光纤内脉冲信号传输仿真(包含matlab程序)
- 格式:docx
- 大小:166.11 KB
- 文档页数:6
一、概述脉冲信号是指在一段时间内突然发生的信号,其幅度瞬间上升并在短时间内保持恒定。
脉冲信号在工程领域中有着广泛的应用,比如在雷达系统、通信系统和生物医学工程中经常会用到脉冲信号。
而MATLAB作为一种强大的数学软件工具,可以用来快速、方便地生成和分析各种信号,包括脉冲信号。
本文将介绍如何使用MATLAB编写程序来输出脉冲信号。
二、MATLAB中的脉冲信号表示在MATLAB中,脉冲信号可以用一个突变的方波来表示。
这个方波的宽度非常窄,幅度非常高,代表了脉冲信号的特点。
通过控制方波的宽度和幅度,我们可以生成不同特征的脉冲信号。
三、MATLAB程序实现下面是一个简单的MATLAB程序,用来生成一个持续时间为0.1秒的脉冲信号。
```matlab设置脉冲信号的参数pulseWidth = 0.001; 脉冲宽度为0.001秒pulseAmplitude = 10; 脉冲幅度为10生成时间向量t = 0:0.0001:0.1; 时间范围为0到0.1秒,时间步长为0.0001秒生成脉冲信号pulseSignal = (t<=pulseWidth) * pulseAmplitude;绘制脉冲信号图像plot(t, pulseSignal);xlabel('Time (s)');ylabel('Amplitude');title('Pulse Signal');```上述程序首先设置了脉冲信号的参数,包括脉冲宽度和脉冲幅度。
然后生成了一个时间向量,并利用MATLAB中的逻辑运算生成了脉冲信号。
利用plot函数绘制了脉冲信号的图像。
四、程序运行结果运行上述程序后,我们可以得到一个如图所示的脉冲信号图像。
图中可以清晰地看到脉冲信号在0.001秒内瞬间达到了幅度为10的峰值,并在接下来的时间内保持恒定。
五、扩展除了简单的脉冲信号外,我们还可以利用MATLAB编写程序来生成更复杂的脉冲信号。
在MATLAB中进行光纤光学仿真可以通过数值模拟和解方程组来模拟光的传播、衍射、衰减等光学现象。
以下是一个简单的光纤光学仿真的一般步骤:
1. 建立光纤模型:
首先,确定光纤的基本参数,例如折射率、直径、长度等。
这些参数将决定光在光纤中的传播特性。
2. 定义入射光源:
在仿真中,定义光源的参数,例如波长、功率、入射角等。
这可以通过定义入射光的波函数来实现。
3. 求解传播方程:
光在光纤中的传播可以通过解相应的偏微分方程(PDE)来模拟。
根据光的波动性质,一般可以使用薛定谔方程或亥姆霍兹方程来描述。
4. 数值求解:
使用MATLAB的数值求解工具箱,例如pdepe函数,对求解的光学方程进行数值模拟。
5. 绘制仿真结果:
使用MATLAB的绘图工具,例如plot函数,可视化仿真结果。
6. 考虑衍射和衰减:
根据光纤的特性,考虑衍射和衰减等现象,更新光学方程。
7. 优化和分析:
通过调整光纤参数,观察光的传播特性,进行性能分析和优化。
注意事项:
•要考虑光在光纤中的多模式传播,可以引入模式耦合的描述。
•对于三维传播,可以将方程扩展到三维,并使用相应的求解方法。
•使用合适的数值方法,例如有限元法、有限差分法等。
以上是一个简单的光纤光学仿真的概要步骤。
具体仿真的复杂性取决于问题的具体情况和所需的精度。
MATLAB提供了强大的工具箱,包括数值求解、绘图、优化等,可用于实现高度复杂的光学仿真。
matlab 光纤sbs仿真程序光纤SBS(Stimulated Brillouin Scattering,受激布里渊散射)是一种重要的非线性光学效应,在光通信系统中具有广泛的应用。
为了更好地理解和研究光纤SBS的特性和影响因素,我们可以使用MATLAB进行光纤SBS的仿真。
在进行光纤SBS仿真之前,我们首先需要了解光纤SBS的基本原理。
光纤SBS是一种非线性光学过程,当一束高功率的激光光束通过光纤时,会与光纤中的声子模式发生相互作用,从而产生新的光学波长。
这种相互作用过程中,激光光束中的光子会被散射成为新的频率和波矢的声子,从而产生散射光。
光纤SBS的效应会导致光信号的失真和损耗,因此在光通信系统设计中需要进行充分的考虑。
在MATLAB中进行光纤SBS仿真可以通过建立合适的数学模型和参数设置来实现。
首先,我们需要定义光纤的基本参数,如长度、折射率、光纤的非线性系数等。
然后,我们可以通过输入光信号的频率、功率和波形等信息来模拟光纤中的光场传输过程。
在仿真过程中,我们可以考虑光纤的非线性效应和声子模式的影响,从而得到光纤中的散射光信号。
为了更好地理解光纤SBS的影响,我们可以通过改变光纤的参数和输入光信号的特性来进行不同情况下的仿真实验。
例如,我们可以改变光纤的长度、直径和折射率等参数,观察散射光的频率和强度的变化。
此外,我们还可以改变输入光信号的频率、功率和波形等特性,研究它们对光纤SBS效应的影响。
通过光纤SBS的仿真实验,我们可以得到光纤SBS效应的一些重要特性和参数。
例如,我们可以得到光纤SBS的阈值功率和阈值频率,即当输入光功率或频率超过一定的阈值时,光纤SBS效应会变得明显。
此外,我们还可以得到光纤SBS的增益谱和散射光的功率谱密度等信息,从而更好地了解光纤SBS的特性和应用。
在进行光纤SBS仿真时,我们还可以结合其他光纤效应和系统参数进行综合分析。
例如,我们可以考虑光纤的色散效应、非线性效应和衰减等因素,从而研究它们与光纤SBS效应的相互作用。
利用MATLAB模拟光纤传光物理与光电工程学院应用物理成寒剑20131326007一、光纤传输原理光纤是一种传输介质,是依照光的全反射的原理制造的。
光纤是一种将讯息从一端传送到另一端的媒介,是一条以玻璃或塑胶纤维作为让讯息通过的传输媒介。
光纤实际是指由透明材料做成的纤芯和在它周围采用比纤芯的折射率稍低的材料做成的包层,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。
一般是由纤芯、包层和涂敷层构成的多层介质结构的对称圆柱体。
光纤有两项主要特性:即损耗和色散。
光纤每单位长度的损耗或者衰减(dB/km),关系到光纤通信系统传输距离的长短和中继站间隔的距离的选择。
光纤的色散反应时延畸变或脉冲展宽,对于数字信号传输尤为重要。
每单位长度的脉冲展宽(ns/km),影响到一定的传输距离和信息传输容量。
二、光纤分类光纤光纤正处在新产品的不断涌现的发展时期,种类不断增多,而且千变万化。
近年来用于传感器的特殊光纤发展尤迅速。
目前一般分类方法如下:1.按传输模分:(1)单模光纤。
单模光纤纤芯直径仅几个厘米,加包层和涂敷层后也仅几十个微米到125微米。
纤芯直径接近波长。
单模光纤采用窄芯线,使用激光作为发光源,所以其地散极小;另外激光是发一个方向射入光纤,而且仅有一束,使用其信号比较强,可以应用于高速度、长距离的应用领域中,便也合得它的成本相对更高。
(2)多模光纤。
多模光纤纤芯直径有50微米,加包层和涂敷层有50微米。
纤芯直径远远大于波长。
多模光纤广泛地应用于短距离或相对速度更低一些的领域中,它采用LED 作为光源,使用宽芯线,所以其散较大;在加上整个光纤内有以多个角度射入的光,所以其信号不如单模光纤好,但相对低的价格是它的优势。
2.按折射率分布分:折射率分布类光纤可分为阶跃式光纤和渐变式光纤。
阶跃式光纤纤芯的折射率和保护层的折射率都是一个常数。
在纤芯和保护层的交界面,折射率呈阶梯型变化。
渐变式光纤纤芯的折射率随着半径的增加按一定规律减小, 在纤芯与保护层交界处减小为保护层的折射率。
光纤通信作为一种高速、高带宽的通信方式,在现代通信领域中得到了广泛的应用。
为了更好地理解光纤通信系统的原理和工作方式,以及为了展示光纤通信系统的性能,我们设计了一套基于Matlab的光纤通信演示系统。
1. 系统概述光纤通信演示系统由光源模块、光纤传输模块、光探测模块和信号处理模块四个部分组成。
光源模块用于产生光信号,光纤传输模块用于模拟光信号在光纤中的传输过程,光探测模块用于接收光信号,信号处理模块用于对接收到的光信号进行处理和分析。
2. 光源模块光源模块采用LED或激光二极管作为光源,通过电流调节控制光信号的强度和频率。
在Matlab中,我们可以模拟电流调节过程,并生成相应的光信号波形。
3. 光纤传输模块光纤传输模块包括光纤和光纤传输系统模型。
在实际光纤通信系统中,光信号在光纤中传输会受到衰减和色散等影响。
在Matlab中,我们可以建立光纤传输系统模型,模拟光信号在光纤中的传输过程,并观察信号在传输过程中的变化。
4. 光探测模块光探测模块采用光电二极管或光电探测器接收光信号,并将光信号转化为电信号。
在Matlab中,我们可以模拟光信号到电信号的转换过程,并得到相应的电信号波形。
5. 信号处理模块信号处理模块包括信号放大、滤波、解调等处理过程。
在Matlab中,我们可以对接收到的电信号进行数字信号处理,包括滤波、解调、误码率分析等处理,最终得到解调后的信号波形和信号质量分析结果。
通过以上演示系统的设计,我们可以清晰地了解光纤通信系统的工作原理和性能特点,加深对光纤通信技术的理解和认识。
我们也可以通过Matlab模拟和分析光纤通信系统的性能,为实际系统的设计和优化提供参考和支持。
基于Matlab的光纤通信演示系统设计不仅可以帮助我们更好地理解光纤通信技术,还可以为光纤通信系统的设计、优化和性能分析提供有力的工具和支持。
通过不断的探索和实践,光纤通信技术将会在未来的通信领域中发挥越来越重要的作用,为人类社会的发展和进步做出贡献。
光纤通信技术仿真实验光纤通信技术仿真实验 1 光发送机(Optical Transmitters)设计1.1 光发送机简介1.2 光发送机设计模型案例:铌酸锂(LiNbO)型Mach-Zehnder调制器的啁啾(Chirp)3分析2 光接收机(Optical Receivers)设计2.1 光接收机简介2.2 光接收机设计模型案例:PIN光电二极管的噪声分析3 光纤(Optical Fiber)系统设计 3.1 光纤简介3.2 光纤设计模型案例:自相位调制(SPM)导致脉冲展宽分析4 光放大器(Optical Amplifiers)设计4.1 光放大器简介4.2 光放大器设计模型案例:EDFA的增益优化5 光波分复用系统(WDM Systems)设计 5.1 光波分复用系统简介5.2 光波分复用系统使用OptiSystem设计模型案例:阵列波导光栅波分复用器(AWG )的设计分析6 光波系统(Lightwave Systems)设计6.1 光波系统简介40G单模光纤的单信道传输系统设计 6.2 光波系统使用OptiSystem设计模型案例:7 色散补偿(Dispersion Compensation)设计8.1 色散简介8.2 色散补偿模型设计案例:使用理想色散补偿元件的色散补偿分析8 孤子和孤子系统(Soliton Systems)9.1 孤子和孤子系统简介9.2 孤子系统模型设计案例:1 光发送机(Optical Transmitters)设计1.1 光发送机简介一个基本的光通讯系统主要由三个部分构成,如下图1.1所示:图1.1 光通讯系统的基本构成 1)光发送机 2) 传输信道 3)光接收机作为一个完整的光通讯系统,光发送机是它的一个重要组成部分,它的作用是将电信号转变为光信号,并有效地把光信号送入传输光纤。
光发送机的核心是光源及其驱动电路。
现在广泛应用的有两种半导体光源:发光二级管(LED)和激光二级管(LD)。
一、课程设计题目:用matlab 仿真光束的传输特性。
二、任务和要求用matlab 仿真光束通过光学元件的变换。
① 设透镜材料为k9玻璃,对1064nm 波长的折射率为1.5062,镜片中心厚度为3mm ,凸面曲率半径,设为100mm ,初始光线距离透镜平面20mm 。
用matlab 仿真近轴光线(至少10条)经过平凸透镜的焦距,与理论焦距值进行对比,得出误差大小。
② 已知透镜的结构参数为101=r ,0.11=n ,51=d ,5163.121=='n n (K9玻璃),502-=r ,0.12='n ,物点A 距第一面顶点的距离为100,由A 点计算三条沿光轴夹角分别为10、20、30的光线的成像。
试用Matlab 对以上三条光线光路和近轴光线光路进行仿真,并得出实际光线的球差大小。
③ 设半径为1mm 的平面波经凸面曲率半径为25mm ,中心厚度3mm 的平凸透镜。
用matlab 仿真平面波在透镜几何焦平面上的聚焦光斑强度分布,计算光斑半径。
并与理论光斑半径值进行对比,得出误差大小。
(方法:采用波动理论,利用基尔霍夫—菲涅尔衍射积分公式。
)2、用MATLAB 仿真平行光束的衍射强度分布图样。
(夫朗和费矩形孔衍射、夫朗和费圆孔衍射、夫朗和费单缝和多缝衍射。
)3、用MATLAB 仿真厄米—高斯光束在真空中的传输过程。
(包括三维强度分布和平面的灰度图。
)4、(补充题)查找文献,掌握各类空心光束的表达式,采用费更斯-菲涅尔原理推导各类空心光束在真空中传输的光强表达式。
用matlab 对不同传输距离处的光强进行仿真。
三、理论推导部分✍将坐标原点选在透镜中心处,θ1=arcsin(y1/r),由n1*sinθ1=n2*sinθ2可得出θ2=arcsin(n1/n2)*(y1/r),由几何关系可得到θ=θ2-θ1,则出射光线的斜率k=tan(θ2-θ1),当入射直线y=y1时,x1=d-(r-(yr ),并设出射直线为y=k*x+b;由直线经过(x1,y1)即可求2^)2^1出b值,从而就可以求出射直线。
MATLAB平台上的光纤通信系统性能仿真研究光纤通信是现代通信系统中非常重要的一部分,也是实现高速和远距离数据传输的关键技术之一。
光纤通信系统性能仿真研究对于设计和优化光纤通信系统具有重要意义。
MATLAB平台作为一个功能强大的科学与工程计算软件,被广泛应用于光纤通信系统性能仿真研究中。
本文将围绕MATLAB平台上的光纤通信系统性能仿真研究展开探讨。
首先,光纤通信系统的性能参数是衡量其性能好坏的重要指标。
光纤通信系统的性能参数包括比特误码率(BER)、信号失真、信道容量等。
在MATLAB平台上进行光纤通信系统性能仿真研究时,可以利用MATLAB提供的信号处理工具箱和通信工具箱来进行相关仿真实验。
通过设定合适的仿真参数和算法,可以准确地计算出光纤通信系统的性能参数,进而评估系统的性能。
其次,光纤通信系统中的关键技术是调制与解调技术。
调制与解调技术能够将电信号转换为光信号并进行传输,然后再将光信号转换为电信号进行解调。
而在MATLAB平台上进行光纤通信系统性能仿真研究时,可以利用MATLAB提供的调制与解调函数来实现相关仿真实验。
例如,可以利用MATLAB的ammod和amdemod函数来实现调幅和解调幅的仿真实验,通过计算得到的误码率和信号失真等性能参数来评估系统的性能。
此外,在光纤通信系统中,传输模式的选择对系统性能也有很大的影响。
传输模式包括单模光纤传输和多模光纤传输两种。
单模光纤传输具有带宽大、传输距离远的特点,多模光纤传输则具有带宽窄、传输距离短的特点。
在MATLAB平台上进行光纤通信系统性能仿真研究时,可以通过设定合适的仿真参数和算法来模拟不同的传输模式,并评估其对系统性能的影响。
此外,光纤通信系统中还存在着光纤衰减和色散等信号损失问题。
光纤衰减是指光信号在光纤中传输过程中逐渐减弱的现象,而色散是指不同频率的光信号在光纤中传输过程中到达终点的时间不同。
这些信号损失问题会影响光纤通信系统的传输质量和可靠性。
利用m a t l a b模拟光纤传光目录摘要 (1)1 对光纤的认识 (1)1.1光纤传输原理 (2)1.2光纤材料 (2)1.3光纤分类 (2)1.4光纤传输过程 (3)1.5光纤传输特性 (4)1.6光纤发展历史 (4)1.7光纤应用 (5)2 光纤传光理论分析 (6)2.1 光在均匀介质中的反射与折射特性 (7)2.2 光的全反射 (7)2.3光纤中光波的传播原理及导光条件 (8)2.3.1 单模光纤中光的传播 (9)2.3.2 多模阶跃折射率光纤中光的传输 (9)2.3.3 多模梯度折射率光纤中光的传输 (10)3 matlab模拟传光 (10)3.1 模拟光在单模光纤中的传播 (11)收集于网络,如有侵权请联系管理员删除3.2模拟光在多模阶跃折射率光纤中传播 (11)3.3 模拟光在梯度折射率光纤中传播 (14)4 结论分析 (15)5 设计总结 (16)参考文献 (17)收集于网络,如有侵权请联系管理员删除利用matlab模拟光纤传光摘要本文主要以阶跃型多模光纤、渐变型多模光纤、阶跃型单模光纤为研究对象,通过对光纤传光路径分析,加深对光纤的认识;深入理解光纤的传光原理;掌握光纤的传输条件,应用几何光学理论主要研究光波在光纤内的传输,分别对单模光纤中光的传输,多模阶跃折射率光纤、多模渐变折射率光纤中光的传输情况进行了研究,并对它们具体的传播路径用matlab软件进行了模拟。
关键词光纤 matlab 模拟传光1 对光纤的认识1.1光纤传输原理光纤是一种传输介质,是依照光的全反射的原理制造的。
光纤是一种将讯息从一端传送到另一端的媒介,是一条以玻璃或塑胶纤维作为让讯息通过的传输媒介。
光纤实际是指由透明材料做成的纤芯和在它周围采用比纤芯的折射率稍低的材料做成的包层,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。
一般是由纤芯、收集于网络,如有侵权请联系管理员删除包层和涂敷层构成的多层介质结构的对称圆柱体。
1 绪论1.1 课题研究背景与意义超连续(SC)谱指的是强短光脉冲在通过非线性介质(如光纤)时所形成的极大展宽光谱。
超连续谱的产生是指当一束强高峰值功率的光脉冲通过光纤后,透射谱中出现许多新的频率成分,使光谱的宽度展宽远远大于入射脉冲的谱宽。
该现象的产生是由于光纤中的自相位调制(SPM),交叉相位调制(XPM)等非线性效应和色散以及啁啾等共同作用的结果,受激拉曼散射(SRS)也会引起光谱展宽。
同其他用于光纤通信的超短脉冲光源相比,超连续谱具有连续宽带谱、稳定可靠、简单廉价等诸多优点,将在未来的T bit/ s波分复用/光时分复用(WDM/ OTDM) 系统中扮演重要角色。
利用光纤中的超连续(SC) 谱展宽技术,能够在很宽的光谱范围内同时获得多个高重复率、多波长超短脉冲,是一种有效的超短脉冲光源产生方法。
而超短脉冲光源是非线性光学、信息光电子超快光谱和多光子显微镜等诸多应用领域的关键器件,具有广阔的应用前景[1]。
近年来,光纤中的光谱超连续展宽技术已经成为当前热门的研究课题。
SC 谱光源以其优越的性能在光谱检测、生物医学、高精密光学频率测量及波分复用光通信系统等方面有着重要的作用,主要有以下几个方面:波形和群速度测量、超高速WDM系统光源、实现无抽运的自频移、全光解复用。
同时,利用SC谱光源还可以实现高分辨率的DCT。
此外,SC谱在超短脉冲压缩、激光光谱学和传感技术方面也有大的应用潜力[2]。
1.2 本文的主要内容以上是关于本课题的研究背景及意义,本文主要利用MATLAB进行模拟、分析研究双曲正割脉冲[3]在一段级联光纤中传输的光谱展宽特性。
最后得到级联光纤中双曲正割脉冲展宽的规律。
全文结构如下:第一章 主要介绍课题背景、意义以及本文的内容;第二章 主要讲脉冲在光纤中传输的基本特性,包括损耗、色散效应、非线性效应等,然后介绍了光纤中的非线性传输方程——非线性薛定谔方程及其求解方法;第三章 通过MATLAB 进行模拟,分析在级联光纤中双曲正割脉冲光谱展宽特性,得出结论;第四章 综合前文对全文进行总结。
光纤内脉冲信号传输仿真
一、仿真内容
1、 选择一种脉冲波形(高斯脉冲,啁啾高斯脉冲,双曲正割脉冲,超高斯脉冲等),
讨论光脉冲在光纤内传输时,GVD 和SPM 效应是如何结合的,并使用MATLAB 仿真脉冲波形随传播距离的变化。
2、 选择一种调制方式(ASK ,PSK ,QPSK ,QAM 等),对脉冲进行调制,分析接收端的误码率。
二、原理分析
1、 GVD
光脉冲在单模光纤内传输的NLS 方程,对脉冲大于5ps 的脉冲有
2222|A |22A A i i A A z T
βα
γ∂∂=-+-∂∂ (1式) U (z,T )满足线性偏微分方程
~
2222U U i z T
β∂∂=∂∂ (2式) 若U(z,w)是U(z,T)的傅里叶变换,即
~1(z,T)(z,)2i T U U e d ωωωπ-∞=-∞
⎰ (3式)
满足常微分方程
~
~222
U
i U z βω∂=-∂ (4式) 其解为
~
~
22(z,)(0,)exp(z)2
i
U U ωωβω= (5式)
由第5式可得,GVD 改变了脉冲的每个频谱分量的相位,且其改变量依赖于频率及传输距离。
GVD 不会影响脉冲的频谱,但是能改变脉冲的形状。
把5式代入3式可得方程2的通解
~22
1(z,T)(0,)exp(z i T)22
i U U d ωβωωωπ∞=--∞⎰ (6式)
其中,~
(0,)U ω是入射光在z=0处的傅里叶变换
~
(0,)U(0,T)exp(i T)U dT ωω∞
=-∞
⎰
(7式) 方程6和方程7适用于任意形状的输入脉冲。
2、 SPM
定义归一化振幅U
/2
(z,)(z,)A U αττ-= (8式) 其中归一化时间量
00
/g
t z T T T ντ-==
(9式) (z,)U τ满足方程
2222sgn()|U |U 2z D NL
U U e i z L L αβτ-∂∂=-∂∂ (10式) 令2β=0,两边同时乘以i 可得
2|U |U z
NL
U e z L α-∂=∂ (11式) 其中10()NL L P γ-=
用NL exp(i )U V φ=做代换,并且令方程两边实部虚部相等,则有
0V
z ∂=∂
2z NL NL
e V z L αφ-∂=∂ (12式) 对相位方程进行积分,得到通解
NL (L,T)U(0,T)exp(i (L,T))U φ= (13式)
其中,U(0,T)是z=0处的场振幅,且
2NL eff NL (L,T)|U(0,T)|(L /L )φ= (14式)
式中有限长度
eff L [1exp(L)]/αα=-- (15式)
第14式表明,SPM 产生随光强变化的相位,但脉冲形状保持不变。
脉冲沿光纤传输时,由于SPM 的作用,新的频率分量在不断产生,频谱被展宽。
3、 分步傅里叶方法
一般来说,沿光纤的传输方向,色散和非线性效应是同时作用的。
分步傅里叶方法通过假定在传输过程当中,光场每通过一小段距离h ,色散和非线性效应分别作用,得到近似解。
从z 到z+h 的传输过程中,分为3步进行。
第一步,z 到z+h/2,只考虑GVD 。
第二步,z+h/2处,考虑SPM 。
第三步,z+h/2到z+h ,只考虑GVD 。
通过分步傅里叶方法,把传输距离L 分成m 个区间,MATLAB 程序做m 次循环,即可得到最终的近似解。
图 1
三、MATLAB 仿真结果
这里选择传输双极性非归零(NRZ )码,传输高斯脉冲,使用MATLAB 仿真光纤中脉冲传输。
主要参数设置如下:传输距离L=50Km ,损耗a=0.3dB ,非线性系数r=3/km/w ,色散系数b2=20ps 2 /km 。
高斯脉冲入射光场表达式为:
2
2
0(0,T)exp()2T U T =-
(16式) 传输5个码源[1 , -1, 1, -1, 1],对应的时域波形如下:
图2
传输过程中使用分步傅里叶方法,分成m=10段,每段h=5Km ,分别进行GVD 和SPM 分析。
传输过程中的波形如下:
100
200
300
400
500
600
700
-1-0.8-0.6-0.4-0.200.20.40.60.81周期高斯脉冲
L
h
只考虑 GVD
只考虑 GVD
只考虑 SPM
图 3
通过图3可以发现,由于GVD 和SPM 的作用,脉冲波形被展宽。
随着传输距离的增加,脉冲波形与原始波形的差异越大。
附:MATLAB 代码
clc;%清除命令窗口原有命令 clear all;%清除原有变量 L=5;%周期数 Ts=4;%符号周期 A=100;%插值倍数
Rb=1/Ts;%可以更改Rb 与Ts 的关系,但是A 需要同时改变 T0=Ts/A; F0=1/T0;
%信源产生[1 -1 1 -1 1] a=zeros(1,L); for i=1:L
if mod(i,2)==1 a(i)=1; else a(i)=-1; end end
d=zeros(1,L*A); for i=1:L
-800
-1-0.500.5
1T/ps
I n t e n s i t y
d(1+(i-1)*A)=a(i);%插值,在相邻a(i)插入A-1个0,得到插值后的发送序列;end
%周期高斯脉冲产生
T0=30;%初始宽度ps;
N=256;
TL=T0*20;
dt=TL/N;
df=1/TL;
t=(-N/2:N/2-1)*dt;
f=(-N/2:N/2-1)*df;
w=2*pi*f;
u=exp(-(1/2)*((t/T0).^2)); %U(0,t)
j=1;
%截取有效高斯点数
for i=1:256
if(u(i)>10^(-5))
U(j)=u(i);
j=j+1;
end
end
figure(2)
U1=conv(U,d);
plot(U1)
title('周期高斯脉冲');
b2=20;%ps^2/km色散系数
LD=T0^2/b2;%色散长度km
L=50;%光纤长度km
a=0.3;%损耗db/km
r=3;%非线性系数/km/w
p0=2*10^(-3); %峰值功率w
Lnl=1/(r*p0);%非线性长度km
z=L;
dz=z/10;
Leff=(1-exp(-dz*10^(-a/10)))/(10^(-a/10));%有效长度
fmax=Leff/Lnl;%最大相位偏移
y=0*ones(1,size(U1,2));
figure(3)
plot3(y,(-size(U1,2)/2:size(U1,2)/2-1)*dt,U1,'color',[0,0,0]);
xlabel('L/km');
ylabel('T/ps');
zlabel('Intensity');
grid on;
hold on;
W=2*pi*(-size(U1,2)/2:size(U1,2)/2-1)*df;
for i=1:10 %分布傅里叶
U=fft(U1);
w1=fftshift(W);
Uz=U.*exp((1i*b2*(w1.^2)*dz/2)/2);
U1=ifft(Uz); %先对前dz/2进行GVD
fnl=abs(U1).^2*fmax;
U1=U1.*exp(1i*fnl); %SPM
U=fft(U1);
w1=fftshift(W);
Uz=U.*exp((1i*b2*(w1.^2)*dz/2)/2);
U1=ifft(Uz); %对后dz/2进行GVD
y=5*i*ones(1,size(U1,2));
plot3(y,(-size(U1,2)/2:size(U1,2)/2-1)*dt,U1,'color',[1-0.1*i,0.3,0.1*i]); end;。