光刻胶知识简介
- 格式:doc
- 大小:17.50 KB
- 文档页数:3
````4、光刻胶光刻胶主要由树脂(Resin)、感光剂(Sensitizer)、溶剂(Solvent)及添加剂(Additive)等不同得材料按一定比例配制而成。
其中树脂就是粘合剂(Binder),感光剂就是一种光活性(Photoactivity)极强得化合物,它在光刻胶内得含量与树脂相当,两者同时溶解在溶剂中,以液态形式保存,以便于使用.4、1 光刻胶得分类⑴负胶1.特点·曝光部分会产生交联(Cross Linking),使其结构加强而不溶于现像液;·而未曝光部分溶于现像液;·经曝光、现像时,会有膨润现像,导致图形转移不良,故负胶一般不用于特征尺寸小于3um得制作中。
2.分类(按感光性树脂得化学结构分类)常用得负胶主要有以下两类:·聚肉桂酸酯类光刻胶这类光刻胶得特点,就是在感光性树脂分子得侧链上带有肉桂酸基感光性官能团.如聚乙烯醇肉桂酸酯(KPR胶)、聚乙烯氧乙基肉桂酸酯(OSR胶)等。
·聚烃类—双叠氮类光刻胶这种光刻胶又叫环化橡胶系光刻胶。
它由聚烃类树脂(主要就是环化橡胶)、双叠氮型交联剂、增感剂与溶剂配制而成。
3.感光机理①肉桂酸酯类光刻胶KPR胶与OSR胶得感光性树脂分子结构如下:在紫外线作用下,它们侧链上得肉桂酰官能团里得炭-炭双键发生二聚反应,引起聚合物分子间得交联,转变为不溶于现像液得物质。
KPR胶得光化学交联反应式如下:这类光刻胶中得高分子聚合物,不仅能在紫外线作用下发生交联,而且在一定温度以上也会发生交联,从而在现像时留下底膜,所以要严格控制前烘得温度与时间.②聚烃类—双叠氮类光刻胶这类光刻胶得光化学反应机理与前者不同,在紫外线作用下,环化橡胶分子中双键本身不能交联,必须有作为交联剂得双叠氮化合物参加才能发生交联反应.交联剂在紫外线作用下产生双自由基,它与聚烃类树脂相作用,在聚合物分子之间形成桥键,变为三维结构得不溶性物质。
其光化学反应工程如下:首先,双叠氮交联剂按以下方式进行光化学分解反应:双叠氮交联剂分解后生成得双氮烯自由基极易与环化橡胶分子发生双键交联(加成)与炭氢取代反应,机理如下:⑵正胶1.特点·本身难溶于现像液,曝光后会离解成一种溶于现像液得结构;·解像度高,耐Dry Etch性强等。
光刻胶知识感谢所有的原文作者,这里我只是略作整理,希望能对新手有所帮助。
光刻工艺光刻工艺是半导体制造中最为重要的工艺步骤之一。
主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。
光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40~60%。
光刻机是生产线上最贵的机台,5~15百万美元/台。
主要是贵在成像系统(由15~20个直径为200~300mm的透镜组成)和定位系统(定位精度小于10nm)。
其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。
光刻部分的主要机台包括两部分:轨道机(Tracker),用于涂胶显影;扫描曝光机(Scanning)光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性;准确地对准;大尺寸硅片的制造;低的缺陷密度。
光刻工艺过程一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀、检测等工序。
1、硅片清洗烘干(Cleaning and Pre-Baking)方法:湿法清洗+去离子水冲洗+脱水烘焙(热板150~2500C,1~2分钟,氮气保护)目的:a、除去表面的污染物(颗粒、有机物、工艺残余、可动离子);b、除去水蒸气,是基底表面由亲水性变为憎水性,增强表面的黏附性(对光刻胶或者是HMDS-〉六甲基二硅胺烷)。
2、涂底(Priming)方法:a、气相成底膜的热板涂底。
HMDS蒸气淀积,200~2500C,30秒钟;优点:涂底均匀、避免颗粒污染;b、旋转涂底。
缺点:颗粒污染、涂底不均匀、HMDS 用量大。
目的:使表面具有疏水性,增强基底表面与光刻胶的黏附性。
3、旋转涂胶(Spin-on PR Coating)方法:a、静态涂胶(Static)。
硅片静止时,滴胶、加速旋转、甩胶、挥发溶剂(原光刻胶的溶剂约占65~85%,旋涂后约占10~20%);b、动态(Dynamic)。
光刻胶知识简介光刻胶知识简介:一.光刻胶的定义(photoresist)又称光致抗蚀剂,由感光树脂、增感剂(见光谱增感染料)和溶剂三种主要成分组成的对光敏感的混合液体。
感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。
经适当的溶剂处理,溶去可溶性部分,得到所需图像(见图光致抗蚀剂成像制版过程)。
二.光刻胶的分类光刻胶的技术复杂,品种较多。
根据其化学反应机理和显影原理,可分负性胶和正性胶两类。
光照后形成不可溶物质的是负性胶;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正性胶。
利用这种性能,将光刻胶作涂层,就能在硅片表面刻蚀所需的电路图形。
基于感光树脂的化学结构,光刻胶可以分为三种类型。
①光聚合型采用烯类单体,在光作用下生成自由基,自由基再进一步引发单体聚合,最后生成聚合物,具有形成正像的特点。
②光分解型采用含有叠氮醌类化合物的材料,经光照后,会发生光分解反应,由油溶性变为水溶性,可以制成正性胶.③光交联型采用聚乙烯醇月桂酸酯等作为光敏材料,在光的作用下,其分子中的双键被打开,并使链及链之间发生交联,形成一种不溶性的网状结构,而起到抗蚀作用,这是一种典型的负性光刻胶。
柯达公司的产品KPR胶即属此类。
三.光刻胶的化学性质a、传统光刻胶:正胶和负胶。
光刻胶的组成:树脂(resin/polymer),光刻胶中不同材料的粘合剂,给及光刻胶的机械及化学性质(如粘附性、胶膜厚度、热稳定性等);感光剂,感光剂对光能发生光化学反应;溶剂(Solvent),保持光刻胶的液体状态,使之具有良好的流动性;添加剂(Additive),用以改变光刻胶的某些特性,如改善光刻胶发生反射而添加染色剂等。
负性光刻胶。
树脂是聚异戊二烯,一种天然的橡胶;溶剂是二甲苯;感光剂是一种经过曝光后释放出氮气的光敏剂,产生的自由基在橡胶分子间形成交联。
从而变得不溶于显影液。
负性光刻胶在曝光区由溶剂引起泡涨;曝光时光刻胶容易及氮气反应而抑制交联。
光刻胶基础知识光刻胶也称光致抗蚀剂(Photoresist,P.R.)。
1.光刻胶类型凡是在能量束(光束、电子束、离子束等)的照射下,以交联反应为主的光刻胶称为负性光刻胶,简称负胶。
凡是在能量束(光束、电子束、离子束等)的照射下,以交联反应为主的光刻胶称为正性光刻胶,简称正胶。
1.光刻胶特性灵敏度灵敏度太低会影响生产效率,所以通常希望光刻胶有较高的灵敏度。
但灵敏度太高会影响分辨率。
通常负胶的灵敏度高于正胶。
分辨率光刻工艺中影响分辨率的因素有:光源、曝光方式和光刻胶本身(包括灵敏度、对比度、颗粒大小、显影时的溶胀、电子散射等)。
通常正胶的分辨率要高于负胶。
2.光刻胶材料光刻胶通常有三种成分:感光化合物、基体材料和溶剂。
在感光化合物中有时还包括增感剂。
3.1负性光刻胶主要有聚肉桂酸系(聚酯胶)和环化橡胶系两大类。
3.2正性光刻胶主要以重氮醌为感光化合物,以酚醛树脂为基体材料。
最常用的有AZ 系列光刻胶。
正胶的主要优点是分辨率高,缺点是灵敏度、耐刻蚀性和附着性等较差。
3.3 负性电子束光刻胶为含有环氧基、乙烯基或环硫化物的聚合物。
3.4 正性电子束光刻胶主要为甲基丙烯甲酯、烯砜和重氮类这三种聚合物。
最常用的是PMMA胶。
PMMA胶的主要优点是分辨率高。
主要缺点是灵敏度低,在高温下易流动,耐干法刻蚀性差。
3.双层光刻胶技术随着线条宽度的不断缩小,为了防止胶上图形出现太大的深宽比,提高对比度,应该采用很薄的光刻胶。
但薄胶会遇到耐蚀性的问题。
由此出现了双层光刻胶技术,也就是超分辨率技术的组成部分。
汶颢微流控技术公司提供AZ 光刻胶和SU 8光刻胶以及光刻胶去胶液和显影液等芯片实验室周边耗材及配件。
欢迎来电咨询光刻胶价格。
标签: 光刻胶。
The introduction of Photoresist and Application光刻胶基本介绍主要内容CONTENT☐一,光刻胶基础知识☐二,光刻胶的种类☐三,光刻胶的应用领域☐四,光刻胶的特点☐五,光刻胶的可靠性测试内容☐六,光刻胶的来料要求一、光刻胶基础知识☐光刻胶是一种具有感光性的化学品(混合物)树脂(Resin):10-40% by weight感光剂(PAC)或光致产酸剂(PAG):1-6% by weight溶剂(Solvent):50-90% by weight添加剂(Additive):1-3% by weight单体(Monomer):10-20% by weight二、光刻胶的种类☐依照化学反应和显影原理分类一、正性光刻胶形成的图形与掩膜版相同;二、负性光刻胶形成的图形与掩膜版相反。
SubstratePhotoresistCoating Maskh u TransferEtchStripExposure DevelopPositive Negative☐按照感光树脂的化学结构分类一、光聚合型:1)采用烯类单体,在光作用下生成自由基,进一步引发单体聚合,最后生成聚合物。
2)采用环氧树脂,阳离子开环,引发环氧交联反应,最后生成聚合物。
二、光分解型,采用含有叠氮醌类化合物的材料,其经光照后,发生光分解反应,可以制成正性胶;☐按照曝光波长类一、紫外光刻胶(300~450nm);I-line:365nm;H-line:405nm;G-line:436nm;Broad Band (g+h+i)二、深紫外光刻胶(160~280nm);KrF:248nm;ArF:193nm;F2:157nm;三、极紫外光刻胶(EUV,13.5nm);四、电子束光刻胶、离子束光刻胶、X射线光刻胶等。
不同曝光波长的光刻胶,其适用的光刻极限分辨率不同,通常来说,在使用工艺方法一致的情况下,波长越小,加工分辨率越佳。
简述光刻胶光刻胶是微电子技术中微细图形加工的关键材料之一,它是是用于若干工艺的光敏材料,以在表面上形成图案化涂,这个过程在电子行业中至关重要。
1 简介及工作原理光刻胶(又称光致抗蚀剂),是指通过紫外光、准分子激光、电子束、离子束、X射线等光源的照射或辐射,其溶解度发生变化的耐蚀刻材料。
光刻胶具有光化学敏感性,其经过曝光、显影、刻蚀等工艺,可以将设计好的微细图形从掩膜版转移到待加工基片。
因此光刻胶微细加工技术中的关键性化工材料,被广泛应用于光电信息产业的微细图形线路的加工制作。
2 主要成分树脂:光刻胶树脂是一种惰性的聚合物基质,是用来将其它材料聚合在一起的粘合剂。
光刻胶的粘附性、胶膜厚度等都是树脂给的。
感光剂:感光剂是光刻胶的核心部分,它对光形式的辐射能,特别在紫外区会发生反应。
曝光时间、光源所发射光线的强度都根据感光剂的特性选择决定的。
溶剂:光刻胶中容量最大的成分,感光剂和添加剂都是固态物质,为了方便均匀的涂覆,要将它们加入溶剂进行溶解,形成液态物质,且使之具有良好的流动性,可以通过旋转方式涂布在wafer表面。
添加剂:用以改变光刻胶的某些特性,如改善光刻胶发生反射而添加染色剂3 主要技术参数分辨率(resolution):是指光刻胶可再现图形的zui小尺寸。
一般用关键尺寸来(CD,Critical Dimension)衡量分辨率。
对比度(Contrast):指光刻胶从曝光区到非曝光区过渡的陡度。
敏感度(Sensitivity):光刻胶上产生一个良好的图形所需一定波长光的zui小能量值(或zui小曝光量)。
单位:毫焦/平方厘米mJ/cm2。
粘滞性/黏度(Viscosity):衡量光刻胶流动特性的参数。
光刻胶中的溶剂挥发会使粘滞性增加。
粘附性(Adherence):是指光刻胶与晶圆之间的粘着强度。
抗蚀性(Anti-etching):光刻胶黏膜必须保持它的粘附性,并在后续的湿刻和干刻中保护衬体表面,这种性质被称为抗蚀性。
光刻胶及光刻工艺流程光刻胶是集成电路制造过程中重要的材料之一,它的主要作用是在光刻工艺中作为掩膜保护剂,将紫外光照射过的区域与未经照射的区域进行区分,从而完成器件的精密图案的形成。
本文将介绍光刻胶及其在光刻工艺流程中的应用。
光刻胶(Photoresist)是一种特殊的感光材料,它可以在光的照射下发生化学反应,改变物质的化学和物理性质。
根据其特性,光刻胶可以分为两种类型:负型光刻胶和正型光刻胶。
负型光刻胶是在紫外光照射下,光刻胶会发生聚合反应,形成一层比原来的胶层更为固化的区域。
而未曝光的胶层在显影过程中被去除,形成比曝光区域更深的“坑”。
因此,负型光刻胶可形成器件的凹陷结构。
正型光刻胶则相反,未曝光的胶层会进一步发生聚合反应,在显影过程中保留下来形成比曝光区域更高的区域。
正型光刻胶可形成器件的突起结构。
在光刻工艺流程中,首先需要将光刻胶涂覆在晶圆表面。
这一步骤称为光刻胶的涂布。
涂布的目的是将光刻胶均匀地涂覆在晶圆表面,并形成一定厚度的胶层。
涂布方法包括旋涂法、滚涂法和喷洒法等。
涂布完成后,需要将光刻胶进行预烘烤。
预烘烤的目的是将光刻胶中的溶剂迅速挥发掉,使胶层迅速形成。
预烘烤的温度和时间需根据光刻胶的类型和要求进行调节。
接下来是曝光步骤。
曝光是将掩膜和光刻胶放置在光刻机中,通过紫外光的照射,将掩膜上的图案转移到光刻胶上。
光刻机使用的光源多是紫外光源,如Hg灯或氘灯。
曝光的参数包括曝光时间、曝光强度和曝光模式等。
完成曝光后,需要进行显影。
显影是将晶圆放入显影液中,显影液会溶解或去除光刻胶中未曝光的部分,留下曝光的部分。
显影液的种类和浓度需根据光刻胶的类型和要求进行选择。
显影完成后,还需进行后处理。
后处理通常包括后烘烤和清洗两个步骤。
后烘烤是将晶圆放入恒温烘炉中,将光刻胶中残留的溶剂和显影液彻底除去,使光刻胶更加稳定。
清洗则是将晶圆浸泡在溶剂中,去除掉与已曝光的光刻胶没有反应的部分。
光刻胶及其对应的工艺流程是集成电路制造中至关重要的一部分。
光刻胶分类光刻胶是一种在半导体制造过程中广泛应用的材料,其主要作用是在芯片制作过程中对光进行精确控制,从而实现微米级甚至纳米级的图形化。
根据不同的特性和用途,光刻胶可以分为不同的类型,下面将介绍几种常见的光刻胶分类。
一、紫外光刻胶紫外光刻胶是应用最为广泛的一类光刻胶,其特点是对紫外光具有很好的敏感性,可以在紫外光的照射下发生化学反应,形成所需的图形。
紫外光刻胶通常用于制作晶体管、集成电路等微米级器件。
二、电子束光刻胶电子束光刻胶是另一种常见的光刻胶类型,其特点是对电子束具有很好的敏感性,可以在电子束的照射下发生化学反应,实现微米级甚至纳米级的图形化。
电子束光刻胶通常用于制作高精度、高密度的微电子器件。
三、X射线光刻胶X射线光刻胶是一种对X射线具有很好敏感性的光刻胶,可以在X 射线的照射下发生化学反应,实现纳米级甚至更高分辨率的图形化。
X射线光刻胶通常用于制作特殊要求的微纳米器件,如MEMS器件、光子器件等。
四、多层光刻胶多层光刻胶是一种将不同类型的光刻胶层叠加在一起使用的光刻胶,通过控制不同层光刻胶的性质和厚度,可以实现复杂的器件结构和功能。
多层光刻胶通常用于制作具有多层次结构的微纳米器件,如光子晶体、纳米线阵列等。
五、化学增强光刻胶化学增强光刻胶是一种利用化学反应增强图形分辨率和形状控制的光刻胶,通过添加特定的化学试剂或催化剂,可以实现更高分辨率和更复杂的图形化。
化学增强光刻胶通常用于制作高分辨率、高精度的微纳米器件,如生物芯片、传感器等。
光刻胶的分类不仅仅是根据其对光或电子束的敏感性,还包括了其具体的应用领域和要求。
不同类型的光刻胶在半导体制造和微纳米器件制作中扮演着不同的角色,通过选择合适的光刻胶类型和工艺参数,可以实现更高效、更精确的器件制作。
在未来的微纳米制造中,光刻胶的分类和研究将继续发挥重要作用,推动着微电子技术和纳米技术的发展。
````4. 光刻胶光刻胶主要由树脂(Resin)、感光剂(Sensitizer)、溶剂(Solvent)及添加剂(Additive)等不同的材料按一定比例配制而成。
其中树脂是粘合剂(Binder),感光剂是一种光活性(Photoactivity)极强的化合物,它在光刻胶内的含量与树脂相当,两者同时溶解在溶剂中,以液态形式保存,以便于使用。
4.1 光刻胶的分类⑴负胶1.特点·曝光部分会产生交联(Cross Linking),使其结构加强而不溶于现像液;·而未曝光部分溶于现像液;·经曝光、现像时,会有膨润现像,导致图形转移不良,故负胶一般不用于特征尺寸小于3um的制作中。
2.分类(按感光性树脂的化学结构分类)常用的负胶主要有以下两类:·聚肉桂酸酯类光刻胶这类光刻胶的特点,是在感光性树脂分子的侧链上带有肉桂酸基感光性官能团。
如聚乙烯醇肉桂酸酯(KPR胶)、聚乙烯氧乙基肉桂酸酯(OSR胶)等。
·聚烃类—双叠氮类光刻胶这种光刻胶又叫环化橡胶系光刻胶。
它由聚烃类树脂(主要是环化橡胶)、双叠氮型交联剂、增感剂和溶剂配制而成。
3.感光机理①肉桂酸酯类光刻胶KPR胶和OSR胶的感光性树脂分子结构如下:在紫外线作用下,它们侧链上的肉桂酰官能团里的炭-炭双键发生二聚反应,引起聚合物分子间的交联,转变为不溶于现像液的物质。
KPR胶的光化学交联反应式如下:这类光刻胶中的高分子聚合物,不仅能在紫外线作用下发生交联,而且在一定温度以上也会发生交联,从而在现像时留下底膜,所以要严格控制前烘的温度与时间。
②聚烃类—双叠氮类光刻胶这类光刻胶的光化学反应机理与前者不同,在紫外线作用下,环化橡胶分子中双键本身不能交联,必须有作为交联剂的双叠氮化合物参加才能发生交联反应。
交联剂在紫外线作用下产生双自由基,它和聚烃类树脂相作用,在聚合物分子之间形成桥键,变为三维结构的不溶性物质。
其光化学反应工程如下:首先,双叠氮交联剂按以下方式进行光化学分解反应:双叠氮交联剂分解后生成的双氮烯自由基极易与环化橡胶分子发生双键交联(加成)和炭氢取代反应,机理如下:⑵正胶1.特点·本身难溶于现像液,曝光后会离解成一种溶于现像液的结构;·解像度高,耐Dry Etch性强等。
光刻胶产品前途无量(半导体技术天地)之宇文皓月创作1 前言光刻胶(又名光致抗蚀剂)是指通过紫外光、电子束、准分子激光束、X射线、离子束等曝光源的照射或辐射,使溶解度发生变更的耐蚀刻薄膜资料,主要用于集成电路和半导体分立器件的细微图形加工,近年来也逐步应用于光电子领域平板显示器(FPD)的制作。
由于光刻胶具有光化学敏感性,可利用其进行光化学反应,经曝光、显影等过程,将所需要的微细图形从掩模版转移至待加工的衬底上,然后进行刻蚀、扩散、离子注入等工艺加工,因此是电子信息财产中微电子行业和光电子行业微细加工技术的关键性基础加工资料。
作为经曝光和显影而使溶解度增加的正型光刻胶多用于制作IC,经曝光或显影使溶解度减小的负型光刻胶多用于制作分立器件。
2 国外情况随着电子器件不竭向高集成化和高速化方向发展,对微细图形加工技术的要求越来越高,为了适应亚微米微细图形加工的要求,国外先后开发了g线(436nm)、i线(365nm)、深紫外、准分子激光、化学增幅、电子束、X射线、离子束抗蚀剂等一系列新型光刻胶。
这些品种较有代表性的负性胶如美国柯达(Kodak)公司的KPR、KMER、KLER、KMR、KMPR等;联合碳化学(UCC)公司的KTI系列;日本东京应化(Tok)公司的TPR、SVR、OSR、OMR;合成橡胶(JSR)公司的CIR、CBR系列;瑞翁(Zeon)公司的ZPN系列;德国依默克(E.Merk)公司的Solect等。
正性胶如:美国西帕来(Shipely)公司的AZ系列、DuPont公司的Waycot系列、日本合成橡胶公司的PFR等等。
2000~2001年世界市场光刻胶生产商的收益及市场份额公司 2001年收益 2001年市场份额(%) 2000年收益 2000年市场份额(%)Tokyo Ohka Kogyo 150.1 22.6 216.525.2 Shipley 139.2 21.0 174.6 20.3 JSR 117.6 17.7 138.416.1 Shin-EtsuChemical 70.1 10.6 74.28.6 ArchChemicals 63.7 9.6 84.19.8 其他 122.2 18.5 171.620.0 总计 662.9 100.0 859.4100.0 Source: Gartner Dataquest目前,国际上主流的光刻胶产品是分辨率在0.25µm~0.18µm 的深紫外正型光刻胶,主要的厂商包含美国Shipley、日本东京应化和瑞士的克莱恩等公司。
感谢所有的原文作者,这里我只是略作整理,希望能对新手有所帮助。
光刻工艺光刻工艺是半导体制造中最为重要的工艺步骤之一。
主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。
光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40~60%。
光刻机是生产线上最贵的机台,5~15百万美元/台。
主要是贵在成像系统(由15~20个直径为200~300mm的透镜组成)和定位系统(定位精度小于10nm)。
其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。
光刻部分的主要机台包括两部分:轨道机(Tracker),用于涂胶显影;扫描曝光机(Scanning)光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性;准确地对准;大尺寸硅片的制造;低的缺陷密度。
光刻工艺过程一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀、检测等工序。
1、硅片清洗烘干(Cleaning and Pre-Baking)方法:湿法清洗+去离子水冲洗+脱水烘焙(热板150~2500C,1~2分钟,氮气保护)目的:a、除去表面的污染物(颗粒、有机物、工艺残余、可动离子);b、除去水蒸气,是基底表面由亲水性变为憎水性,增强表面的黏附性(对光刻胶或者是HMDS-〉六甲基二硅胺烷)。
2、涂底(Priming)方法:a、气相成底膜的热板涂底。
HMDS蒸气淀积,200~2500C,30秒钟;优点:涂底均匀、避免颗粒污染;b、旋转涂底。
缺点:颗粒污染、涂底不均匀、HMDS 用量大。
目的:使表面具有疏水性,增强基底表面与光刻胶的黏附性。
3、旋转涂胶(Spin-on PR Coating)方法:a、静态涂胶(Static)。
硅片静止时,滴胶、加速旋转、甩胶、挥发溶剂(原光刻胶的溶剂约占65~85%,旋涂后约占10~20%);b、动态(Dynamic)。
低速旋转(500rpm_rotation per minute)、滴胶、加速旋转(3000rpm)、甩胶、挥发溶剂。
光刻胶用途光刻胶是一种高分子化合物,主要用于微电子制造中的光刻工艺。
在微电子制造中,光刻胶的应用非常广泛,可以用来制造芯片、光学器件、MEMS(微机电系统)等微型器件。
本文将详细介绍光刻胶的用途及其在微电子制造中的重要性。
一、光刻胶的基本原理光刻胶是一种聚合物,它的分子结构具有高度的可控性和可调性。
在光刻过程中,光刻胶被涂覆在待加工的基片上,然后通过光刻机将光线照射在光刻胶上,使其发生化学反应。
这种化学反应会使光刻胶的分子链发生断裂,形成一定的图形。
然后,通过化学腐蚀或物理蚀刻等方法将光刻胶的未反应部分去除,就可以得到所需的微型器件。
二、光刻胶在微电子制造中的应用1.制造芯片在芯片制造中,光刻胶主要用于制造芯片的电路图案。
在芯片制造的过程中,需要将电路图案转移到硅片上。
这个过程需要使用光刻胶。
在制造芯片时,光刻胶的分子链被光线逐渐切断,形成所需的芯片电路图案。
这个过程需要非常高的精度和稳定性,因此光刻胶的质量和性能对于芯片制造非常关键。
2.制造光学器件在光学器件的制造中,光刻胶主要用于制造光学器件的光学图案。
在光学器件制造的过程中,需要将光学图案转移到光学器件上。
这个过程需要使用光刻胶。
在制造光学器件时,光刻胶的分子链被光线逐渐切断,形成所需的光学图案。
这个过程需要非常高的精度和稳定性,因此光刻胶的质量和性能对于光学器件制造非常关键。
3.制造MEMS在MEMS的制造中,光刻胶主要用于制造MEMS的结构图案。
在MEMS制造的过程中,需要将结构图案转移到MEMS上。
这个过程需要使用光刻胶。
在制造MEMS时,光刻胶的分子链被光线逐渐切断,形成所需的结构图案。
这个过程需要非常高的精度和稳定性,因此光刻胶的质量和性能对于MEMS制造非常关键。
三、光刻胶的优点和局限性1.优点(1)高精度:光刻胶可以制造非常高精度的微型器件,可以达到亚微米的级别。
(2)高可控性:光刻胶的分子结构非常可控,可以根据不同的需求进行设计。
此之前约1950年发明了重氮萘醌—酚醛树脂系光刻胶,它最早应用于印刷业,目前是电子工业用用最多的光刻胶,近年随着电子工业的飞速发展,光刻胶的发展更是日新月异,新型光刻胶产品不断涌现。
光刻胶按其所用曝光光源或辐射源的不同, 又可分为紫外光刻胶、深紫外光刻胶、电子束胶、离子束胶、X射线胶等。
2. 光刻技术及工艺电子工业的发展离不开光刻胶的发展, 这是由电子工业微细加工的线宽所决定的。
众所周知,在光刻工艺中离不开曝光。
目前采用掩膜版的曝光方式主要有接触式曝光和投影式曝光两种。
光刻工艺过程光刻胶的种类虽然很多,使用主艺条件依光刻胶的品种不同而有很大的不同,但大体可遵从如下步骤:a.基片处理:该工序包括脱脂清洗、高温处理等部分,有时还需涂粘附增强剂进行表面改性处理。
脱脂一般采用溶剂或碱性脱脂剂进行清洗,然后再用酸性清洗剂清洗,最后用纯水清洗。
高温处理通常是在150-160℃对基片进行烘烤去除表面水分。
粘附增强剂的作用是将基片表面亲水性改变为憎水性, 便于光刻胶的涂布, 增加光刻胶在基片上的粘附性电。
b.涂胶:光刻胶的涂布方式有旋转涂布、辗涂、浸胶及喷涂等多种方式。
在电子工业中应用较多的是旋转涂布。
该方式的涂胶厚度一般取决于光刻胶的粘度及涂胶时的转速。
膜厚-转速曲线是光刻胶的一个重要特性。
c.前烘:前烘的目的是为了去除胶膜中残存的溶剂,消除胶膜的机械应力。
在电子工业中烘烤方式通常有对流烘箱和热板两种。
前烘的温度和时间根据光刻胶种类及胶膜的厚度而定。
以北京化学试剂研究所BN308系列紫外负性光刻胶为例,当胶膜厚度为1-2μm时,对流烘箱,70-80℃,20min;热板,100℃,1min。
d.曝光:正确的曝光量是影响成像质量的关键因素。
曝光不够或曝光过度均会影响复制图形的再现性。
曝光宽容度大有利于光刻胶的应用。
光刻胶的曝光量同样取决于光刻胶的种类及膜厚。
以BN308系列负胶为例,当膜厚为1-2μm时,曝光20-30mJ/cm2e.中烘:曝光后显影前的烘烤,对于化学增幅型光刻胶来说至关重要,中烘条件的好坏直接关系到复制图形的质量。
光刻胶原理光刻胶是一种在半导体制造中广泛应用的关键材料,它在集成电路制造中扮演着非常重要的角色。
光刻胶的原理和工艺对于半导体制造工艺的稳定性和可靠性有着重要的影响。
本文将对光刻胶的原理进行详细介绍,以便更好地理解其在半导体制造中的应用。
光刻胶是一种特殊的光敏聚合物材料,它的主要作用是在半导体制造过程中作为光刻工艺的掩膜。
在集成电路制造中,光刻工艺是非常关键的一步,它决定了芯片图形的精度和分辨率。
光刻胶的原理是利用紫外光照射后的化学反应,使得光刻胶在曝光区域发生物理或化学变化,从而形成所需的图形。
光刻胶的原理可以简单地分为曝光、显影和固化三个步骤。
首先是曝光,即将芯片表面涂覆上光刻胶,然后使用掩膜板和紫外光源对光刻胶进行曝光。
在曝光过程中,光刻胶会在被曝光的区域发生化学变化,形成所需的图形。
接下来是显影,利用显影液将未曝光区域的光刻胶去除,从而显现出所需的图形。
最后是固化,将芯片加热以固化光刻胶,使其成为一层坚固的掩膜。
光刻胶的原理在半导体制造中有着广泛的应用。
它可以实现微米甚至纳米级别的图形精度,为芯片制造提供了可靠的工艺保障。
光刻胶的原理和工艺对半导体制造工艺的稳定性和可靠性有着重要的影响。
因此,不断改进光刻胶的原理和工艺是半导体制造中的重要课题之一。
除了在半导体制造中的应用,光刻胶的原理也在其他领域有着广泛的应用。
比如在微纳加工、光学器件制造、生物芯片制造等领域都有着重要的应用价值。
光刻胶的原理和工艺的不断改进,将为这些领域的发展提供有力支持。
总之,光刻胶作为半导体制造中的关键材料,其原理和工艺对半导体制造工艺的稳定性和可靠性有着重要的影响。
光刻胶的原理可以简单地分为曝光、显影和固化三个步骤,它在半导体制造中有着广泛的应用,并且在其他领域也有着重要的应用价值。
不断改进光刻胶的原理和工艺,将为半导体制造和其他领域的发展提供有力支持。
光刻胶知识简介
光刻胶知识简介:
一.光刻胶的定义(photoresist)
又称光致抗蚀剂,由感光树脂、增感剂(见光谱增感染料)和溶剂三种主要成分组成的对光敏感的混合液体。
感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。
经适当的溶剂处理,溶去可溶性部分,得到所需图像(见图光致抗蚀剂成像制版过程)。
二.光刻胶的分类
光刻胶的技术复杂,品种较多。
根据其化学反应机理和显影原理,可分负性胶和正性胶两类。
光照后形成不可溶物质的是负性胶;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正性胶。
利用这种性能,将光刻胶作涂层,就能在硅片表面刻蚀所需的电路图形。
基于感光树脂的化学结构,光刻胶可以分为三种类型。
①光聚合型
采用烯类单体,在光作用下生成自由基,自由基再进一步引发单体聚合,最后生成聚合物,具有形成正像的特点。
②光分解型
采用含有叠氮醌类化合物的材料,经光照后,会发生光分解反应,由油溶性变为水溶性,可以制成正性胶.
③光交联型
采用聚乙烯醇月桂酸酯等作为光敏材料,在光的作用下,其分子中的双键被打开,并使链与链之间发生交联,形成一种不溶性的网状结构,而起到抗蚀作用,这是一种典型的负性光刻胶。
柯达公司的产品KPR胶即属此类。
三.光刻胶的化学性质
a、传统光刻胶:正胶和负胶。
光刻胶的组成:树脂(resin/polymer),光刻胶中不同材料的粘合剂,给与光刻胶的机械与化学性质(如粘附性、胶膜厚度、热稳定性等);感光剂,感光剂对光能发生光化学反应;溶剂(Solvent),保持光刻胶的液体状态,使之具有良好的流动性;添加剂(Additive),用以改变光刻胶的某些特性,如改善光刻胶发生反射而添加染色剂等。
负性光刻胶。
树脂是聚异戊二烯,一种天然的橡胶;溶剂是二甲苯;感光剂是一种经过曝光后释放出氮气的光敏剂,产生的自由基在橡胶分子间形成交联。
从而变得不溶于显影液。
负性光刻胶在曝光区由溶剂引起泡涨;曝光时光刻胶容易与氮气反应而抑制交联。
正性光刻胶。
树脂是一种叫做线性酚醛树脂的酚醛甲醛,提供光刻胶的粘附性、化学抗蚀性,当没有溶解抑制剂存在时,线性酚醛树脂会溶解在显影液中;感光剂是光敏化合物(PAC,Photo Active Compound),最常见的是重氮萘醌(DNQ),在曝光前,DNQ是一种强烈的溶解抑制剂,降低树脂的溶解速度。
在紫外曝光后,DNQ在光刻胶中化学分解,成为溶解度增强剂,大幅提高显影液中的溶解度因子至100或者更高。
这种曝光反应会在DNQ中产生羧酸,它在显影液中溶解度很高。
正性光刻胶具有很好的对比度,所以生成的图形具有良好的分辨率。
b、化学放大光刻胶(CAR,Chemical Amplified Resist)。
树脂是具有化学基团保护(t-BOC)的聚乙烯(PHS)。
有保护团的树脂不溶于水;感光剂是光酸产生剂(PAG,Photo Acid Generator),光刻胶曝光后,在曝光区的PAG发生光化学反应会产生一种酸。
该酸在曝光后热烘(PEB,P ost Exposure Baking)时,作为化学催化剂将树脂上的保护基团移走,从而使曝光区域的光刻胶由原来不溶于水转变为高度溶于以水为主要成分的显影液。
化学放大光刻胶曝光速度非常快,大约是DNQ线性酚醛树脂光刻胶的10倍;对短波长光源具有很好的光学敏感性;提供陡直侧墙,具有高的对比度;具有0.25μm及其以下尺寸的高分辨率。
四.光刻胶的技术参数
a、分辨率(resolution) 区别硅片表面相邻图形特征的能力。
一般用关键尺寸(CD,Critical Dimension)来衡量分辨率。
形成的关键尺寸越小,光刻胶的分辨率越好。
b、对比度(Contrast)。
指光刻胶从曝光区到非曝光区过渡的陡度。
对比度越好,形成图形的侧壁越陡峭,分辨率越好。
c、敏感度(Sensitivity)。
光刻胶上产生一个良好的图形所需一定波长光的最小能量值(或最小曝光量)。
单位:毫焦/平方厘米或mJ/cm2。
光刻胶的敏感性对于波长更短的深紫外光(DUV)、极深紫外光(EUV)等尤为重要。
d、粘滞性/黏度(Viscosity)。
衡量光刻胶流动特性的参数。
粘滞性随着光刻胶中的溶剂的减少而增加;高的粘滞性会产生厚的光刻胶;越小的粘滞性,就有越均匀的光刻胶厚度。
光刻胶的比重(SG,Specific Gravity)是衡量光刻胶的密度的指标。
它与光刻胶中的固体含量有关。
较大的比重意味着光刻胶中含有更多的固体,粘滞性更高、流动性更差。
粘度的单位:泊(poise),光刻胶一般用厘泊(cps,厘泊为1%泊)来度量。
百分泊即厘泊为绝对粘滞率;运动粘滞率定义为:运动粘滞率=绝对粘滞率/比重。
单位:百分斯托克斯(cs)=cps/SG。
e、粘附性(Adherence)。
表征光刻胶粘着于衬底的强度。
光刻胶的粘附性不足会导致硅片表面的图形变形。
光刻胶的粘附性必须经受住后续工艺(刻蚀、离子注入等)。
f、抗蚀性(Anti-etching)。
光刻胶必须保持它的粘附性,在后续的刻蚀工序中保护衬底表面。
耐热稳定性、抗刻蚀能力和抗离子轰击能力。
g、表面张力(Surface Tension)。
液体中将表面分子拉向液体主体内的分子间吸引力。
光刻胶应该具有比较小的表面张力,使光刻胶具有良好的流动性和覆盖。
h、存储和传送(Storage and Transmission)。
能量(光和热)可以激活光刻胶。
应该存储在密闭、低温、不透光的盒中。
同时必须规定光刻胶的闲置期限和存贮温度环境。
一旦超过存储时间或较高的温度范围,负胶会发生交联,正胶会发生感光延迟。
五.光刻胶的应用领域
模拟半导体(Analog Semiconductors)
发光二极管(Light-Emitting Diodes LEDs)
微机电系统(MEMS)
太阳能光伏(Solar PV)
微流道和生物芯片(Microfluidics & Biochips)
光电子器件/光子器件(Optoelectronics/Photonics)
封装(Packaging)
六.光刻胶的发展趋势
中国的微电子和平板显示产业发展迅速,带动了光刻胶材料与高纯试剂供应商等产业链中的相关配套企业的建立和发展。
特别是2009年LED(发光二极管)的迅猛发展,更加有力地推动了光刻胶产业的发展。
中国的光刻胶产业市场在原有分立器件、IC、LCD(液晶显示器)的基础上,又加入了LED,再加上光伏的潜在市场,到2010年中国的光刻胶市场将超过20亿元,将占国际光刻胶市场比例的10%以上。
从国内相关产业对光刻胶的需求量来看,目前主要还是以紫外光刻胶的用量为主,其中的中小规模(5μm以上技术)及大规模集成电路(5μm、2~3μm、0.8~1.2μm技术)企业、分立器件生产企业对于紫外负型光刻胶的需求总量将分别达到100吨/年~150吨/年;用于集成电路、液晶显示的紫外正性光刻胶及用于LED的紫外正负性光刻胶的需求总量在700吨/年~800吨/年之间。
但是超大规模集成电路深紫外248nm(0.18-0.13um技术)与193nm(90nm、65nm 及45nm的技术)光刻胶随着Intel大连等数条大尺寸线的建立,需求量也与日俱增。
七.光刻胶的研究方向
① 从工艺的角度去考虑。
普通的光刻胶在成像过程中,由于存在一定的衍射、反射和散射,降低了光刻胶图形的对比度,从而降低了图形的分辨率。
随着曝光加工特征尺寸的缩小,入射光的反射和散射对提高图形分辨率的影响也越来越大。
为了提高曝光系统分辨率的性能,人们正在研究在曝光光刻胶的表面覆盖抗反射涂层的新型光刻胶技术 [11]。
该技术的引入,可明显减小光刻胶表面对入射光的反射和散射,从而改善光刻胶的分辨率性能,但由此将引起工艺复杂性和光刻成本的增加。
② 依附于曝光系统而变。
伴随着新一代曝光技术(NGL)的研究与发展,为了更好的满足其所能实现光刻分辨率的同时,光刻胶也相应发展。
先进曝光技术对光刻胶的性能要求也越来越高。