高频基材及其PCB产品制造技术简介
- 格式:pptx
- 大小:2.69 MB
- 文档页数:33
高频pcb材料分类
高频 PCB 材料主要用于制造高频电路板,以满足高频通信、雷达、卫星通信等领域对于信号传输和电磁干扰的要求。
根据介电常
数和损耗因子的不同,高频 PCB 材料可以分为多种类型,常见的分
类包括以下几种:
1. PTFE(聚四氟乙烯)基材料,PTFE 是一种低介电常数和低
损耗的材料,常见的有 Teflon、Rogers RO4000 系列等。
这类材料
适用于高频高速传输,具有优异的信号传输性能和稳定的介电性能。
2. 高频陶瓷基材料,这类材料以氧化铝陶瓷为基础,具有较高
的介电常数和较低的损耗因子,常见的有Rogers RO3000 系列。
适
用于要求较高介电常数和较低损耗的高频电路设计。
3. 高频混合介质基材料,这类材料采用混合介质技术,结合了
聚酰亚胺树脂和微玻璃纤维,具有较好的机械性能和高频性能,常
见的有Rogers RO4350B 等。
4. 高频聚酰亚胺基材料,这类材料以聚酰亚胺树脂为基础,具
有优异的高温性能和尺寸稳定性,常见的有Arlon、Isola 等系列。
5. 低介电常数基材料,这类材料主要以降低介电常数为主要特点,从而提高信号传输速度和减小信号传输损耗,常见的有Taconic 等系列。
总的来说,高频 PCB 材料在选择时需要根据具体的应用需求来进行综合考虑,包括信号传输性能、介电性能、机械性能、加工工艺等多个方面,以满足高频电路设计的要求。
PCB制造工艺综述PCB即印制电路板,是电子电路、机械设备中必备的一部分。
它是一种单面或双面的面板,通常是由有机材料或玻璃纤维纸板等制成,在表面附着有一层铜质电极,它是电路连接器的基础。
PCB制造是一项非常重要的任务,因为它是电子设备的核心部分之一。
PCB制造工艺的关键是设计和制造过程的精确性,因此在制造前需要进行一系列的测试和调试,以确保最终制造出的PCB满足产品的需求。
下面就介绍一下常见的PCB制造工艺:一、设计阶段PCB制造的第一步是设计。
在电路板上标记电子器件的布局和连接方式,使用设计软件绘制电路板原型,然后将其转换成硬件图像。
设计人员需要仔细研究电路用途、区分不同信号类型和分析电路性能,以便使得设计符合所需参数。
二、印刷阶段印刷是PCB制造的二个主要步骤之一。
印刷包括制造胶片和制作UV曝光机模版。
制造胶片是电路原型转换成制图工程的最后步骤。
将原型的轮廓投射到胶片,胶片结构反转,最后转换为表面铜质电极结构图。
这种结构图只留下需要焊接端口的电路板部分。
制作UV曝光机模版是将硬件图像输出为纸张,然后使用镏铜工艺将图案转换到电路板表面。
三、切分阶段在这个阶段,按需求的尺寸和要求将电路板切成所需尺寸。
常用的方法有铣、锯和CNC方式等。
四、钻孔阶段PCB制造的另一个重要步骤是钻孔。
钻孔需要精准的定位和方向。
得益于可编程控制的工具,在钻孔中还需考虑机器如何为每个孔口定位、标示孔口位置、以及移动到下一个合适的位置。
五、电镀阶段电镀是PCB制造中的关键步骤。
电镀包括在电路板表面镀一层保护性铜材料,以避免氧化和腐蚀。
在此之后,需要将印刷图案反转,外层镀铜结构被切割出来,准备焊接。
六、焊接阶段焊接是PCB制造的最后一个步骤。
将元器件设置到PCB上,用热风吹或电阻炉加热(取决于焊接方式)制作焊点。
大多数PCB使用表面安装技术(SMT)进行焊接,而有些PCB则使用插式技术(THT)焊接。
焊接结束后,PCB会得到最后精液所需的形状和连接。
什么叫高频板及高频电路板的参数电子设备高频化是发展趋势,尤其在无线网络、卫星通讯的日益发展,信息产品走向高速与高频化,及通信产品走向容量大速度快的无线传输之语音、视像和数据规范化。
因此发展的新一代产品都需要高频基板,卫星系统、移动电话接收基站等通信产品必须应用高频电路板,在未来几年又必然迅速发展,高频基板就会大量需求。
高频基板材料的基本特性要求有以下几点:(1)介电常数(Dk)必须小而且很稳定,通常是越小越好信号的传送速率与材料介电常数的平方根成反比,高介电常数容易造成信号传输延迟。
(2)介质损耗(Df)必须小,这主要影响到信号传送的品质,介质损耗越小使信号损耗也越小。
(3)与铜箔的热膨胀系数尽量一致,因为不一致会在冷热变化中造成铜箔分离。
(4)吸水性要低、吸水性高就会在受潮时影响介电常数与介质损耗。
(5)其它耐热性、抗化学性、冲击强度、剥离强度等亦必须良好。
一般来说,高频可定义为频率在1GHz以上.目前较多采用的高频电路板基材是氟糸介质基板,如聚四氟乙烯(PTFE),平时称为特氟龙,通常应用在5GHz以上。
另外还有用FR—4或PPO基材,可用于1GHz~10GHz之间的产品,这三种高频基板物性比较如下。
现阶段所使用的环氧树脂、PPO树脂和氟系树脂这三大类高频基板材料,以环氧树脂成本最便宜,而氟系树脂最昂贵;而以介电常数、介质损耗、吸水率和频率特性考虑,氟系树脂最佳,环氧树脂较差。
当产品应用的频率高过10GHz时,只有氟系树脂印制板才能适用。
显而易见,氟系树脂高频基板性能远高于其它基板,但其不足之处除成本高外是刚性差,及热膨胀系数较大。
对于聚四氟乙烯(PTFE)而言,为改善性能用大量无机物(如二氧化硅SiO2)或玻璃布作增强填充材料,来提高基材刚性及降低其热膨胀性。
另外因聚四氟乙烯树脂本身的分子惰性,造成不容易与铜箔结合性差,因此更需与铜箔结合面的特殊表面处理。
处理方法上有聚四氟乙烯表面进行化学蚀刻或等离子体蚀刻,增加表面粗糙度或者在铜箔与聚四氟乙烯树脂之间增加一层粘合膜层提高结合力,但可能对介质性能有影响,整个氟系高频电路基板的开发,需要有原材料供应商、研究单位、设备供应商、PCB制造商与通信产品制造商等多方面合作,以跟上高频电路板这一领域快速发展的需要.。
HDI生产工艺1. 简介HDI(High Density Interconnect)是一种高密度互连技术,用于在小尺寸的PCB (Printed Circuit Board)上实现更多的互连点。
它通过采用微细线宽、线距以及盲孔、埋孔等特殊工艺,使得电路板上的元器件可以更紧密地布局,从而提高了电路板的集成度和性能。
HDI生产工艺是指在制造HDI电路板时所使用的一系列工艺步骤和技术。
本文将详细介绍HDI生产工艺的主要步骤、特点以及应用领域。
2. HDI生产工艺步骤2.1 设计HDI电路板设计是整个生产过程中的第一步。
设计人员根据产品需求和性能要求,确定电路板的层数、线宽线距、盲孔/埋孔等参数,并进行布局和布线。
2.2 材料准备根据设计要求,准备好所需的基材、覆铜箔以及其他辅助材料。
常用的基材有FR-4、聚酰亚胺(PI)、BT等,覆铜箔可以选择不同厚度和铜厚。
2.3 图形制作将设计好的电路板图形转化为制造所需的数据文件,通常采用Gerber文件格式。
这些文件将用于后续的光刻和蚀刻步骤。
2.4 光刻在光刻工艺中,通过使用感光胶和掩膜板,将设计图案转移到覆铜箔上。
掩膜板上的透明部分允许紫外线透过,并使感光胶固化在覆铜箔表面。
2.5 蚀刻在蚀刻工艺中,使用化学溶液去除未被固化的感光胶和覆铜箔上的铜。
这样,只剩下设计图案所需的铜层。
2.6 盲孔/埋孔HDI电路板通常需要盲孔或埋孔来实现不同层之间的互连。
盲孔是从其中一侧钻孔而不贯穿整个电路板,而埋孔则是在内层之间形成通孔,并填充导电材料以实现连接。
2.7 堆叠与压合通过堆叠多个经过处理的内外层,使得整个HDI电路板具有更高的集成度和互连能力。
堆叠后的电路板需要经过压合工艺,以确保各层之间的粘合度。
2.8 表面处理为了提高电路板的焊接性能和耐腐蚀性,常常需要对表面进行处理。
常见的表面处理方法有镀金、喷锡、喷镍等。
2.9 最终检测与包装在完成上述工艺步骤后,对HDI电路板进行最终检测,确保其符合设计要求和性能指标。
高频微波印制板制造技术主讲:杨维生一、前言1.高频微波印制板在我国获得飞速发展的主要原因:1)通信业的快速进步,使原有的民用通信频段显得非常的拥挤,某些原军事用途的高频通信,部分频段从21世纪开始,逐渐让位给民用,使得民用高频通信获得了超常规的速度发展。
2)高保密性、高传送质量,要求移动电话、汽车电话、无线通信,向高频化发展。
3)计算机技术处理能力的增加,信息存储容量增大,迫切要求信号传送高速化。
二、定义1.微波定义。
波长为1m~0.1mm之间,相应的频率范围为300MHZ~3000GHZ(1GHZ=1000MHZ)的电磁波称为微波。
常将微波划分为分米波、厘米波、毫米波和亚毫米波四个波段。
表2微波中的常用波段微波特点:1)频率高。
微波的震荡频率极高,每秒在三亿次以上,震荡周期很短,在10-9~10-12s之内,和低频器件电子的渡越时间10-8~10-9s属同一数量级或者还小得多。
微波的频率高,在不太大的相对带宽下,其可用频带很宽。
频带宽意味着信息容量大,使得它在需要很大信息容量的场合得到了广泛的应用。
2)似光性。
微波的波长比一般的宏观物体(如建筑物、船舰、飞机和导弹等)的尺寸都小得多,当微波波束照射到这些物体上时,将会产生显著的反射。
波长越短,其传播特性就越接近于几何光学,波束的定向性和分辨能力就越高,天线的尺寸也可以做得越小。
3)能够穿透电离层。
微波能毫无阻碍地、低衰减地穿过电离层,因此称微波是“宇宙窗口”,为卫星通信、宇宙通信、导航、定位以及射电天文学的研究和发展提供了广阔的发展前景。
4)测量技术上特点。
在测量技术上微波波段也有明显特点。
低频电路测量的几个基本参量是电压、电流和频率,在微波波段电压和电流已失去了唯一确切的含义,因而测量的基本参量是功率、阻抗和波长。
2.微波的应用。
1)微波技术的早期发展是和雷达交织在一起的。
2)微波通信是国际公认的最有发展前途的三大传输手段(微波、卫星和光纤)之一。
浅谈 PCB高频板、板材材料及高频参数摘要:随着通讯和计算机技术的迅速发展,对印制板技术的研发提出了越来越高的要求,系统工作频率从MHz频段向GHz频段转移,其所追求的即是信息处理的高速化、存储容量的海量化以及系统能耗的绿色化。
在这一发展方向下,作为海量信号载体的高频印制电路板应运而生,并承担着信息传输的艰巨任务。
主要对PCB高频板的定义与特点、常见板材类型和复介电常数进行了简单的论述。
关键词:PCB高频板;板材类型;复介电常数1.引言伴随着信息化的高速发展,计算机、无线通信、数据网络等已经融入到了我们生活中的方方面面。
电子设备高频化是发展趋势,尤其在无线网络、卫星通讯的发展过程中,信息产品走向高速与高频化,通信产品走向容量大速度快的无线传输,因此每一代新产品的诞生都离不开高频板。
1.PCB高频板1.PCB高频板的定义高频板是指电磁频率较高的特种线路板,用于高频率(频率大于300MHz或者波长小于1米)与微波(频率大于3GHz或者波长小于0.1米)领域的PCB,是在微波基材覆铜板上利用普通刚性线路板制造方法的部分工序或者采用特殊处理方法而生产的电路板。
一般来说,高频板可定义为频率在1GHz以上线路板。
1.1.PCB高频板的特点1.效率高介电常数小的高频电路板,损耗也会很小,而且先进的感应加热技术能够实现目标加热的需求,效率非常高。
当然,注重效率的同时,也有环保的特性,十分适合当今社会的发展方向。
1.1.1.速度快由于传输速度与介电常数的平方根成反比,那么介电常数越小,传输速度就越快。
这正是高频电路板的优点所在,它采用特殊材质,不仅保证了介电常数小的特性,还保持运行的稳定,对于信号传导来说非常重要。
1.1.1.可调控度大高频电路板广泛应用于各个行业。
如对精密金属材质加热处理需求的高频电路板,在其领域的工艺中,不仅可实现不同深度部件的加热,而且还能针对局部的特点进行重点加热,无论是表面还是深层次、集中性还是分散性的加热方式,都能轻松完成。
PCB高频板设计随着电子产品的不断更新迭代,对于PCB高频板的需求也越来越高。
高频板设计通常是指设计、制作和优化高频线路板,以实现更高的频率、更好的信噪比和更小的失真。
在高频电路设计中,考虑的因素很多,例如信号的反射、损耗、串扰、噪声等等。
本文将对PCB高频板设计的一些重要内容进行探讨。
一、PCB高频线路设计的基本概念PCB是印制电路板的简称,其最基本的结构包括信号层、电源层、地层等。
在高频电路中,信号层的平面电容和漏磁电感很大程度上导致信号传输的失真和降噪。
因此,在高频电路设计中,需要尽可能地减小这些影响,例如通过增加信号引出和地引出的数量,增加信号层和地层之间的铜箔间隙等等。
二、PCB高频线路中的信号引出和地引出在高频电路设计中,对于每个端口来说,都必须有一个良好的信号引出和地引出。
通常,对于高频板中的任何一个元件,其信号引出和地引出距离越近,就能够减少串扰、提高信噪比和防止反射。
同时,对于大功率应用,将信号引出和地引出相互缠绕也能够有效地消耗热量,从而进一步降低电路噪声。
三、高频PCB板中的电源层和地层在高频电路设计中,电源层和地层同样非常重要。
在高频板中,电源层和地层的规划必须能够满足以下要求:1.选择合适的电源层和地层位置,确保它们尽可能地接近整个高频电路。
2.确保电源层和地层之间有良好的分离和铜箔间隙,以减少板间串扰。
3.将保护层铺满电源层和地层之间的空隙,以防止外界干扰和EMC问题。
四、高频PCB线路中的电容、电感和衰减器在高频线路设计中,需要考虑使用正确类型的电容和电感,以实现正常的信号传输。
电容和电感存在于许多板中,包括微带线、陶瓷电容和铝电解电容等等。
在高频PCB设计中,陶瓷电容和以往的铝电解电容相比,具有更好的抗干扰性和更低的损耗系数。
对于高频电路,使用SMD电感或通过安装小型电感来获得更好的信号传输和噪声控制。
高频线路中的衰减器是另一个重要因素。
在PCB高频电路中,衰减器可以在信号源和输出间提供可调的传输功率范围,以尽可能地提高最终输出信号的精度和质量。
高频微波印制电路板专用材料研发制造方案一、实施背景随着科技的飞速发展,电子产品日新月异,对于高性能、高可靠性的印制电路板(PCB)的需求日益增长。
特别在高频微波领域,PCB的信号传输质量和稳定性直接影响到整个电子设备的性能。
当前,国内高频微波PCB市场大多为进口产品,自主研发和生产高频微波印制电路板专用材料具有极高的现实意义。
二、工作原理高频微波印制电路板专用材料的研发制造,主要是通过结合电磁学、材料科学、化学等多学科知识,对基材进行改性处理,以获得优异的电性能和热稳定性。
主要工作原理基于以下几点:1.选择具有高导电性和稳定性的基材,如某些特种金属箔和绝缘材料;2.通过表面处理技术,如化学镀、电镀等工艺,增加材料的导电性和耐腐蚀性;3.引入吸波材料,以减少信号传输过程中的损失和干扰;4.优化材料组合和加工工艺,以实现高频微波信号的有效传输。
三、实施计划步骤1.调研市场需求:了解高频微波印制电路板的市场需求和发展趋势,为研发提供方向;2.选择合适的基材:根据性能要求,筛选出适合的金属箔和绝缘材料;3.表面处理:采用化学镀、电镀等技术,增加材料的导电性和耐腐蚀性;4.吸波材料引入:研究吸波材料的特性,以减少信号传输过程中的损失和干扰;5.工艺优化:结合材料科学、电磁学等多学科知识,优化材料组合和加工工艺;6.样品测试:制作样品,进行性能测试和验证;7.改进与优化:根据测试结果,对材料和工艺进行改进和优化;8.规模生产:经过验证后,进入规模生产阶段。
四、适用范围本研发制造方案适用于高频微波印制电路板的生产制造,尤其适用于对信号传输质量和稳定性有较高要求的高频微波设备,如通信设备、雷达、电子对抗系统等。
五、创新要点1.选用具有高导电性和稳定性的基材,提高信号传输质量;2.通过表面处理技术,增强材料的导电性和耐腐蚀性;3.引入吸波材料,减少信号传输过程中的损失和干扰;4.优化材料组合和加工工艺,实现高频微波信号的有效传输。
高频概念高频pcb指的是高频电路板。
高频及感应加热技术目前对金属材料加热效率最高、速度最快,且低耗环保。
它已经广泛应用于各行各业对金属材料的热加工、热处理、热装配及焊接、熔炼等工艺中。
它不但可以对工件整体加热,还能对工件局部的针对性加热;可实现工件的深层透热,也可只对其表面、表层集中加热;不但可对金属材料直接加热,也可对非金属材料进行间接式加热。
等等。
因此,感应加热技术必将在各行各业中应用越来越广泛。
高频板制作要求高频pcb板属于高难度板之一,所以必须尽量满足制作要求。
∙一钻孔1,钻孔进刀速要慢为180 /S要用新钻嘴,上下垫铝片,最好单PNL钻孔,孔内不可遇水2,过整孔剂PTH孔样板可用浓硫酸(最好不用)30Min3, 磨板沉铜线路和正常双面一样制作4,特别注意:高频板不用除胶渣。
∙二防焊1.高频板如果需要绿油打底的在阻焊前不允许磨板,在MI中盖红章。
2.高频板如果基材上需要印绿油的要印两次绿油(防止基材上绿油起泡),从蚀刻出来和退锡前不可磨板,只可风干。
第一次打底,用43T网版正常印刷分段烤板:50度50Min 75度50Min 95度50Min 120度50Min 135度50Min 150 50Min度,用线路菲林曝光,显影后才可磨板,第二次正常制作。
需要在MI中备注:第一次打底用线路菲林对位。
3.高频板如果部分基材上需要印绿油、部分基材上不印绿油,需要出“打底菲林”,打底菲林只保留基材上绿油,打底烤板后再进行第二次正常制作。
以下图片为018212的需要特别出“打底菲林”。
特别注意类似018092基材上不印绿油的只能印一次绿油(见下图,蓝色部为绿油开窗),防止第一次绿油打底后基材上绿油无法显影掉。
三喷锡喷锡前要加烤150度30Min 才可喷锡四线路公差无要求的线宽公差做到±0.05mm 有要求按客户要求制作。
五板材要用指定的板材见要求。
因为板材价格较贵,能只开1PNL就只开1PNL。
PCB设计的可制造性知识PCB(Printed Circuit Board)是现代电子设备中不可或缺的一部分,其设计的好坏直接影响着整个产品的性能和可靠性。
在进行PCB设计时,了解和掌握可制造性知识是非常重要的,可以提高设计的效率和减少制造过程中的问题。
本文将介绍一些与PCB设计相关的可制造性知识和建议。
1. PCB板材选择在PCB设计中,选择合适的板材对于保证电路板的性能和可制造性非常重要。
常见的PCB板材有FR-4、高频板材、金属基板等。
1.1 FR-4板材FR-4是一种常见的玻璃纤维增强热固性树脂,具有良好的电气性能和机械性能。
由于其价格适中,成型工艺相对简单,所以在大多数普通应用中广泛使用。
在选择FR-4板材时,应根据电路的特性和要求来确定板材的层数、厚度和铜箔厚度等参数,以达到最佳的电气性能和机械强度。
1.2 高频板材高频板材主要应用于高频电路设计,如无线通信、雷达、卫星通信等领域。
与FR-4板材相比,高频板材具有更低的介电常数和介质损耗,以及更好的高频特性。
在使用高频板材进行设计时,应注意板材的层数和铜箔厚度,以确保电路的传输特性和匹配性能。
1.3 金属基板金属基板通常用于高功率、高散热的电路设计,如功放、LED照明等。
金属基板具有良好的散热性能和机械强度,可以有效地降低电路温度,提高整体可靠性。
在选择金属基板时,应根据电路功率和散热要求来确定基板的厚度和金属材料,以确保良好的散热效果。
2. 元件布局与走线规则良好的元件布局和走线规则对于保证电路的稳定性和可制造性至关重要。
以下是一些常见的布局和走线规则:2.1 元件布局•尽量将相互关联的元件放置在靠近一起的位置,以缩短连线长度,减小电磁干扰。
•避免元件之间的相互遮挡,以便进行后续的组装和维修。
•根据信号的传输特性和敏感性,合理地进行电路分区,以降低噪声和串扰。
2.2 走线规则•充分利用电路板的空间,合理布局走线,减小走线长度和阻抗。