常用积分换元公式
- 格式:doc
- 大小:226.50 KB
- 文档页数:3
定积分的计算方法总结引言定积分是微积分中重要的概念之一,它可以用于求取曲线下的面积、求解物理问题中的积分以及解决各种与变化量有关的问题。
本文将总结定积分计算的常用方法,包括基本定积分公式、换元积分法和分部积分法。
基本定积分公式基本定积分公式是计算定积分时最基础也是最常用的方法之一。
以下为常见的基本定积分公式:1.$\\int x^m dx = \\frac{1}{m+1}x^{m+1}$,其中m为常数,m eq−1。
2.$\\int \\frac{1}{x} dx = \\ln|x|$,其中x为正实数。
3.$\\int e^x dx = e^x$。
4.$\\int \\sin x dx = -\\cos x$。
5.$\\int \\cos x dx = \\sin x$。
6.$\\int \\tan x dx = -\\ln|\\cos x|$。
换元积分法换元积分法是一种常用的定积分计算方法,它通过引入一个新的变量来简化被积函数的形式。
具体步骤如下:1.选择一个适当的变量代换,通常选择与题目给定的被积函数中具有根号、三角函数等特殊形式相关的变量。
2.根据选择的变量代换,将被积函数中的所有变量都用新的变量表示。
3.计算新的被积函数的导数,并将被积函数转换为对新变量的积分。
4.计算新的积分。
以下是换元积分法的一个例子:求解定积分$\\int 2x(x^2+1)^3 dx$。
解:设u=x2+1,则du=2xdx。
将被积函数中的所有x用u表示,则原积分变为$\\int u^3 du$。
计算新的积分得$\\frac{1}{4}u^4 + C$,其中C为常数。
最后,将u替换回x得到最终结果$\\frac{1}{4}(x^2+1)^4 + C$。
分部积分法分部积分法是解决定积分问题中的另一种常用方法,它是利用乘积的导数公式来简化积分计算的步骤。
具体步骤如下:1.选择一个适当的分部积分公式。
分部积分公式为$\\int u dv = uv -\\int v du$。
常用积分换元公式换元积分法的公式积分换元法是求解积分的一种重要方法,通过引入合适的变量替换的方式,将原积分转化为更容易求解的形式。
下面是一些常用的积分换元公式和换元积分法:1.换元公式(1)第一类换元公式:设函数u=u(x)具有一阶连续导数,则有如下公式:∫f(u)du = ∫f(u(x))u'(x)dx(2)第二类换元公式:设函数x=x(u)可导,且反函数存在,则有如下公式:∫f(x)dx = ∫f(x(u))x'(u)du(3)第三类换元公式:设函数x=x(t),y=y(t)可导,且满足y=y(x),则有如下公式:∫f(x,y)dx = ∫f(x(t),y(t))x'(t)dt2.常见换元积分法(1)坐标换元法:根据问题中给定的坐标关系,选择适当的新坐标,从而简化积分的计算。
常见的坐标换元法包括:极坐标、柱坐标、球坐标等。
(2) 幂次换元法:对于形如∫f(x)(ax+b)^n dx的积分,可以引入变量u=ax+b进行代换,从而将积分转化为幂函数的积分。
(3) 三角换元法:对于形如∫f(x)sin(ax+b) dx或∫f(x)cos(ax+b) dx的积分,可以引入变量u=ax+b进行代换,从而将积分转化为三角函数的积分。
(4) 指数换元法:对于形如∫f(x)e^x dx的积分,可以引入变量u=e^x进行代换,从而将积分转化为指数函数的积分。
(5) 对数换元法:对于形如∫f(x)/x dx的积分,可以引入变量u=ln,x,进行代换,从而将积分转化为对数函数的积分。
(6) 倒代换法:对于形如∫f(g(x))dg(x)的积分,可以引入变量u=g(x)进行代换,然后将dg(x)用du表示,从而将积分转化为对u的积分。
(7) Weierstrass换元法:对于形如∫R(x,√(ax^2+bx+c)) dx的积分,可以引入变量u=√(ax^2+bx+c)+px+q进行代换,然后将积分转化为对u的积分。
第一类换元积分法
部分常用的凑微分公式:
第二类换元积分法
1. 当被积函数中含有
1)a2x2,可令x asint或x a cost ;
2)a2x2,可令x atant ;
3)x2a2,可令x a sect .
通过三角代换化掉根式。
但是,去掉被积函数根号并不一定要采用三角代换,例如被积函数含有a2x2或x2a2时,还可利用公式ch2t sh2t 1 ,采用双曲代换x asht或x acht消去根式,所得结果一致。
所以应根据被积函数的具体情况尽量选取简单的方法对根式进行有理化代换。
1
2. 当有理分式函数中分母的阶数较高时,可采用倒代换x 1.
t
3. 类型 f (n ax b)dx:可令t n ax b ;类型f(n ax b )dx :可令t n ax b cx d cx d
(第四节内容)
4. 类型f(a x)dx:可令t a x.
适合用分部积分法求解的被积函数。
第二类换元积分法公式大全第二类换元积分法是求解不定积分中常用的一种方法,也被称为反三角函数法。
该方法适用于被积函数含有形如$f'(x)/f(x)$的因式,换元后将该因式化为常数,从而简化积分运算。
以下是第二类换元积分法中常用的公式:1. $\int f'(x)f(ax+b)dx=\dfrac{1}{2a}f^2(ax+b)+C$2. $\int \dfrac{1}{x^2-a^2}dx=\dfrac{1}{2a}\ln\left|\dfrac{x-a}{x+a}\right|+C$3. $\int \dfrac{1}{\sqrt{a^2-x^2}}dx=\sin^{-1}\dfrac{x}{a}+C$4. $\int\dfrac{1}{\sqrt{x^2+a^2}}dx=\ln\left|x+\sqrt{x^2+a^2}\right|+C$5. $\int \dfrac{1}{ax^2+bx+c}dx=\dfrac{1}{\sqrt{4ac-b^2}}\tan^{-1}\left(\dfrac{2ax+b}{\sqrt{4ac-b^2}}\right)+C$6. $\int \dfrac{1}{x^2+a^2}dx=\dfrac{1}{a}\tan^{-1}\dfrac{x}{a}+C$以上公式中,$f(x)$是反函数$f^{-1}(x)$的导数。
对于一般情况,我们可以通过合理的换元使得原函数变为上述公式中的一种形式,从而便于求解不定积分。
例如: $\int \dfrac{1}{2x+1}\ln(2x+1)dx$。
这里$f(x)=\ln(x)$的导数为$f'(x)=\dfrac{1}{x}$,而被积函数中含有$(2x+1)$的因式,因此我们可以尝试使用第一类换元积分法:$u=2x+1$,则$du=2dx$,积分变为:$$\begin{aligned}\int \dfrac{1}{2x+1}\ln(2x+1)dx&=\int \dfrac{1}{u}\ln u\cdot\dfrac{du}{2}\\&=\dfrac{1}{2}\int \ln u\cdot\dfrac{du}{u}\\&=\dfrac{1}{2}\ln^2(2x+1)+C\end{aligned}$$由此可知,使用第二类换元积分法可以更加灵活地求解各种类型的不定积分,为我们的微积分研究提供了便利。
不定积分换元法公式不定积分换元法是求解不定积分中常用的一种方法,它通过引入一个新的变量替换原积分中的变量,从而将原积分转化为新的不定积分,进而更容易求解。
不定积分换元法公式主要包括两种形式:第一类换元法和第二类换元法。
接下来,我将详细介绍这两种形式的公式及其应用。
一、第一类换元法:第一类换元法是通过引入一个新的变量来替换原不定积分中的变量,一般选择不定积分的变量作为新变量的导数。
设新变量为u = g(x),则原不定积分可表示为∫f(x)dx = ∫h(u)du,其中h(u)为f(x)与g(x)之间的关系。
此时,需要求出u关于x的导数du/dx,并应用链式法则来完成变量替换和求导。
公式如下:∫f(x)dx = ∫h(u)du = ∫h(g(x))g'(x)dx二、第二类换元法:第二类换元法是通过引入一个新的变量来替换原不定积分中的一部分表达式,一般选择积分中的一部分表达式作为新变量的导数。
设新变量为u = g(x),则将表达式f(x)dx进行替换,可得∫f(x)dx =∫g'(x)h(u)du,其中g'(x)为新变量u关于x的导数,h(u)为f(x)dx与g'(x)之间的关系。
此时,需要求出u关于x的导数du/dx,并应用链式法则来完成变量替换和求导。
公式如下:∫f(x)dx = ∫g'(x)h(u)du通过以上两种换元法,可以将原不定积分转化为新的不定积分,然后利用新的不定积分公式及基本积分公式进行求解。
下面举例说明这两种换元法的应用。
(1)第一类换元法的应用:求解∫(2x + 1)²dx。
设u = 2x + 1,则du/dx = 2将du/dx代入原式,并将原积分中的x用u表示∫(2x + 1)²dx = ∫u² * (1/2)du = (1/2) * ∫u²du = (1/2) * u³/3 + C = (1/6)(2x + 1)³ + C。
换元积分法公式
换元积分法是求解不定积分的一种重要方法,其基本思想是通过变量代换将原函数中的变量替换为一个新的变量,从而将原不定积分转化为一个更容易求解的形式。
常用的换元积分法有三种:第一类换元法,第二类换元法以及特殊换元法。
下面将分别介绍这三种换元积分法的公式。
第一类换元积分法的公式如下:
若对于函数f(x),存在一个可导函数g(x),满足f(x) = h(g(x))g'(x),其中h(t)为可导函数,则有∫f(x)dx = ∫h(g(x))g'(x)dx = H(g(x)) + C,其中C为常数,H(t)为h(t)的一个原函数。
第二类换元积分法的公式如下:
若对于函数f(x),存在一个可导函数g(x),满足f(x)中至少含有一个因式为g(x),则有∫f(x)dx = ∫f(g(t))g'(t)dt,其中x = g(t)。
特殊换元积分法的公式如下:
常用的特殊换元积分法包括三角换元法、指数换元法、倒代换法、万能代换法等。
以上是换元积分法的三种常用公式。
在实际应用中,需要根据具体问题的不同选择不同的换元积分法,以求出较为简单的积分形式。
同时,需要注意选取合适的换元变量,并保证换元变量的可导性和可逆性,避免引入新的难以求解的形式。
常用积分换元公式积分是微积分中的重要概念之一,可以用来求解函数的面积、曲线的长度、体积等问题。
而积分换元法是求解定积分中的一个常用方法,通过引入新的变量,使得被积函数变得更简单从而更容易求解。
在实际问题中,我们常常遇到的被积函数都有一些特定的形式,可以利用常用积分换元公式来求解。
下面将介绍一些常用的积分换元公式。
设函数f(x)在区间[a,b]上连续可导,且g(t)是[a,b]上的连续可导函数,且g(t)的导函数g'(t)在[a,b]上连续,则有∫f(g(t))g'(t)dt = ∫f(x)dx这个公式是一般的积分换元公式,通过引入新的变量t来进行积分。
将被积函数中的x替换成g(t),并将原函数f(g(t))g'(t)dt 中的变量替换为f(x)dx,就可以利用这个公式进行换元计算。
2.三角换元公式当被积函数中含有三角函数时,可以利用三角换元公式简化计算。
(1) ∫sin^2(x)dx = 1/2x - 1/4sin(2x) + C(2) ∫cos^2(x)dx = 1/2x + 1/4sin(2x) + C这两个公式的推导可以通过将sin^2(x)和cos^2(x)用半角公式展开得到。
(3) ∫tan^2(x)dx = x - tan(x) + C(4) ∫cot^2(x)dx = -x - cot(x) + C这两个公式的推导可以通过将tan^2(x)和cot^2(x)用sec^2(x)和csc^2(x)来表达然后进行换元得到。
3.指数换元公式当被积函数中含有指数函数时,可以利用指数换元公式简化计算。
(1) ∫e^x dx = e^x + C(2) ∫a^x dx = 1/ln(a) * a^x + C这两个公式的推导可以通过对指数函数的导数进行积分求解得到。
4.对数换元公式当被积函数中含有对数函数时,可以利用对数换元公式简化计算。
(1) ∫1/x dx = ln,x, + C(2) ∫log_a(x) dx = x * (log_a(x) - 1) / ln(a) + C其中log_a(x)表示以a为底的对数函数,ln(x)表示以e为底的对数函数。
第一类换元积分法
部分常用的凑微分公式:
(1)
1
()
dx d ax b
a
=+(2)1
1
()
1
n n
x dx d x
n
+
=
+
(3
d
=(4)
2
11
()
dx d
x x
=-
(5)1
(ln)
dx d x
x
=(6)()
x x
e dx d e
=
(7)cos(sin)
xdx d x
=(8)sin(cos)
xdx d x
=-
常用的凑微分公式
第二类换元积分法
1.当被积函数中含有
1)sin
x a t
=或cos
x a t
=;
2)tan
x a t
=;
3)sec
x a t
=.
通过三角代换化掉根式。
但是,去掉被积函数根号并不一定要采用三角代换,
22
ch sh1
t t
-=,采用双曲代换sh
x a t
=或ch
x a t
=消去根式,所得结果一致。
所以应根据被积函数的具体情况尽量选取简单的方法对根式进行有理化代换。
2.当有理分式函数中分母的阶数较高时,可采用倒代换
1
x
t
=.
3.类型f dx
⎰:可令t=;类型f dx
⎰:可令t=(第四节内容)
4.类型()x
f a dx
⎰:可令x
t a
=.
适合用分部积分法求解的被积函数。