四年级数学第二讲:加法原理
- 格式:doc
- 大小:34.50 KB
- 文档页数:3
四年级奥数专题加法原理和乘法原理TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】二讲加法与乘法原理知识导航加法原理:做一件事情,完成..它有n类办法,在第一类办法中有M1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事情共有m1+m2+……+m n种不同的方法。
运用加法原理计数,关键在于合理分类,不重不漏。
要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。
乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有m n种方法,那么,完成这件工作共有m1×m2×…×m n种方法。
运用乘法原理计数,关键在于合理分步。
完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。
精典例题例1:一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同。
问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?思路点拨①:从两个口袋中只需取一个小球,则这个小球要么从第一个口袋中取,要么从第二个口袋中取,共有两大类方法。
所以是加法原理的问题。
②:要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,是乘法原理的问题。
模仿练习孙老师的一个口袋内装有60个小球,另一个口袋内装有80个小球,所有这些小球颜色各不相同。
第21讲加法原理(二)我们通常解题;总是要先列出算式;然后求解。
可是对有些题目来说;这样做不仅麻烦;而且有时根本就列不出算式。
这一讲我们介绍利用加法原理在“图上作业”的解题方法。
例1小明要登上10级台阶;他每一步只能登1级或2级台阶;他登上10级台阶共有多少种不同的登法?分析与解:登上第1级台阶只有1种登法。
登上第2级台阶可由第1级台阶上去;或者从平地跨2级上去;故有2种登法。
登上第3级台阶可从第1级台阶跨2级上去;或者从第2级台阶上去;所以登上第3级台阶的方法数是登上第1级台阶的方法数与登上第2级台阶的方法数之和;共有1+2=3(种)……一般地;登上第n级台阶;或者从第(n—1)级台阶跨一级上去;或者从第(n—2)级台阶跨两级上去。
根据加法原理;如果登上第(n—1)级和第(n—2)级分别有a种和b种方法;则登上第n级有(a+b)种方法。
因此只要知道登上第1级和第2级台阶各有几种方法;就可以依次推算出登上以后各级的方法数。
由登上第1级有1种方法;登上第2级有2种方法;可得出下面一串数:1;2;3;5;8;13;21;34;55;89。
其中从第三个数起;每个数都是它前面两个数之和。
登上第10级台阶的方法数对应这串数的第10个;即89。
也可以在图上直接写出计算得出的登上各级台阶的方法数(见下图)。
例2在左下图中;从A点沿实线走最短路径到B点;共有多少条不同路线?分析与解:题目要求从左下向右上走;所以走到任一点;例如右上图中的D点;不是经过左边的E点;就是经过下边的F点。
如果到E点有a种走法(此处a=6);到F点有b种走法(此处b=4);根据加法原理;到D点就有(a+b)种走法(此处为6+4=10)。
我们可以从左下角A点开始;按加法原理;依次向上、向右填上到各点的走法数(见右上图);最后得到共有35条不同路线。
例3左下图是某街区的道路图。
从A点沿最短路线到B点;其中经过C点和D点的不同路线共有多少条?分析与解:本题可以同例2一样从A标到B;也可以将从A到B分为三段;先是从A到C;再从C到D;最后从D到B。
加法的基本原理掌握加法运算的概念和方法加法是数学中最基本的运算之一,也是我们日常生活中经常用到的运算之一。
掌握加法的基本原理,对于我们进行数学计算和解决实际问题具有重要意义。
本文将介绍加法的基本原理,包括加法运算的概念和方法。
一、加法的概念加法是指将两个或多个数字相加,得到它们的总和的运算。
在加法中,参与运算的数字被称为“加数”,加号(+)用来连接加数,得到的结果称为“和”。
举个例子,如果我们将数字1和数字2相加,可以写成1+2=3,其中1和2就是加数,3是它们的和。
二、加法运算的基本原理加法运算的基本原理是十进制的概念。
在十进制中,我们使用0到9这十个数字来进行计数。
当我们进行加法运算时,需要按照以下原则进行操作:1. 对齐数字:将参与运算的数字按照十进制的位数进行对齐,即个位对个位、十位对十位、百位对百位,以此类推。
2. 从右至左逐位相加:从右边开始,将对齐的位上的数字相加。
如果相加的结果大于9,则需要进位到上一位。
3. 重复步骤2,直到所有位上的数字都相加完成。
举个例子,我们来计算11+7的结果:11+ 7-------18```首先,将个位上的数字1和7相加得到8,在十位上没有数字,所以直接将7写在十位上。
最后的结果就是18。
三、进一步掌握加法运算的方法除了基本原理外,我们还可以通过一些方法来更加快速地进行加法运算。
以下是几种常用的加法运算方法:1. 分组相加法:将参与运算的数字按照个位、十位、百位等进行分组,然后分别相加。
这样可以更加清晰地将运算过程展示出来。
例如,计算256+189的结果可以按照如下步骤进行:```2 5 6+ 1 8 9-----------4 4 5先将个位上的数字相加得到5,然后计算十位上的数字相加得到4,最后计算百位上的数字相加得到4,因此结果为445。
2. 使用进位法进行计算:在计算过程中,如果相加的结果大于9,我们可以将十位上的数字进位到上一位。
这样可以减少运算的步骤和计算量。
加法原理考试要求1.使学生掌握加法原理的基本内容;2.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.3.理解标数法加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.知识结构一、加法原理在生活中做一件事情的时候常常会有几类不同的方法,而每一类方法中,又有几种可能的做法。
那么,考虑完成这件事情所有可能的做法,就要用我们将讨论的加法原理来解决。
例如:春节期间康康要从北京去天津看奶奶。
他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有四趟长途汽车从北京到天津。
那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,康康去天津要么乘火车,要么乘长途汽车,有两大类走法:第一类乘火车,有五种走法;第二类乘汽车,有四种走法。
上面的每一种走法都可以从北京到天津,故有5+4=9种不同的走法。
在上面的问题中,完成一件事有两大类不同的方法,在具体做的时候,只要采用一类中的一种方法就可以完成,并且两大类方法是互无影响的。
那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数。
一般地,如果完成一件事有K类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同的做法,……,第K类方法中有m K种不同的做法,则完成这件事共有:N= m1+ m2+……m K种不同的方法。
这就是加法原理。
二、加法原理的运用加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.重难点(1)选取合适的分类标准;(2)标数法。
四年级数学第二讲:加法原理基础班1.南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。
如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?2.光明小学四、五、六年级共订300份报纸,每个年级至少订99份报纸。
问:共有多少种不同的订法?3.将10颗相同的珠子分成三份,共有多少种不同的分法?4.在所有的两位数中,两位数码之和是偶数的共有多少个?5.用1,2,3这三种数码组成四位数,在可能组成的四位数中,至少有连续两位是2的有多少个?6.下图中每个小方格的边长都是1。
有一只小虫从O点出发,沿图中格线爬行,如果它爬行的总长度是3,那么它最终停在直线AB上的不同爬行路线有多少条?7.如下图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?8.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?9.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?10.在1~1000的自然数中,一共有多少个数字0?11.在1~500的自然数中,不含数字0和1的数有多少个?12.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?答案1.38种。
2.10种。
提示:没有年级订99份时,只有三个年级各订100份一种订法;只有一个年级订99份时,另外两个年级分别订100份和101份,有6种订法;有两个年级订99份时,另外一个年级订102份,有3种订法。
3.8种。
4.45个。
提示:两个数码都是奇数的有5×5(个),两个数码都是偶数的有4×5(个)。
5.21个。
提示:与例5类似,连续四位都是2的只有1种,恰有连续三位是2的有4种,恰有连续两位是2的有16种。
6.10条。
提示:第一步向下有5条,第一步向上有1条,第一步向左或向右各有2条。
7.3×3+2×4=17(种).8.6+7+15+21+6×7=91(种).提示:拿两本的情况分为2本画报或2本书或一本画报一本书.9.(1)6;(2)10;(3)20;(4)35.10.9+180+3=192(个).11.8+8×8+3×8×8=264(个).12.9+8+7+6+5+4+3+2+1=45(次).我们通常解题,总是要先列出算式,然后求解。
四年级数学第二讲:加法原理
基础班
1.南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。
如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?
2.光明小学四、五、六年级共订300份报纸,每个年级至少订99份报纸。
问:共有多少种不同的订法?
3.将10颗相同的珠子分成三份,共有多少种不同的分法?
4.在所有的两位数中,两位数码之和是偶数的共有多少个?
5.用1,2,3这三种数码组成四位数,在可能组成的四位数中,至少有连续两位是2的有多少个?
6.下图中每个小方格的边长都是1。
有一只小虫从O点出发,沿图中格线爬行,如果它爬行的总长度是3,那么它最终停在直线AB上的不同爬行路线有多少条?
7.如下图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?
8.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?
9.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?
10.在1~1000的自然数中,一共有多少个数字0?
11.在1~500的自然数中,不含数字0和1的数有多少个?
12.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?
答案
1.38种。
2.10种。
提示:没有年级订99份时,只有三个年级各订100份一种订法;只有一个年级订99份时,另外两个年级分别订100份和101份,有6种订法;有两个年级订99份时,另外一个年级订102份,有3种订法。
3.8种。
4.45个。
提示:两个数码都是奇数的有5×5(个),两个数码都是偶数的有4×5(个)。
5.21个。
提示:与例5类似,连续四位都是2的只有1种,恰有连续三位是2的有4种,恰有连续两位是2的有16种。
6.10条。
提示:第一步向下有5条,第一步向上有1条,第一步向左或向右各有2条。
7.3×3+2×4=17(种).
8.6+7+15+21+6×7=91(种).
提示:拿两本的情况分为2本画报或2本书或一本画报一本书.
9.(1)6;(2)10;(3)20;(4)35.
10.9+180+3=192(个).
11.8+8×8+3×8×8=264(个).
12.9+8+7+6+5+4+3+2+1=45(次).
我们通常解题,总是要先列出算式,然后求解。
可是对有些题目来说,这样做不仅麻烦,而且有时根本就列不出算式。
这一讲我们介绍利用加法原理在“图上作业”的解题方法。
提高班
1. 用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。
问:共有多少
种不同的染色方法?
11.小明要登15级台阶,每步登1级或2级台阶,共有多少种不同登法?
12.小明要登20级台阶,每步登2级或3级台阶,共有多少种不同登法?
13.有一堆火柴共10根,每次取走1~3根,把这堆火柴全部取完有多少种不同取法,
答案
1. 420种。
解:如上图所示,按A,B,C,D,E顺序染色。
若B,D颜色相同,则有
5×4×3×1×3=180(种);
若B,D颜色不同,则有
5×4×3×2×2=240(种)。
共有不同的染色方法180+240=420(种)。
2. 987种。
3. 114种。
4. 274种。
提示:取走1根有1种方法,取走2根有2种方法,取走3根有4种方法。
将1,2,4作为数列的前三项,从第4项起每项都是它前三项的和,得到
1,2,4,7,13,24,44,81,149,274。
第10项274就是取走10根火柴的方法数。