已知:如图,在△ABC中,AB=AC,AD是△ABC 的一条角平分线,AN为△ABC的外角∠CAM的平分 线,CE⊥AN,垂足为E.求证:四边形ADCE是矩形.
证明:∵AD平分∠BAC,AN平分∠CAM, ∴∠CAD= ∠BAC,∠CAN= ∠CAM. ∴∠DAE=∠CAD+∠CAN= (∠BAC+∠CAM) = ×180°=90° 在△ABC中,∵AB=AC,AD为∠BAC的平分线, ∴AD⊥BC.∴∠ADC=90°. 又∵CE⊥AN,∴∠CEA=90°. ∴四边形ADCE是矩形(有三个角是直角的四边形是矩形).
对角线相等的平行四边形是矩形.
如图,在 ABCD中,对角线AC与BD相交于点O, △ABO是等边三角形,AB=4,求证 ABCD是矩形.
∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵△ABO是等边三角形,∴OA=OB=AB=4,∠BAC=60°.∴OA=OB=OC=OD=4.∴AC=BD=2OA=2×4=8.∴ ABCD是矩形(对角线相等的平行四边形是矩形).
证明:(1)∵△ABC是等腰三角形,∴∠B=∠ACB.又∵四边形ABDE是平行四边形,∴∠B=∠EDC,AB=DE,∴∠ACB=∠EDC,∴△ADC≌△ECD.
(2)∵AB=AC,BD=CD,∴AD⊥BC,∴∠ADC=90°.∵四边形ABDE是平行四边形,∴AE平行且等于BD,即AE平行且等于DC,∴四边形ADCE是平行四边形.而∠ADC=90°,∴四边形ADCE是矩形.
C
3.如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.
证明:四边形ABCD中,AB∥CD,∠BAD=90°,∴∠ADC=90°.又∵△ABC中,AB=5,BC=12,AC=13,满足132=52+122,即∴△ABC是直角三角形,且∠B=90°,∴四边形ABCD是矩形.