,则下列代数式中值为正的是( )A .()()1a c b --B .()11c a b c ⎛⎫--⎪⎝⎭C .()1a a c b ⎛⎫+- ⎪⎝⎭D .()1ac bc -二、填空题13.若2330x x --=,则()()()123x x x x ---的值为______. 14.已知2a -b +2=0,则1-4a +2b 的值为______.15.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________. 16.若2,3x y a a ==,则22x y a +=_______________________. 17.若231m n -=,则846m n -+=________. 18.计算:32(2)a b -=________.19.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________ 20.已知()()()214b c a b c a -=--且a ≠0,则b c a +=__. 三、解答题21.某快餐店试销某种套餐,每份套餐的成本为5元,该店每天固定支出费用为500元(不含套餐成本).试销售一段时间后发现,若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份. (1)若每份套餐售价定为9元,则该店每天的利润为 元;若每份套餐售价定为12元,则该店每天的利润为 元;(2)设每份套餐售价定为x 元,试求出该店每天的利润(用含x 的代数式表示,只要求列式,不必化简);(3)该店的老板要求每天的利润能达到1660元,他计划将每份套餐的售价定为:10元或11元或14元.请问应选择以上哪个套餐的售价既能保证达到利润要求又让顾客省钱?请说明理由.22.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 23.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥(当且仅当m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值. 根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >); (2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.24.分解因式: (1)325x x -; (2)(3)2(3)m a a -+-.25.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a b 、的代数式分别表示1S 、2S ;(2)若10,23a b ab +==,求12S S +的值;(3)当1229S S +=时,求出图3中阴影部分的面积3S . 26.把下列多项式因式分解(要写出必要的过程): (1)﹣x 2y +6xy ﹣9y ; (2)9(x +2y )2﹣4(x ﹣y )2; (3)1﹣x 2﹣y 2+2xy .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ , 解得m=±12. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.2.C解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断. 【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意;B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意;C 、()()22492323a b a b a b -+=-++,故该项符合题意;D 、1212x x x ⎛⎫+=+ ⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C . 【点睛】此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.3.B解析:B 【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值. 【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B . 【点睛】本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.4.B解析:B 【分析】所求式子变形后,将已知等式变形代入计算即可求出值. 【详解】 25y x -=∴ 25x y -=-()2236x y x y --+()()2=322x y x y ---=()()2535--⨯- =25+15 =40 故选:B 【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题.5.A解析:A 【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方的法则进行逐一计算即可. 【详解】 A 选项:()2326ab a b =,正确,符合题意;B 选项:()326a a =,错误,不符合题意;C 选项:235a a a ⋅=,错误,不符合题意;D 选项:347a a a +≠,错误,不符合题意. 故选:A . 【点睛】本题主要考查了同底数幂的乘法、幂的乘方与积的乘方,熟练掌握性质和法则是解题的关键.6.D解析:D 【分析】根据因式分解的方法:提公因式法、平方差公式、完全平方公式计算判断. 【详解】A 、xy ﹣2y 2=y (x ﹣2y ),故该项错误;B 、m 3n ﹣mn =mn (m 2﹣1)=mn (m+1)(m-1),故该项错误;C 、4x 2﹣24x +36=4(x ﹣3)2,故该项错误;D 、4x 2﹣9y 2=(2x ﹣3y )(2x +3y ),故该项正确; 故选:D . 【点睛】此题考查因式分解的解法,熟练掌握因式分解的方法是解题的关键.7.C解析:C 【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论. 【详解】()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数, 故选:C . 【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.8.D解析:D 【分析】根据平方差公式因式分解然后约分,便可归纳出来即可. 【详解】 解:A 、A 5=22221111631111==2345105⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 6=231715612⎛⎫⨯-= ⎪⎝⎭, 37512> ∴A 5>A 6, 此选项不符合题意; B 、A 4=2221115111=2348⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭, ∴A 52=925,A 4A 6=5735=81290⨯, ∵9352590<, ∴A 52<A 4A 6,此选项不符合题意; C 、∵A 2=2131=24-, 且345674681012<<<<<,∴n ≥2时,恒有A n ≤34,此选项不符合题意;D 、当m =2015时,A m =2015+120161008==2201540302015⨯,当n >m 时,A n <10082015, ∴存在正整数m ,使得当n >m 时,A n <10082015, 此选项符合题意; 故选择:D . 【点睛】本题考查数字的变化规律,平方差公式,关键是根据题目找出规律是关键.9.A解析:A 【分析】利用完全平方公式计算即可得到答案. 【详解】∵1x =,1y =,∴x+y=∴222x xy y ++ =2()x y +=2 =20, 故选:A . 【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.10.C解析:C 【分析】根据已知条件长方形的长与宽之和为8,长与宽之积为12,然后分解因式代入即可. 【详解】∵长方形的周长为16, ∴8a b +=, ∵面积为12, ∴12ab =,∴()2212896a b ab ab a b +=+=⨯=,故选:C . 【点睛】本题考查的是因式分解的应用,以及长方形周长和面积的计算,熟练掌握长方形的周长和面积的计算公式是解答本题的关键.11.C解析:C 【分析】根据幂的乘方法则、积的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则计算即可. 【详解】 解:A:()()4444443381n n n a b a b a b --=--=- ,故答案正确;B:()41444n nn na b a b +++=+ ,故答案正确; C:()()232262623427108n nn a a a a a +-⋅=⋅= ,故答案错误;D:()113253525n nn nx x x x x x x ++-=⋅-⋅ =211510n n x x ++- ,故答案正确.故选:C . 【点睛】此题考查了积的乘方法则、幂的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则,熟练掌握运算法则是解题的关键.12.C解析:C 【分析】现根据各数在数轴上的位置确定其取值范围,然后可确定答案. 【详解】解:由图知:0<a <1,b >1,c <0, ∴()100a a c b ⎛⎫+>-> ⎪⎝⎭,, ()1a a c b ⎛⎫+- ⎪⎝⎭值为正,C 正确; 而()110c a b c ⎛⎫--< ⎪⎝⎭,()()10a c b --<,()10ac bc -<;A 、B 、D 错误. 故选:C. 【点睛】此题主要考查由取值范围确定代数式正负问题,解题的关键是根据点在数轴上的位置判断其正负.二、填空题13.15【分析】原式利用多项式乘以多项式以及单项式乘以多项式法则化简把已知等式代入计算即可求出值【详解】∵x2−3x−3=0∴x2=3x +3则原式=(x2−x )(x2−5x +6)=(2x +3)(−2x +解析:15 【分析】原式利用多项式乘以多项式,以及单项式乘以多项式法则化简,把已知等式代入计算即可求出值. 【详解】 ∵x 2−3x−3=0, ∴x 2=3x +3,则原式=(x 2−x )(x 2−5x +6) =(2x +3)(−2x +9) =−4x 2+12x +27 =−4(3x +3)+12x +27 =−12x−12+12x +27 =15. 故答案为:15 【点睛】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键.14.5【分析】由得整体代入代数式求值【详解】解:∵∴∴原式故答案是:5【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想解析:5【分析】由220a b -+=得22a b -=-,整体代入代数式求值. 【详解】解:∵220a b -+=, ∴22a b -=-,∴原式()()122122145a b =-+=-⨯-=+=. 故答案是:5. 【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想.15.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想解析:4 【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果. 【详解】 解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=. 故答案是:4. 【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.16.36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可【详解】解:∵∴=2²×3²=36故答案为36【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用熟记幂的运算性质是解答本题的关键解析:36 【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可. 【详解】解:∵2,3x ya a ==,∴222222().()x y x y x y a a a a a +=⋅==2²×3²=36, 故答案为36. 【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用,熟记幂的运算性质是解答本题的关键.17.6【分析】将原式化为再整体代入即可【详解】解:∵∴原式==8-2×1=6故答案为:6【点睛】本题考查了求代数式的值把某一部分看成一个整体是解题的关键解析:6【分析】将原式化为82(23)m n --,再整体代入即可.【详解】解:∵231m n -=,∴原式=82(23)m n --=8-2×1=6.故答案为:6.【点睛】本题考查了求代数式的值,把某一部分看成一个整体是解题的关键.18.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.19.24ab 【分析】由完全平方公式(a±b )2=a2±2ab+b2得到(a+b )2=(a ﹣b )2+4ab 据此可以作出判断【详解】解:∵(2a+3b )2=(2a ﹣3b )2+4×2a×3b =(2a ﹣3b )2解析:24ab【分析】由完全平方公式(a ±b )2=a 2±2ab +b 2,得到(a +b )2=(a ﹣b )2+4ab ,据此可以作出判断.【详解】解:∵(2a +3b )2=(2a ﹣3b )2+4×2a ×3b =(2a ﹣3b )2+24ab ,(2a +3b )2=(2a ﹣3b )2+A ,∴A =24ab .故答案为:24ab .【点睛】本题考查了完全平方公式.关键是要了解(a ﹣b )2与(a +b )2展开式中区别就在于2ab 项的符号上,通过加上或者减去4ab 可相互变形得到.20.2【分析】由可得:去分母整理可得:从而得到:于是可得答案【详解】解:故答案为:2【知识点】本题考查的是整式的乘法运算完全平方公式的应用因式分解的应用非负数的性质代数式的值利用平方根的含义解方程掌握以 解析:2【分析】 由()()()214b c a b c a -=--可得:()()()21,4b c bc a b c a bc -+=--+去分母整理可得:()220,b c a +-=从而得到:2,b c a +=于是可得答案.【详解】解: ()()()21,4b c a b c a -=-- ()()()21,4b c bc a b c a bc ∴-+=--+ ()()22444b c bc ac a bc ab bc ∴-+=--++,()()22440,b c a a b c ∴++-+=()220,b c a ∴+-=20,b c a ∴+-=2,b c a ∴+=∴ 2=2,b c a a a+= 故答案为:2.【知识点】本题考查的是整式的乘法运算,完全平方公式的应用,因式分解的应用,非负数的性质,代数式的值,利用平方根的含义解方程,掌握以上知识是解题的关键.三、解答题21.(1)1100元,1740元;(2)当10x ≤时,利润为(5)400500x -⨯-;当10x >时,利润为[](5)400(10)40500x x ---⨯-;(3)选择11元,能保证达到利润要求又让顾客省钱.【分析】(1)根据题意,列出算式,即可求解;(2)分两种情况:当10x ≤时,当10x >时,分别列出代数式,即可;(3)把x=10,11,14分别代入第(2)小题的代数式,即可得到答案.【详解】解:(1)由题意得:(9-5)×400-500=1100(元),(12-5)×[400-(12-10)×40]-500=1740(元),故答案是:1100元,1740元;(2)当10x ≤时,利润为(5)400500x -⨯-,当10x >时,利润为[](5)400(10)40500x x ---⨯-;(3)∵当x =10时,(105)4005001500-⨯-=(元),当x =11时,[](115)400(1110)405001660---⨯-=(元),当x =14时,[](145)400(1410)405001660---⨯-=(元), ∴当x =11或14时,利润均为1660元.∵11<14,∴选择11元,能保证达到利润要求又让顾客省钱.【点睛】本题考查的是代数式的实际应用,解题的关键是根据题目中的数量关系列出代数式. 22.(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.23.(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020. 【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.24.(1)(5)(5)x x x +-;(2)(3)(2)a m --.【分析】(1)先提公因式x ,再利用平方差公式进行分解,即可得出结果;(2)先将多项式进行变形,再利用提公因式法进行分解,即可得出结果.【详解】解:(1)325x x -2(25)x x =-(5)(5)x x x =+-;(2)(3)2(3)m a a -+-(3)2(3)m a a =---(3)(2)a m =--.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能根据多项式的特点准确选择分解方法是解题的关键.25.(1)S 1=a 2-b 2,S 2=2b 2-ab ;(2)31;(3)292 【分析】(1)根据正方形的面积之间的关系,即可用含a 、b 的代数式分别表示S 1、S 2; (2)根据S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,将a +b =10,ab =23代入进行计算即可; (3)根据S 3=12(a 2+b 2﹣ab ),S 1+S 2=a 2+b 2-ab =29,即可得到阴影部分的面积S 3. 【详解】解:(1)由图可得,S 1=a 2-b 2,S 2=2b 2-ab ;(2)S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,∵a +b =10,ab =23,∴S 1+S 2=a 2+b 2-ab =(a +b )2-3ab =100-3×23=31;(3)由图可得,S 3=a 2+b 2-12b (a +b )-12a 2=12(a 2+b 2-ab ), ∵S 1+S 2=a 2+b 2-ab =29,∴S 3=12×29=292. 【点睛】本题主要考查了完全平方公式的几何背景的应用,解决问题的关键是根据图形之间的面积关系进行推导计算.26.(1)﹣y (x ﹣3)2;(2)(5x +4y )(x +8y );(3)(1+x ﹣y )(1﹣x +y )【分析】(1)先提取公因式,再按照完全平方公式分解;(2)分别把前后两项看成某项的平方并根据平方差分解因式,然后对每个因式去括号及合并同类项进行化简;(3)首先把后面三项看成一组并化成完全平方式,然后与第一项组合并利用平方差公式分解后对每个因式去括号化简即可.【详解】解:(1)﹣x 2y +6xy ﹣9y=﹣y (x 2﹣6x +9)=﹣y (x ﹣3)2;(2)9(x +2y )2﹣4(x ﹣y )2;=[3(x +2y )+2(x ﹣y )][3(x +2y )﹣2(x ﹣y )]=(5x +4y )(x +8y );(3)1﹣x 2﹣y 2+2xy=1﹣(x2+y2﹣2xy)=1﹣(x﹣y)2=[1+(x﹣y)][1﹣(x﹣y)]=(1+x﹣y)(1﹣x+y).【点睛】本题考查了因式分解,熟练掌握因式分解的各种方法并灵活运用是解题关键.。
一、选择题1.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是( )(用含有a 、b 的代数式表示).A .a-bB .a+bC .abD .2ab 2.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18B .12C .9D .73.()()()2483212121+++···()32211++的个位数是( ) A .4B .5C .6D .84.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+- B .()2211a a a a --=-- C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+⎪⎝⎭5.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .126.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7B .18C .5D .97.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n ==8.化简()2003200455-+所得的值为( )A .5-B .0C .20025D .200345⨯9.把多项式32484x x x -+分解因式,结果正确的是( )A .()()413x x x +-B .()2421x x x -+ C .()2484x x x +- D .()241x x -10.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+=A .1个B .2个C .3个D .4个11.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断: ①**a b b a =; ②()222**a b a b =; ③()()**a b a b -=-; ④()**a b c a b a c +=+*. 其中所有正确推断的序号是( ) A .①②③④B .①③④C .①②D .①③12.下列各式计算正确的是( ) A .224a a a +=B .236a a a ⋅=C .()22439a a -= D .22(1)1a a +=+13.若()()()248(21)2121211A =+++++,则A 的末位数字是( ) A .4B .2C .5D .614.下列各式计算正确的是( ) A .5210a a a =B .()428=a a C .()236a ba b = D .358a a a +=15.a ,b ,c 在数轴上的位置如下图所示,则下列代数式中值为正的是( )A .()()1a c b --B .()11c a b c ⎛⎫--⎪⎝⎭C .()1a a c b ⎛⎫+- ⎪⎝⎭D .()1ac bc -二、填空题16.已知a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,则2021a bxcd cd+-+的值为_______. 17.若x 、y 为有理数,且22(2)0x y ++-=,则2021()x y的值为____.18.分解因式:32m n m -=________.19.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.20.若()2340x y -++=,则x y -=______.21.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对(23,2)+放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)22.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.23.要使()()22524x x x mx -+--的展开式中不含2x 项,则m 的值是______. 24.因式分解:24ay a -=_______.25.一个长方形的两邻边分别是8x -,2x -,若()()228213x x -+-=,则这个长方形的面积是_________ 26.已知()()()214b c a b c a -=--且a ≠0,则b c a +=__. 三、解答题27.如图1,将一个长为4a ,宽为2b 的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a ,b 的式子表示) (2)若2a+b=7,且ab=6,求图2中的空白正方形的面积;(3)观察图2,用等式表示出(2a-b )2,ab 和(2a+b )2的数量关系.28.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积.29.(1)先化简,再求值:()()()22m n m n m n m ⎡⎤-++-÷⎣⎦,其中1m =,3n =-.(2)已知:1x y -=,2xy =,求32232x y x y xy -+的值.30.先化简,再求值.()()()()22522334b a b a b a b a b+--+---,其中a ,b 满足()2210a b -+-=.。
一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.阅读以下材料,并按要求完成相应的任务.在初中数学课本中重点介绍了提公因式法和运用公式法两种因式分解的方法,其中运用公式法即运用平方差公式:22()()a b a b a b -=+-和完全平方公式:222)2(a ab b a b ±+=±进行分解因式,能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.当一个二次三项式不能直接能运用完全平方公式分解因式时,可应用下面方法分解因式,先将多项式2ax bx c ++(0)a ≠变形为2()a x m n ++的形式,我们把这样的变形方法叫做多项式2ax bx c ++的配方法.再运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++2221111112422x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭ 2112524x ⎛⎫=+- ⎪⎝⎭ 1151152222x x ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭ (8)(3)x x =++.根据以上材料,完成相应的任务:(1)利用“多项式的配方法”将268x x -+化成2()a x m n ++的形式为_______;(2)请你利用上述方法因式分解:①223x x +-; ②24127x x +-.【答案】(1)2(3)1x --;(2)①(3)(1)x x +-;②(27)(21)x x +-【解析】【分析】(1)将多项式2233+-即可完成配方;(2)①将多项式+1-1后即可用配方法再根据平方差公式分解因式进行解答;②将多项式2233+-即可完成配方,再根据平方差公式分解因式,整理后即可得到结果.【详解】解:(1)268x x -+=2226338x x -+-+=2(3)1x --,故答案为:2(3)1x --;(2)①223x x +-22113x x =++--2(1)4x =+-(12)(12)x x =+++-(3)(1)x x =+-.②24127x x +-222(2)12337x x =++--2(23)16x =+-(234)(234)x x =+++-(27)(21)x x =+-.【点睛】此题考查多项式的配方法,多项式的分解因式,正确理解题中的配方法的解题方法是关键.2.利用我们学过的知识,可以导出下面这个等式:()()()12222222a b c ab bc ac a b b c c a ⎡⎤++---=-+-+-⎣⎦. 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:222201820192020201820192019202020182020++-⨯-⨯-⨯.【答案】(1)见解析;(2)3.【解析】【分析】(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)12[(a-b )2+(b-c )2+(c-a )2] =12(a 2-2ab+b 2+b 2-2bc+c 2+a 2-2ac+c 2) =12×(2a 2+2b 2+2c 2-2ab-2bc-2ac ) =a 2+b 2+c 2-ab-bc-ac ,故a 2+b 2+c 2-ab-bc-ac=12[(a-b )2+(b-c )2+(c-a )2]正确; (2)20182+20192+20202-2018×2019-2019×2020-2018×2020 =12×[(2018-2019)2+(2019-2020)2+(2020-2018)2]=12×(1+1+4) =12×6 =3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.3.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到()()22322a ab b a b a b ++=++.请回答下列问题:(1)写出图2中所表示的数学等式是 ;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x ,y 的式子表示) ; (3)通过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填“ 大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“ 大”或“小”).【答案】(1)22(2)(2)225a b a b a b ab ++=++;(2)22()()4x y x y xy +=-+;(3)大 小【解析】【分析】(1)图2面积有两种求法,可以由长为2a+b ,宽为a+2b 的矩形面积求出,也可以由两个边长为a 与边长为b 的两正方形,及4个长为a ,宽为b 的矩形面积之和求出,表示即可; (2)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式224()()xy x y x y =+--,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;【详解】(1)看图可知,22(2)(2)225a b a b a b ab ++=++(2)22()()4x y x y xy +=-+(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键.4.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c 的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题: 已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值.(3)如图3,将两个边长分别为a 和b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF .若这两个正方形的边长满足a+b =10,ab =20,请求出阴影部分的面积.【答案】(1)(a+b+c )2=a 2+b 2+c 2+2ab+2bc+2ac ;(2)45;(3)20.【解析】【分析】(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,种是大正方形的面积,可得等式(a+b+c )2=a 2+b 2+c 2+2ab+2bc+2ac ;(2)利用(1)中的等式直接代入求得答案即可;(3)利用S 阴影=正方形ABCD 的面积+正方形ECGF 的面积-三角形BGF 的面积-三角形ABD 的面积求解.【详解】(1)(a+b+c )2=a 2+b 2+c 2+2ab+2bc+2ac ;(2)∵a+b+c=11,ab+bc+ac=38,∴a 2+b 2+c 2 =(a+b+c )2﹣2(ab+ac+bc )=121﹣76=45;(3)∵a+b=10,ab=20,∴S 阴影=a 2+b 2﹣12(a+b )•b ﹣12a 2 =12a 2+12b 2﹣12ab =12(a+b )2﹣32ab =12×102﹣32×20 =50﹣30=20.【点睛】 本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.5.(1)填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+.【答案】(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)342.【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果.试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -;3223()()a b a a b ab b -+++=44a b -;故答案为22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=n n a b -,故答案为n n a b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342.考点:1.平方差公式;2.规律型.6.请你观察下列式子:2(1)(1)1x x x -+=-()()23111x x x x -++=-()()324111x x x x x -+++=-()()4325111x x x x x x -++++=-……根据上面的规律,解答下列问题:(1)当3x =时,计算201720162015(31)(333-+++…323331)++++=_________;(2)设201720162015222a =+++…322221++++,则a 的个位数字为 ;(3)求式子201720162015555+++…32555+++的和.【答案】(1)201831-;(2)3;(3)2018554- 【解析】【分析】(1)根据已知的等式发现规律即可求解;(2)先根据x=2,求出a=20182-1,再发现2的幂个位数字的规律,即可求出a 的个位数字;(3)利用已知的等式运算规律构造(5-1)×(2016201520142555...551++++++)即可求解.【详解】(1)∵2(1)(1)1x x x -+=- ()()23111x x x x -++=-()()324111x x x x x -+++=-()()4325111x x x x x x -++++=-……∴()()1122.1..11n n n n x x x x x x x --+-+++++=-+故x=3时,201720162015(31)(333-+++…323331)++++=201831-故填:201831-; (2)201720162015222a =+++…322221++++=(2-1)201720162015(222+++…322221)++++=201821-∵21=2,22=4,23=8,24=16,25=32,26=64∴2n 的个位数按2,4,8,6,依次循环排列,∵2018÷4=504…2,∴20182的个位数为4,∴201821-的个位数为3,故填:3;(3)201720162015555+++…32555+++=1(51)54-⨯⨯(201620152014555+++…2551+++) =54×(5-1)(201620152014555+++…2551+++) =54×(201751-) =2018554- 【点睛】此题主要考查等式的规律探索及应用,解题的关键是根据已知等式找到规律.7.阅读材料小明遇到这样一个问题:求计算()()()22334x x x +++所得多项式的一次项系数.小明想通过计算()()()22334x x x +++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找()()223x x ++所得多项式中的一次项系数,通过观察发现:也就是说,只需用2x +中的一次项系数1乘以23x +中的常数项3,再用2x +中的常数项2乘以23x +中的一次项系数2,两个积相加13227⨯+⨯=,即可得到一次项系数. 延续上面的方法,求计算()()()22334x x x +++所得多项式的一次项系数,可以先用2x +的一次项系数1,23x +的常数项3,34+x 的常数项4,相乘得到12;再用23x +的一次项系数2,2x +的常数项2,34+x 的常数项4,相乘得到16;然后用34+x 的一次项系数3,2x +的常数项223x +的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算()()443x x ++所得多项式的一次项系数为____________________.(2)计算()()()13225x x x +-+所得多项式的一次项系数为_____________.(3)若231x x -+是422x ax bx +++的一个因式,求a 、b 的值.【答案】(1)19;(2)1;(3) a= -6,b= -3.【解析】【分析】(1)根据两多项式常数项与一次项系数乘积的和即为所得多项式一次项系数可得;(2)根据三个多项式中两个多项式的常数项与另一个多项式一次项系数的乘积即为所求可得;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,根据三次项系数为0、二次项系数为a 、一次项系数为b 列出方程组求出a 、b 的值,可得答案.【详解】解:(1)(x+4)(4x+3)所得多项式的一次项系数为1×3+4×4=19,故答案为:19;(2)()()()13225x x x +-+所得多项式的一次项系数为1×(-2)×5+1×3×5+1×(-2)×2=1, 故答案为:1;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,则(x 2-3x+1)(x 2+mx+2)=x 4+ax 2+bx+2,13101211(3)321m m a m b ⨯-⨯=⎧⎪∴⨯+⨯+-⨯=⎨⎪-⨯+⨯=⎩解得: 363m a b =⎧⎪=-⎨⎪=-⎩故答案为:a= -6,b= -3.【点睛】本题考查多项式乘多项式,解题关键是熟练掌握多项式乘多项式的运算法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.8.探究阅读材料:“若x 满足()()806030x x --=,求()()228060x x -+-的值” 解:设()80x a -=,()60x b -=,则()()806030x x ab --==,()()806020a b x x +=-+-=,所以()()22228060x x a b -+-=+()22220230340a b ab =+-=-⨯=.解决问题:(1)若x 满足()()451520x x --=-,求()()224515x x -+-的值. (2)若x 满足()()22202020184040x x -+-=,求()()20202018x x --的值. (3)如图,正方形ABCD 的边长为x ,20AE =,30CG =,长方形EFGD 的面积是700,四边形NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).【答案】(1)940;(2)2018;(3)2900【解析】【分析】(1)根据材料提供的方法进探究,设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-,据此即可求出()()224515x x -+-的值; (2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=,则可求出()()20202018x x --的值; (3)根据题意知S 四EFGD =(x-20)(x-30)=700,知S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700,设x-20=a ,30-x=b ,则有-ab=700,据此即可求出阴影部分的面积.【详解】解:(1)设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-∴()()()()2222224515=230220940x x a b a b ab -+-+=+-=-⨯-=;(2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=∴()()20202018x x --=-()()20202018x x -- ()()222+-44040-201822m n m n mn +-=== ∴()()20202018x x --=-mn=2018;(3)根据题意知S 四EFGD =(x-20)(x-30)=700,S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700设x-20=a ,30-x=b ,∴-ab=700,∴()()()()222222302021027001500x x a b a b ab -+-=+=+-=-⨯-=∴S 阴影=1500+700+700=2900故答案为:(1)940;(2)2018;(3)2900【点睛】本题考查完全平方公式,换元法等知识,解题的关键是学会利用换元法解决问题,熟练掌握完全平方公式.9.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x 2﹣4x +1)(x 2﹣4x +7)+9进行因式分解的过程. 解:设x 2﹣4x =y原式=(y +1)(y +7)+9(第一步)=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2﹣4x +4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的 ;A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: ;(3)请你用换元法对多项式(x 2+2x )(x 2+2x +2)+1进行因式分解.【答案】(1)C ;(2)(x ﹣2)4;(3)(x +1)4.【解析】【分析】(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式.【详解】(1)故选C ;(2)(x 2﹣4x +1)(x 2﹣4x +7)+9,设x 2﹣4x =y ,则:原式=(y +1)(y +7)+9=y 2+8y +16=(y +4)2=(x 2﹣4x +4)2=(x ﹣2)4.故答案为:(x ﹣2)4;(3)设x 2+2x =y ,原式=y (y +2)+1=y 2+2y +1=(y +1)2=(x 2+2x +1)2=(x +1)4.【点睛】本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.10.观察:22213-=;2222432110-+-=;22222265432121-+-+-=. 探究:(1)2222222287654321-+-+-+-= .(直接写出答案)(2)222222(2)(21)(22)(23)21n n n n--+---+-=.(直接写出答案)应用:(3)如图,20个圆由小到大套在一起,从外向里相间画阴影,最外面一层画阴影,最外面的圆的半径为20cm,向里依次为19cm、18cm、……1cm,那么在这个图形中,所有阴影部分的面积和是多少?(结果保留π)【答案】(1)36;(2)83n-;(3)210π【解析】【分析】(1)根据已知条件,直接结算可得;(2)根据观察可得规律:结果就是底数和;其实是运用平方差公式得到;(3)根据题意列出式子,()()()()() 2222222222 2019181716154321ππππππππππ-+-+-++-+-,再根据上面规律简便运算.【详解】(1)2222222287654321-+-+-+-=15+21=36;(2)222222(2)(21)(22)(23)21n n n n--+---+-=[][][][]()() 2(21)2(21)(22)(23)(22)(23)2121 n n n n n n n n+-•--+-+-•---++•-2(21)(22)(23)21n n n n=+-+-+-++=83n-;(3)由题意可得阴影面积是:()()()()() 2222222222 2019181716154321ππππππππππ-+-+-++-+-=2019181716154321ππππππππππ++++++++++=()1202012π⨯⨯+=210π【点睛】考核知识点:因式分解在运算中的应用.观察并找出规律,利用平方差公式分析问题是关键.。