流曲镇初中2018-2019学年初中七年级上学期数学第一次月考试卷
- 格式:pdf
- 大小:372.20 KB
- 文档页数:13
2018~2019学年度第一学期第一次月考试题
七年级数学(答案)
一、选择题
1. C
2. A
3. B
4. C
5. D
6. D
7. B
8. A
9. C10. C
二、填空题
11. ;;12. 0
13. 114. 7
三、计算题:
15. 解:原式;
原式;
原式.
16.原式;
原式;
原式.
四、解答题;
17. 解:,
.
18. 解:根据题意得:,;,,
则或;
,
,,,
则.
19. 解:正确,理由为:一个数的倒数的倒数等于原数;
原式的倒数为,则.
20. 解:如图所示:
21. 解;
.
答:该小组在A地的东边,距A东面39km;
升.
小组从出发到收工耗油195升,
升升,
收工前需要中途加油,
应加:升,
答:收工前需要中途加油,应加15升.
22. 个;答:前三天共生产599个;
个;
产量最多的一天比产量最少的一天多生产26个;
个,
元,
答:该厂工人这一周的工资总额是84135元.。
分路镇初中 2018-2019 学年初中七年级上学期数学第一次月考试卷班级 __________座号 _____姓名 __________分数 __________一、选择题1.( 2 分 ) ( 2015?连云港) 2014 年连云港高票入选全国“十大幸福城市”,在江苏十三个省辖市中居第一 位,居民人均可支配收入约18000 元,此中“ 18000用科”学记数法表示为() A. 0.1810×5B. 1.8103C ×. 1.8104D ×. 18103×2.( 2 分 ) ( 2015?南京)计算:|﹣ 5+3|的结果是()3.( 2 分 ) ( 2015?柳州)如图,这是某用户银行存折中2012 年 11 月到 2013 年 5 月间代扣电费的有关 数据,从中能够看出扣缴电费最多的一次达到()A. 147.40 元B. 143.17 元C. 144.23 元D. 136.83 元4.(2 分) ( 2015?苏州)月球的半径约为 1738000m , 1738000 这个数用科学记数法可表示为()A. 1.738 6B. 1.7387C. 0.1738 7D. 17.38 510×10×10×10×5.(2 分 ) ( 2015?泰州)﹣ 的绝对值是()A. -3B.C. -D. 36.(2分 ) ( 2015?毕节市)﹣ 的倒数的相反数等于()A. ﹣2B.C. -D. 27.(2 分) ( 2015?河池)﹣ 3 的绝对值是()A. -3B.C. D. 38.(2 分) ( 2015?襄阳)﹣ 2 的绝对值是()A. 2B. -2C. D.9.(2分) ( 2015?衢州)﹣ 3 的相反数是()A. 3B. -3 7﹣ 3.7 10×7C.D. -10.( 2 分 ) ( 2015?福州)计算 3.8 ×10 , 结果用科学记数法表示为( )A. 0.1 10×7B. 0.1 10×6C. 1 ×107D. 1×106 11.( 2 分 ) ( 2015?毕节市)以下说法正确的选项是()A. 一个数的绝对值必定比0 大B. 一个数的相反数必定比它自己小第1页,共5页C. 绝对值等于它自己的数必定是正数D. 最小的正整数是 112.( 2 分)( 2015?北京)截止到 2015 年 6 月 1 日,北京市已建成34 个地下调蓄设备,蓄水能力达到 140000 立方米,将140000 用科学记数法表示应为()A. 14 ×104B. 1.4 10×5C. 1.4 10×6D. 14 ×106二、填空题13.( 1 分)( 2015?梧州)计算: 3﹣ 4= ________ .14.( 1 分)( 2015?巴中) a 是不为 1 的数,我们把称为 a 的差倒数,如: 2 的差倒数为=﹣ 1;﹣ 1的差倒数是= ;已知 a1=3, a2是 a1的差倒数, a3是 a2的差倒数. a4是 a3差倒数,依此类推,则a2015= ________.15.( 1 分)( 2015?重庆)据不完整统计,我国常年参加志愿者服务活动的志愿者超出65000000 人,把65000000 用科学记数法表示为________ .16.( 1 分)( 2015?广安)实数 a 在数轴的地点以下图,则|a﹣ 1|=________ .17.(1 分)( 2015?永州)国家丛林城市的创立极大地促使了丛林资源的增加,美化了城市环境,提高了市民的生活质量,截止 2014 年.全国已有 21 个省、自治区、直辖市的 75 个城市获取了“国家丛林城市”乘号.永州市也在踊跃创立“国家丛林城市”.据统计近两年全市投入“创森”资本约为 365000000 元, 365000000 用科学记数法表示为________ .18.(1 分)( 2015?资阳)太阳半径大概是696 000 千米,用科学记数法表示为________ 米.三、解答题19.(4分)( 1)资料 1:一般地, n 个同样因数a 相乘:记为如,此时,3叫做以2为底的8的对数,记为log28(即 log2 8=3).那么, log 39=________=________( 2)资料 2:新规定一种运算法例:自然数1 到 n 的连乘积用n!表示,比如:1! =1,2! =2×1=2 , 3! =3×2×1=6, 4! =4×3×2×1=24 ,在这类规定下,请你解决以下问题:①计算 5! =________ ;②已知 x 为整数,求出知足该等式的________20.(7 分)定义:若a+b=2,则称 a 与 b 是对于 1 的均衡数.( 1) 3 与 ________是对于 1 的均衡数, 5﹣ x 与 ________是对于 1 的均衡数.(用含x 的代数式表示)( 2)若 a=2x2﹣3( x2+x )+4,b=2x ﹣[3x ﹣( 4x+x 2)﹣ 2],判断 a 与 b 是不是对于1 的均衡数,并说明原因.21.(8 分)有理数 a、b、 c 在数轴上的地点如图,第2页,共5页(1)判断正负,用“>”或“<”填空: c- b________0, a+ b________0, a- c________0.(2)化简: |c- b|+ |a+ b|- 2|a- c|.22.(11 分)如图设 a1 2-02 2 2-12 n 2-( n- 1)2( n 为大于 1 的整数)=2 , a =3 ,,a =(n+1 )(1)计算 a15的值;(2)经过拼图你发现前三个图形的面积之和与第四个正方形的面积之间有什么关系:________(用含 a、 b 的式子表示);( 3)依据( 2)中结论,研究a n=( n+1 )2-( n- 1)2能否为 4 的倍数.23.( 15 分)“十一”黄金周时期,淮安动物园在7 天假期中每日招待的人数变化以下表(正数表示比前一天多的人数,负数表示比前一天少的人数):10 月10 月10 月10 月10 月10 月10 月日期1 日2 日3 日4 日5 日6 日7 日人数+ 1.6 + 0.8[ + 0.4 - 0.4 - 0.8 + 0.2 - 1.2(1)若 9 月 30 日的旅客人数记为 a 万人,请用含 a 的代数式表示 10 月 2 日的旅客人数;( 2)请判断七天内旅客人数最多的是哪天,有多少人?(3)若 9 月 30 日的旅客人数为 2 万人,门票每人10 元,则黄金周时期淮安动物园门票收入是多少元?24.(10 分)如图,检测5 个排球,此中质量超出标准的克数记为正数,不足的克数记为负数.(1)从轻重的角度看,几号球最靠近标准?(2)若每个排球标准质量为 260 克,求这五个排球的总质量为多少克?25.( 10 分)出租车司机老王某天上午的运营全部是在东西走向的解放路长进行的,假如规定向东行驶行程记为正数,向西为负,他这日上午的行车里程(单位:)挨次以下:,,,,,,,.( 1)若汽车的耗油量为,这日上午老王耗油多少升?第3页,共5页( 2)当老王最后一次行驶结束时,他在上午最先出发点的什么地点?26.(20 分)(阅读理解)第一届现代奥运会于1896 年在希腊雅典举行,今后每4 年举行一次,奥运会如因故不可以举行,届数照算.则奥运会的年份可排成以下一列数:1896,1900 , 1904, 1908,察看上边一列数,我们发现这一列数从第二项起,每一项与它前一项的差都等于同一个常数4,这一列数在数学上叫做等差数列,这个常数4 叫做等差数列的公差.(1)等差数列 2, 5, 8,的第五项多少;(2)若一个等差数列的第二项是28,第三项是 46,则它的公差为多少,第一项为多少,第五项为多少;(3)聪慧的小雪同学作了一些思虑,假如一列数 a1, a2, a3,是等差数列,且公差为 d,依据上述规定,应当有:a 2-a1=d, a3-a2 =d,a4-a3= d ,因此 a 2=a1+d,a3=a2+d=( a1+d) +d=a1+2d,a4=a3+d=( a1+2d )+d=a1+3d ,则等差数列的第n 项 a n多少(用含有a1、n 与 d 的代数式表示);( 4)依据上边的推理,2008 年中国北京奥运会是第几届奥运会,2050 年会不会(填“会”或“不会”)举行奥运会.第4页,共5页分路镇初中 2018-2019 学年初中七年级上学期数学第一次月考试卷(参照答案)一、选择题题号 1 2 3 4 5 6 7 8 9 10 C【考 B 【考 A 【考 A 【考B【考 D 【考D【考 A 【考 A 【考D【考答案点】科点】绝点】有点】科点】绝点】相点】绝点】绝点】相点】科学记数对值及理数学记数对值及反数及对值及对值及反数及学记数法有大小法有有有有有法题号11 12D【考 B 【考答案点】正点】科数和负学记数数法二、填空题题号13 14 15 16 17 18-1【考-【考6.5 ×101﹣ a点】倒【考 3.65 ×1 6.96 ×1答案点】有7【考数,探点】相08【考08【考理数的点索反数三、解答题题号19 20 21 22 23 24 25 26(1)﹣( 1)( 1)( 1)(1)( 1)( 1)( 1)2;>;解:由解:根解:由答案1;x﹣ 3 解:解:( 2)12 <;<题意得据图形等差数(a15=1 |+||+( 2 1 可列第5页,共5页。
2018-2019学年七年级(上)第一次月考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.﹣的绝对值为( )A .B .3C .﹣D .﹣32.下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正有理数就是负有理数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A .1B .2C .3D .43.如果a 与2的和为0,那么a 是( )A .2B .C .﹣D .﹣24.下列算式正确的是( )A .(﹣14)﹣5=﹣9B .0﹣(﹣3)=3C .(﹣3)﹣(﹣3)=﹣6D .|5﹣3|=﹣(5﹣3)5.比较﹣2.4,﹣0.5,﹣(﹣2),﹣3的大小,下列正确的是( )A .﹣3>﹣2.4>﹣(﹣2)>﹣0.5B .﹣(﹣2)>﹣3>﹣2.4>﹣0.5C .﹣(﹣2)>﹣0.5>﹣2.4>﹣3D .﹣3>﹣(﹣2)>﹣2.4>﹣0.56.我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为( )A .5.4×102人B .0.54×104人C .5.4×106人D .5.4×107人7.下列各数中互为相反数的是( )A .﹣与0.2B .与﹣0.33C .﹣2.25与2D .5与﹣(﹣5)8.在0,﹣1,|﹣2|,﹣(﹣3),5,3.8,,中,正整数的个数是( ) A .1个 B .2个 C .3个 D .4个9.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在( )A .家B .学校C .书店D .不在上述地方10.一潜水艇所在的海拔高度是﹣60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔( )A .﹣60米B .﹣80米C .﹣40米D .40米11.下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①② B.①③ C.①②③D.①②③④12.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m2﹣cd+值为()A.﹣3 B.3 C.﹣5 D.3或﹣5二、填空题(共5小题,每小题4分,满分20分)13.的倒数是,的相反数是.14.如果向西走6米记作﹣6米,那么向东走10米记作;如果产量减少5%记作﹣5%,那么20%表示.15.|x|=7,则x= ;|﹣x|=7,则x= .16.已知P是数轴上的一点﹣4,把P点向左移动3个单位后再向右移1个单位长度,那么P点表示的数是.17.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,,…三、解答题(共6小题,满分64分)18.计算:(1)﹣6﹣(﹣2)2;(2 )﹣3×(﹣2)+3﹣8;(3)(+﹣)×(﹣24)(4)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|(5)﹣32÷(﹣3)2+3×(﹣6)(6)﹣12004+(﹣1)5×(﹣)÷﹣|﹣2|19.画一条数轴,在数轴上表示﹣1.5,2,﹣2,﹣,2.5,0,并比较它们的大小关系.20.已知|a|=7,|b|=3,且a<b,求a+b的值.21.淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).星期一星期二星期三星期四星期五+23 0 ﹣17 +6 ﹣12(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?22.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为a 升/千米,则这次养护共耗油多少升?23.观察下列等式:,,,将以上三个等式两边分别相加得:.(1)猜想并写出: = .(2)直接写出下列各式的计算结果: = ;(3)探究并计算:.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.﹣的绝对值为()A.B.3 C.﹣ D.﹣3【考点】绝对值.【分析】根据当a是负有理数时,a的绝对值是它的相反数﹣a,可得答.【解答】解:﹣的绝对值等于,故选:A.【点评】此题主要考查了绝对值,关键是掌握①当a是正有理数时,a的绝对值是它本身a;②当a 是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.下列说法正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正有理数就是负有理数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1 B.2 C.3 D.4【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解析:①整数和分数统称为有理数,所以①正确;②有理数包括正有理数、负有理数和零,所以②不正确;③整数包括正整数、负整数和零,所以③不正确;④分数包括正分数和负分数,所以④正确,故选B.【点评】本题考查了有理数,利用了有理数的分类.3.如果a与2的和为0,那么a是()A.2 B.C.﹣ D.﹣2【考点】相反数.【分析】根据互为相反数的两个数的和为0解答.【解答】解:∵a与2的和为0,∴a=﹣2.故选D.【点评】本题考查了相反数的定义,是基础题.4.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)【考点】有理数的减法;绝对值.【分析】根据有理数的减法运算法则和绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、(﹣14)﹣5=﹣19,故本选项错误;B、0﹣(﹣3)=0+3=3,故本选项正确;C、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项错误;D、|5﹣3|=2,﹣(5﹣3)=﹣2,故本选项错误.故选B.【点评】本题考查了有理数的减法,绝对值的性质,熟记运算法则和性质并准确计算是解题的关键.5.比较﹣2.4,﹣0.5,﹣(﹣2),﹣3的大小,下列正确的是()A.﹣3>﹣2.4>﹣(﹣2)>﹣0.5 B.﹣(﹣2)>﹣3>﹣2.4>﹣0.5C.﹣(﹣2)>﹣0.5>﹣2.4>﹣3 D.﹣3>﹣(﹣2)>﹣2.4>﹣0.5【考点】有理数大小比较.【专题】数形结合.【分析】先把各数化简再在数轴上表示出来,根据数轴的性质便可直观解答.【解答】解:﹣(﹣2)=2,各点在数轴上表示为:由数轴上各点的位置可知,﹣(﹣2)>﹣0.5>﹣2.4>﹣3.故选C.【点评】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为()A.5.4×102人B.0.54×104人C.5.4×106人D.5.4×107人【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将540万用科学记数法表示为5.4×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.下列各数中互为相反数的是()A.﹣与0.2 B.与﹣0.33 C.﹣2.25与2 D.5与﹣(﹣5)【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣2.25与2互为相反数,故选:C.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.8.在0,﹣1,|﹣2|,﹣(﹣3),5,3.8,,中,正整数的个数是()A.1个B.2个C.3个D.4个【考点】有理数.【分析】先计算|﹣2|=2,﹣(﹣3)=3,然后确定所给数中的正整数.【解答】解:∵|﹣2|=2,﹣(﹣3)=3,∴0,﹣1,|﹣2|,﹣(﹣3),5,3.8,,中,正整数为|﹣2|,﹣(﹣3),5.故选C.【点评】本题考查了有理数:整数和分数统称为有理数.9.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校 C.书店 D.不在上述地方【考点】坐标确定位置.【专题】应用题.【分析】以家为坐标原点建立坐标系,根据题意即可确定小明的位置.【解答】解:根据题意:小明从家出来向北走了50米,又向北走了﹣70米,即向南走了20米,而学校在家南边20米.故此时,小明的位置在学校.故选B.【点评】本题考查了类比点的坐标及学生的解决实际问题的能力和阅读理解能力,画出平面示意图能直观地得到答案.10.一潜水艇所在的海拔高度是﹣60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔()A.﹣60米B.﹣80米C.﹣40米D.40米【考点】正数和负数.【专题】计算题.【分析】根据正负数具有相反的意义,由已海豚所在的高度是海拔多少米实际就是求﹣60与20的和.【解答】解:由已知,得﹣60+20=﹣40.故选C.【点评】此题考查的是正负数的意义,关键是要明确所求为﹣60与20的和.11.下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①② B.①③ C.①②③D.①②③④【考点】绝对值;相反数;有理数大小比较.【分析】根据绝对值的意义对①④进行判断;根据相反数的定义对②③进行判断.【解答】解:0是绝对值最小的有理数,所以①正确;相反数大于本身的数是负数,所以②正确;数轴上在原点两侧且到原点的距离相等的数互为相反数,所以③错误;两个负数比较,绝对值大的反而小,所以④错误.故选A.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了相反数.12.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m2﹣cd+值为()A.﹣3 B.3 C.﹣5 D.3或﹣5【考点】代数式求值.【分析】由题意得a+b=0,cd=1,m=±2,由此可得出代数式的值.【解答】解:由题意得:a+b=0,cd=1,m=±2代数式可化为:m2﹣cd=4﹣1=3故选B.【点评】本题考查代数式的求值,根据题意得出a+b=0,cd=1,m=±2的信息是关键.二、填空题(共5小题,每小题4分,满分20分)13.的倒数是,的相反数是.【考点】倒数;相反数.【分析】此题根据倒数、相反数的定义即可求出结果.【解答】解:的倒数是:;的相反数是.故填:﹣,.【点评】此题考查了倒数、相反数的定义,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.相反数的定义:只有符号不同的两个数互为相反数.14.如果向西走6米记作﹣6米,那么向东走10米记作+10 ;如果产量减少5%记作﹣5%,那么20%表示产量增加20% .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以如果向西走6米记作﹣6米,那么向东走10米记作+10;∵产量减少5%记作﹣5%,∴20%表示产量增加20%.故答案为+10,产量增加20%.【点评】本题考查了正数与负数:正数与负数可表示相反意义的量.15.|x|=7,则x= ±7 ;|﹣x|=7,则x= ±7 .【考点】绝对值.【分析】根据绝对值的性质解答即可.【解答】解:|x|=7,则x=±7;|﹣x|=7,则x=±7,故答案为:±7;±7【点评】本题考查了绝对值,主要利用了互为相反数的两个数的绝对值相等.16.已知P是数轴上的一点﹣4,把P点向左移动3个单位后再向右移1个单位长度,那么P点表示的数是﹣6 .【考点】数轴.【分析】根据向左为减,向右为加的原则列式得出移动后点P所表示的数.【解答】解:﹣4﹣3+1=﹣6,则P点表示的数是﹣6;故答案为:﹣6.【点评】本题考查了数轴,比较简单,根据数轴上的点右边的比左边的大,利用数形结合的思想解决此题.17.观察下列数据,按某种规律在横线上填上适当的数:1,,,,, ﹣ ,… 【考点】规律型:数字的变化类. 【专题】规律型. 【分析】分子是从1开始的连续奇数,分母是相应序数的平方,并且正、负相间,然后写出即可.【解答】解:∵1,,,,,∴要填入的数据是﹣.故答案为:﹣. 【点评】本题是对数字变化规律的考查,确定从分子、分母和正反情况三个方面考虑求解是解题的关键.三、解答题(共6小题,满分64分)18.计算:(1)﹣6﹣(﹣2)2;(2 )﹣3×(﹣2)+3﹣8;(3)(+﹣)×(﹣24)(4)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|(5)﹣32÷(﹣3)2+3×(﹣6)(6)﹣12004+(﹣1)5×(﹣)÷﹣|﹣2|【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算减法运算即可得到结果;(2)原式先计算乘法运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式利用减法法则变形,计算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣6﹣4=﹣10;(2)原式=6+3﹣8=1;(3)原式=﹣9﹣4+18=5;(4)原式=﹣0.5﹣15+17﹣12=﹣10.5;(5)原式=﹣1﹣18=﹣19;(6)原式=﹣1+﹣2=﹣2.5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.画一条数轴,在数轴上表示﹣1.5,2,﹣2,﹣,2.5,0,并比较它们的大小关系.【考点】有理数大小比较;数轴.【分析】把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由大到小的顺序“<”连接起来.【解答】解:﹣2<﹣1.5<﹣<0<2<2.5.【点评】此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.20.已知|a|=7,|b|=3,且a<b,求a+b的值.【考点】有理数的加法;绝对值.【分析】利用绝对值的代数意义,以及a小于b求出a与b的值,即可确定出a+b的值.【解答】解:∵|a|=7,|b|=3,且a<b,∴a=﹣7,b=3或﹣3,则a+b=﹣4或﹣10.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.21.淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).星期一星期二星期三星期四星期五+23 0 ﹣17 +6 ﹣12(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?【考点】有理数的加减混合运算;正数和负数.【专题】计算题.【分析】(1)根据题意得出算式100+(﹣12),求出即可;(2)求出(+6)﹣(﹣17)的值即可;(3)求出+23、0、﹣17、+6、﹣12的平均数,再加上100即可.【解答】解:(1)100+(﹣12)=88(册),答:上星期五借出88册书;(2)[100+(+6)]﹣[100+(﹣17)]=23(册),答:上星期四比上星期三多借出23册;(3)100+[(+23)+0+(﹣17)+(+6)+(﹣12)]÷5=100(册),答:上周平均每天借出100册.【点评】本题考查了有理数的混合运算和正数、负数等知识点,解此题的关键是根据题意列出算式,题目比较典型.22.(10分)(2016秋•庆云县月考)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为a 升/千米,则这次养护共耗油多少升?【考点】有理数的加减混合运算.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)求出每个记录点得记录数据,绝对值最大的数对应的点就是所求的点;(3)所走的路程是这组数据的绝对值的和,然后乘以a,即可求得耗油量.【解答】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16=+15千米.则在出发点的东边15千米的地方;(2)最远处离出发点有17千米;(3)(17+9+7+15+3+11+6+8+5+16)a=97a(升).答:这次养护共耗油97a升.【点评】本题考查了有理数的加减运算,以及正负数表示一对具有相反意义的量.23.观察下列等式:,,,将以上三个等式两边分别相加得:.(1)猜想并写出: = ﹣.(2)直接写出下列各式的计算结果: = ;(3)探究并计算:.【考点】有理数的混合运算.【专题】规律型.【分析】(1)归纳总结得到一般性结果即可;(2)利用得出的规律变形,计算即可得到结果;(3)利用拆项法则变形,计算即可得到结果.【解答】解:(1)=﹣;(2)原式=1﹣+﹣+…+﹣=1﹣=;(3)原式=(﹣+﹣+…+﹣)=(﹣)=.故答案为:(1)﹣;(2).【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________ ○…………内…………○…………装…………○…………订…………○…………线…………○………… 绝密★启用前 2018-2019学年度第一学期10月月考试卷 一、选择题 (每小题3分,共30分) 1.在下列选项中,具有相反意义的量是( ) A. 收入20元与支出20元 B. 6个老师与6个学生 C. 走了100米与跑了100米 D. 向东行30米与向北行30米 2.一个数的相反数是3,则这个数是( )A .﹣B .C .﹣3D .3 3.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论错误的是 ( ) A. 0a b +< B. 22a b > C. 0ab < D. a b < 4.大于-2.5小于1.5的整数有多少个( ) A. 4个 B. 5个 C. 6个 D. 7个 5.下列算式正确的是( ) A. (﹣14)﹣5=﹣9 B. 0﹣(﹣3)=3 C. (﹣3)﹣(﹣3)=﹣6 D. |5﹣3|=﹣(5﹣3) 6.114-的倒数是( )。
A.54- B.54 C.45- D.45 7.若,则a 与b 的关系是( ) A .a =b B .a =b C .a =b =0 D .a =b 或a =-b 8.9月8日,首条跨区域动车组列车运行线——长春至白城至乌兰浩特快速铁路开通运营“满月”。
这条承载着吉林、内蒙古人民希望与企盼的铁路,自开通运营以来,安全优质高效地发送旅客930000人,这个数字用科学记数法表示为( ) A. 9.3×103 B. 9.3×105 C. 0.93×106 D. 93×104 9.下列说法正确的是( )B .近似数43.82精确到0.001C .近似数6.610精确到千分位D .近似数2.708×104精确到千分位 10.下列说法:①有理数是指整数和分数;②有理数是指正数和负数;③没有最大的有理数,最小的有理数是0;④有理数的绝对值都是非负数;⑤几个数相乘,当负因数的个数为奇数时,积为负;⑥倒数等于本身的有理数只有1。
七年级数学第一次月考试题(考试时间120分钟 满分100 分)10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是: ( ) A. 1 B. 0 C. 2 D. -32、2的相反数是: ( ) A.21-B. 21C.-2D.23、﹣5的绝对值是( )A .5B .-5C .D .﹣4、-2的倒数是( )A .2B .-2C . 21D .21- 5、下列数轴正确的是( )6、下列说法正确的是:( )带正号的数是正数,带负号的数是负数.B. 一个数的相反数,不是正数,就是负数. 倒数等于本身的数有2个.D.零除以任何数等于零. 7、下列算式正确的是:( )A . 3-(-3)=6 B. -(-3)=-3-C.(-3) ×(-3)=-6D. 0+(-3)=08、已知a>0,b>0,c<0,那么abc 的值( )A .大于0B .小于0C .等于0D .大于等于0 9、如果032=-++b a ,则a+b 的值为( ) A. 2 B. -2 C. 1 D.510、 有理数a 、b 在数轴上对应的位置如图所示,则( )A .a+b>0 B. b-a <0 C.ab>0 D.a ÷b<0二、填空题(本大题8小题,每小题3分,共24分)11、如果温度上升3℃记作+3℃,那么下降5℃记作 .12、已知|a|=4,那么a = .13、数轴上一点与表示-3的点距离2个单位长度,该点表示的数为 .14、 2 3-; 3- 0; 6- 5- 15、绝对值小于9的所有整数的和为 .16、把式子(-3.5)+(-6)- (+4.8) -(-5)改写成省略括号的和的形式:_ ___.17、若a 和b 互为相反数,那么2a+2b=_ ___.18、观察下面的一列数:-2,4,-8,16,-32……请你找出其中排列的规律,并按此规律填空.第9个数是_______。
2018-2019学年七年级(上)第一次月考数学试卷一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定3.在有理数中有()A.最大的数 B.最小的数C.绝对值最小的数D.不能确定4.若x=(﹣3)×,则x的倒数是()A.﹣ B.C.﹣2 D.25.在﹣2与1.2之间有理数有()A.2个B.3 个 C.4 个 D.无数个6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)29.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 01310.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个11.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C.|﹣3|=|3| D.(﹣3)100=310012.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是.15.若|x+2|与|y﹣3|互为相反数,则x+y= ,x y= .16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= .三.解答题17.计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣a=2,则a等于﹣2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定【考点】有理数的乘法;有理数的加法;有理数的除法.【分析】根据互为相反数的两数的和等于0判断出这两个数是互为相反数,再根据异号得负解答.【解答】解:∵两个非零有理数的和为零,∴这两个数互为相反数,∴它们的商是负数.故选B.【点评】本题考查了有理数的除法,有理数的加法,判断出这两个数互为相反数是解题的关键.3.在有理数中有()A.最大的数 B.最小的数C.绝对值最小的数D.不能确定【考点】绝对值;有理数.【分析】根据有理数的知识和绝对值的性质作出正确地判断即可.【解答】解:没有最大的有理数也没有最小的有理数,绝对值最小的数是0,故选C【点评】本题主要考查了绝对值和有理数的知识,解题的关键是掌握有理数的有关知识以及绝对值的性质.4.若x=(﹣3)×,则x的倒数是()A.﹣ B.C.﹣2 D.2【考点】有理数的乘法;倒数.【分析】先求出x的值,再根据倒数的定义即可求出x的倒数.【解答】解:∵x=(﹣3)×=﹣,∴x的倒数是﹣2,故选C.【点评】此题主要考查了有理数的乘法和倒数的定义,两数相乘,同号得正,异号得负,并把绝对值相乘.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.5.在﹣2与1.2之间有理数有()A.2个B.3 个 C.4 个 D.无数个【考点】有理数.【分析】根据有理数分为整数与分数,判断即可得到结果.【解答】解:在数轴上﹣2与1.2之间的有理数有无数个.故选D.【点评】此题考查了数轴,熟练掌握有理数的定义是解答本题的关键.6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个【考点】相反数;正数和负数.【分析】注意﹣(﹣2)=2,﹣23=﹣8,指出所有的负数即可.【解答】解:负数有﹣1,﹣2,﹣23,一共有3个,故答案为:B.【点评】本题考查了有理数的分类,本题比较简单,明确有理数分为正数、负数和0即可做出正确判断.7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b【考点】数轴.【分析】根据数轴可以得到a、0、b的关系,从而可以解答本题.【解答】解:由数轴可得,a<﹣1<0<b<1,∴﹣a>﹣b,故选项A错误,﹣b>a,故选项B错误,a<b,故选项C错误,﹣a>b,故选项D正确,故选D.【点评】本题考查数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)2【考点】有理数大小比较.【分析】根据正数大于一切负数即可解答.【解答】解:(2)2=4,(﹣22)=﹣2,∴最大的数是(﹣2)2,故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 013【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列方程求出m、n的值,再代入代数式进行计算即可得解.【解答】解:由题意得,1﹣m=0,n+2=0,解得m=1,n=﹣2,所以,(m+n)2013=(1﹣2)2013=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个【考点】有理数的除法;有理数的乘法.【分析】根据有理数的乘法和除法法则分别进行计算即可.【解答】解:①(﹣1)×(﹣2)×(﹣3)=﹣6,故原题计算错误;②(﹣36)÷(﹣9)=4,故原题计算错误;③×(﹣)÷(﹣1)=,故原题计算正确;④(﹣4)÷×(﹣2)=16,故原题计算正确,正确的计算有2个,故选:C.【点评】此题主要考查了有理数的乘除法,关键是注意结果符号的判断.11.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C.|﹣3|=|3| D.(﹣3)100=3100【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方分别求出即可得出答案.【解答】解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,故选:B.【点评】此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.12.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13【考点】有理数的减法;绝对值.【专题】分类讨论.【分析】根据绝对值的意义及a+b<0,可得a,b的值,再根据有理数的减法,可得答案.【解答】解:由|a|=5,|b|=8,且满足a+b<0,得a=5,或a=﹣5,b=﹣8.当a=﹣5,b=﹣8时,a﹣b=﹣5﹣(﹣8)=﹣5+8=3,当a=5,b=﹣8时,a﹣b=5﹣(﹣8)=5+8=13,故选:D.【点评】本题考查了有理数的减法,分类讨论是解题关键,以防漏掉.二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思净含量最大不超过50kg+0.5kg,最少不低于50kg ﹣0.5kg..【考点】正数和负数.【分析】意思是净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【解答】解:由题意可知:“50kg±0.5kg”表示净含量的浮动范围为上下0.5kg,即含量范围在(50+0.5)=50.5kg到(50﹣0.5)=49.5kg之间.即:它表示净含量的浮动范围为上下5kg,最多重50.5kg,最少重49.5kg;故答案为:净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1和5 .【考点】数轴.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A的两侧,分别是﹣1和5.【解答】解:2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故答案为:﹣1或5.【点评】本题考查了数轴的性质,理解点A所表示的数是2,那么点A距离等于3个单位的点所表示的数就是比2大3或小3的数是关键.15.若|x+2|与|y﹣3|互为相反数,则x+y= 1 ,x y= ﹣8 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出x、y的值,计算即可.【解答】解:由题意得,|x+2|+|y﹣3|=0,则x+2=0,y﹣3=0,解得,x=﹣2,y=3,则x+y=1,x y=﹣8,故答案为:1;﹣8.【点评】本题考查的是相反数的概念和非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= 13 .【考点】有理数的混合运算.【专题】新定义.【分析】利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣5)(﹣3)=9﹣(﹣5)﹣1=9+5﹣1=13.故答案为:13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.(2015秋•利川市校级月考)计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=4﹣1+2=5;(2)原式=4.3+4﹣2.3﹣4=2;(3)原式=﹣﹣﹣+=﹣;(4)原式=﹣3+6﹣8+9=4;(5)原式=﹣48﹣8﹣100+4=﹣156+4=﹣152;(6)原式=﹣8+1﹣9=﹣16.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ ,﹣(﹣3.14),2006,+1.88 …};(2)负数集合:{ ﹣23,﹣|﹣|,﹣(+5)…};(3)整数集合:{ ﹣23,0,2006,﹣(+5)…};(4)分数集合:{ ﹣|﹣|,,﹣(﹣3.14),+1.88 …}.【考点】有理数.【分析】按照有理数分类即可求出答案.【解答】解:故答案为:正数:,﹣(﹣3.14),2006,+1.88;负数:﹣23,﹣|﹣|,﹣(+5);整数:﹣23,0,2006,﹣(+5);分数:﹣|﹣|,,﹣(﹣3.14),+1.88;【点评】本题考查有理数的分类,属于基础题型.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.【考点】有理数的混合运算.【专题】新定义.【分析】根据新运算得出1×0.5﹣(﹣3)×(﹣2),算乘法,最后算减法即可.【解答】解:=1×0.5﹣(﹣3)×(﹣2)=0.5﹣6=﹣5.5.【点评】本题考查了有理数的混合运算的应用,能根据新运算得出1×0.5﹣(﹣3)×(﹣2)是解此题的关键.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.【考点】倒数;相反数;绝对值.【专题】计算题.【分析】根据相反数,绝对值,倒数的概念和性质求得a与b,c与d及x的关系或值后,代入代数式求值.【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵|x|=1,∴x=±1,当x=1时,a+b+x2﹣cdx=0+(±1)2﹣1×1=0;当x=﹣1时,a+b+x2+cdx=0+(±1)2﹣1×(﹣1)=2.【点评】本题主要考查相反数,绝对值,倒数的概念及性质.(1)相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;(2)倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;(3)绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.【考点】有理数的混合运算.【分析】根据题意,可以知道顶峰的温度与小明所在位置的温差,从而可以求得顶峰的高度.【解答】解:由题意可得,星斗山顶峰的海拔高度是:1020+(14﹣2)÷0.6×100=1020+12÷0.6×100=1020+2000=3020(米),即星斗山顶峰的海拔高度是3020米.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?【考点】数轴.【分析】(1)数轴三要素:原点,单位长度,正方向.依此表示出家以及A、B、C三个村庄的位置;(2)距离相加的和即为所求;(3)分两种情况:①D村在C村左边时;②D村在C村右边时;分别计算即可.【解答】解:(1)如图所示:(2)2+3+10=15,即小明一共走了15千米;(3)分两种情况:①D村在C村左边时,则C、D村表示的数分别是5千米、4千米,4﹣(﹣2﹣3)=4+5=9(千米);②D村在C村右边时,则C、D村表示的数分别是5千米、6千米,6﹣(﹣2﹣3)=6+5=11(千米);综上所述:D到B村有9千米或11千米.【点评】本题考查的是数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?【考点】正数和负数.【分析】(1)将各数据相加即可求出20袋小麦是不足或超过;(2)将(1)中的数据与20袋标准小麦总量相加即可求出答案;(3)记数为0时,小麦重量非常标准.【解答】解:(1)﹣6+4+3﹣2﹣3+1+0+5+8﹣5=5,这20袋小麦总计超过5千克;(2)20袋小麦总质量是:20×450+5=9005;(3)只有一袋非常标准,由于该袋小麦与标准质量相比较为0;【点评】本题考查正负数的意义,属于基础题型。
2018-2019学年度上学期第一次月考试题(卷)七年级数学题号一 二 三 合计 得分一、选择题:(本大题共10小题,每小题3分,共30分.) 1.如果水库的水位高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记作 ( ).A .+3mB .-3mC .+13D .13-2.在2),2(,)2(,222------中,负数的个数是( )A 、 l个B 、 2个C 、 3个D 、 4个3.下列各图中,是数轴的是 ( ) A.B.-1 0 1 1 C. D.-1 0 1 -1 0 14.下列计算结果等于1的是 ( ) A .(2)(2)-+- B .(2)(2)-÷-C .2(2)-⨯-D .(2)(2)---5.下列说法正确的是 ( ) A.-1的相反数为-1 B.-1的倒数为1 C.0是最小的有理数 D.-1的绝对值为1 6.“甲比乙大-8岁”表示的意义是 ( ) A. 甲比乙小8岁 B. 甲比乙大8岁 C. 乙比甲大-8岁 D. 乙比甲小8岁6.点A 在数轴上表示+2,从点A 沿数轴向左平移3个单位到点B ,点B 表示的数是( ) A. 3 B . -1 C. 5 D. -1或38.下列四组有理数的大小比较正确的是 ( )A. ->-1213 B. -->-+||||11 C.3121< D.3121->-9、巴黎与北京的时差为-7时(正数表示同一时刻比北京时间早的小时数),如果北京时间是7月2日14:00,那么巴黎的时间是 ( ) A 、7月2日21时 B 、7月2日17时 C 、7月2日5时 D 、7月2日7时 10、有理数a 、b 在数轴上的表示如图所示,那么 ( ) A. -b >a B. -a <b C. b >a D. ∣a ∣>∣b ∣二、填空题:本大题共8小题,每小题3分,共24分。
把答案写在题中的横线上。
11.-3的相反数是 ; 绝对值是12的数是 . 43-的倒数是 . 12.化简:()68--= ;3--= ; -(+0.75)= 。
a2018~2019学年第一次月考试卷科目:七年级数学 总分:150分 命题人:*** 审题人:***一、选择题。
(每题3分,共30分) 1.在数 16-,25.0,71+,2003-,14.3-,π中,正数有( ) A 、 1个 B 、2个 C 、3个 D 、4个 2.下列运算正确的是 ( )A .5252()17777-+=-+=- B.(-7-2)×5=-9×5=-45 C.54331345÷⨯=÷= D.-(-3)=-33.如果两个数的和是0,那么这两个数( )A 两个都是0B 互为相反数C 一个正数,一个负数D 有一个是0 4.下列说法正确的个数是 ( )①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的 A. 1 B. 2 C. 3 D. 45. 如图所示的图形为四位同学画的数轴,其中正确的是( )6.下列说法中正确的是 ( )A.0是最小的数B. 如果两个数互为相反数,那么它们的绝对值相等C.任何有理数的绝对值都是正数D. 最大的负有理数数是-1 7.绝对值不大于3的所有整数的积等于( ) A 、0 B 、6 C 、36 D 、-368. 有理数a 、b 在数轴上的位置如图1-1所示,那么下列式子中成立的是( ) A.a>b B.a<b C.ab> D.0ab> 9.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )A. 0.8kg B 0.6kg C 0.5kg D 0.4kg10. 数轴上的两点A 、B 分别表示-6和-3,那么A 、B 两点间的距离是 ( )A .-6+(-3) B.-6-(-3) C.|-6+(-3)| D.|-3-(-6)| 二、填空题。
2018-2019学年度第一学期第一月考试题(卷)七年级数学一、选择题(共10小题,每小题2,共20分)1.如果零上5℃记作+5℃,那么零下5℃记作( ) A .-5 B .-10 C .-10℃ D .-5℃ 2.-(–5)的绝对值是( )A.5B.–5C.51 D . –513. 在–2,+3.5,0,32- ,–0.7,11中,负分数有( )A.l 个B.2个C.3个D.4个 4. 下列说法中正确的是( )A.正数和负数互为相反数B.任何一个数的相反数都与它本身不相同C.任何一个数都有它的相反数D.数轴上原点两旁的两个点表示的数互为相反数 5. -a 一定是( )A.正数B.负数C.正数或负数D.正数或零或负数 6.一个数和它的倒数相等,则这个数是( )A.1B. 1-C.±1D.±1和0 7. 如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a 8.若x 的相反数是3,│y │=5,则x +y 的值为( )A .-8B .2C .-8或2D .8或-2 9.下列各式中,不成立的是( )A .3-=3 B. -3+=-3 C. -3-=3 D. 3-=3 10.有理数a 、b 在数轴上的位置如图所示,则b a +的值( )A .大于0B .小于0C .小于aD .大于b二、填空题(本题共8题,每题3分,共24分)11. 如果80m 表示向东走80 m ,那么-60m 表示__________ .12. -3的相反数是__ ; 绝对值是12的数是_____ ;43-的倒数是 .13. 把12500000用科学计数法表示为_________ . 14. 5.276(精确到十分位)_____ .15.化简:()68--=_____ ;3--= ;-(+0.75)=_____ .16.在数轴上,点A 到原点的距离等于3,点A 所表示的数是_________. 17. 若|m -2|+|n +3|=0,则2n-3m= .18. 观察下面的一列数:21,-61,121,-201……请你找出其中排列的规律,并按此规律填空.第9个数是________,第14个数是________.三、解答题(一):本大题共6小道,共36分. 19.(6分)把下列各数填在相应的大括号里.8,,0.275,0,﹣,﹣6,π,﹣0.25,﹣|﹣2|,分数:{ …} 非负整数:{ …} 有理数:{ …}. 20.(6分)在数轴上把下列各数表示出来,并用“<”连接各数.5+ ,5.3-,21,211-,4,021.(每题1分,共4分)计算:(1)7+(-3.04) (2) (-2.9)+(-0.31)(3)(-3)-(-7) (4)(-10)-322.(每题2分,共4分)计算:(1)()()24192840-+---- (2)()()13181420----+-23. (每题2分,共8分)比较下列各对数的大小:(1)54-与43-; (2)54+-与54+-;(3)25与52; (4)232⨯与2)32(⨯.24.(8分)10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?四、解答题(本大题共5小道,共40分.)25.计算:(每题2分,共8分)(1) );49(32-⨯ (2)-0.25÷83(3)()()169441281-÷⨯÷- (4) 13(1)(48)64-+⨯-26.计算:(每题4分,共8分)(1) 232)31(3)4(-⨯--(2) 42221(10.5)()2(3)3⎡⎤---⨯÷---⎣⎦27.(8分)若|a|=2, b=-3,c 是最大的负整数,求a +b-c 的值.28. (8分)已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.29.(8分)如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B 是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A 表示数-3,将点A 向右移动7个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A,B 两点间的距离为 . (3)如果点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(4)一般地,如果A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动p 个单位长度,那么请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?数学参考答案一、选择题(本题共10小题,每小题2,共20分.)二、填空题(共8题,每题3分,共24分) 11. 向西走60米 12. 3;; 13.1.25×107 14. 5.315.68;-3;-0.75 16.±3 17.13 18. , 三、解答题(一):本大题共6小道,共36分.19.分数:{ ,0.275 , ﹣ , ﹣0.25 …}非负整数:{8 , 0 …}有理数:{ 8,,0.275,0,﹣,﹣6,﹣0.25,﹣|﹣2|,…} 20. ﹣3.5<﹣1<0<<4<+5,21.(1)3.96 (2)-3.21 (3)4 ( 4)-13 22.(1)-73 (2)-2923. (1)∵-的绝对值是,的绝对值是,而>,所以> (2)∵|-4+5|=1,|-4|+|5|=9,∴|-4+5|<|-4|+|5|; (3)∵52,=25,25=32,∴52,<25;(4)2×32=18,(2×3)2=36,∴2×32<(2×3)2.2 kg. 28. 解 由题意得:a+b=0,cd=1,m=±2,24m =原式=0042314231241241+⨯-⨯+⨯--⨯⨯+⨯+或()=5或-11 29. 解:(1)∵点A 表示数-3,∴点A 向右移动7个单位长度,终点B 表示的数是-3+7=4,A ,B 两点间的距离是|-3-4|=7; (2)∵点A 表示数3,∴将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是3-7+5=1,A ,B 两点间的距离为3-1=2;(3)∵点A 表示数-4,∴将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是-4+168-256=-92,A 、B 两点间的距离是|-4+92|=88;(4)∵A 点表示的数为m ,∴将A 点向右移动n 个单位长度,再向左移动p 个单位长度,那么点B 表示的数为(m+n-p ),A ,B 两点间的距离为|n-p|.。
绝密★启用前2018--2019学年度第一学期人教版七年级月考第一次数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.做题时要平心静气,不要漏做。
一、单选题1.(本题4分)若收入6元记作+6元,则支出10元记作()A.+4元B.﹣4元C.+10元D.﹣10元2.(本题4分)在﹣2,0,1,3中,最小的数是()A.﹣2B.0C.1D.33.(本题4分)2017年秋季,合肥市共招收七年级新生64000人,这里“64000”用科学记数法表示为()A.64×103B.6.4×105C.6.4×104D.0.64×1054.(本题4分)近似数2.5万精确到()A.万位B.千位C.个位D.十分位5.(本题4分)下列运算中,正确的是()A.﹣3+5=﹣8B.(﹣2)×(﹣3)=﹣6C.4÷2=2D.﹣32=﹣96.(本题4分)如图所示,检测4袋大米的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,则最接近标准质量的是()A.B.C.D.7.(本题4分)把算式“(﹣2)﹣(﹣5)+(﹣3)﹣(﹣1)”写成省略加号和括号的形式,结果正确的是()A.2﹣5+3﹣1B.2+5﹣3+1C.﹣2﹣5+3﹣1D.﹣2+5﹣3+18.(本题4分)运用乘法分配律计算“(﹣24)×(﹣+﹣)”,不正确的是()A.(﹣24)+(﹣24)×(﹣)+(﹣24)×+(﹣24)×(﹣)B.(﹣24)×﹣(﹣24)×(﹣)+(﹣24)×﹣(﹣24)×(﹣)C.(﹣24)×﹣(﹣24)×+(﹣24)×﹣(﹣24)×D.×(﹣24)﹣×(﹣24)+×(﹣24)﹣×(﹣24)9.(本题4分)2017年汛期,安庆水文站每天都会对外公布长江水位变化情况.7月1日该水文站的水位是14.6m,7月2日下跌了0.4m;7月3日上涨了1.2m;7月4日又下跌了0.3m,则该水文站7月4日的水位高度是()A.﹣0.5m B.0.5m C.14.1m D.15.1m10.(本题4分)我们规定一种新运算“★”,其含义:对于有理数a,b,a★b=a2﹣ab﹣b,则计算(﹣3)★(﹣1)的结果是()A.﹣11B.5C.7D.13二、填空题11.(本题4分)﹣2的相反数是_____.12.(本题4分)请写出两个既是负数,又是分数的有理数:_____,_____.13.(本题4分)计算(﹣1)2017+(﹣1)2018的结果是_____.14.(本题4分)有理数a,b,c在数轴上的位置如图所示,现有下列结论:①b+c>0;②ab>0;③|a+c|=|a|+|c|;④a﹣c+bc<0.其中正确的有_____.(把所有正确结论的序号都填上)三、解答题15.(本题7分)把下列各数在数轴上表示出来,并用“<“连接﹣(﹣3);﹣|﹣2.5|;0;(﹣1)3;2的倒数.16.(本题7分)计算:﹣+(﹣)﹣(﹣)﹣(﹣).17.(本题7分)下面是小明同学的运算过程.计算:﹣5÷2×.解:﹣5÷2×=﹣5÷(2×) (1)=﹣5÷1 (2)=﹣5 (3)请问:(1)小明从第步开始出现错误;(2)请写出正确的解答过程.18.(本题7分)计算:﹣14+(4﹣6)2+×(﹣12÷3﹣1)×.19.(本题7分)(1)写出绝对值不大于4的所有整数;(2)求满足(1)中条件的所有整数的和.20.(本题7分)我们把“如果a=b,那么b=a”称为等式的对称性.(1)根据等式的对称性,由乘法的分配律m(a+b+c)=am+bm+cm可得到等式:;(2)利用(1)中的结论,求﹣8.57×3.14+1.81×3.14﹣3.24×3.14的值.21.(本题7分)国际足球比赛对足球的质量有严格的要求,比赛所用足球上标有:430±20(g).请问:(1)比赛所用足球的标准质量是多少?符合比赛所用足球质量的合格范围是多少?(2)组委会随机抽查了8只足球的质量,高于标准质量记为正,低于标准质量记为负,结果分别是:﹣15g,+12g,﹣24g,﹣6g,+13g,﹣5g,+22g,﹣9g,求这8只足球质量的合格率.(足球质量的合格率=)22.(本题7分)某校七年级举行数学测验,以120分为基准,高于基准记为正,低于基准记为负,各班平均分情况如表:(1)平均分最高的班级是,平均分最低的班级是;(2)平均分最高的班级比最低的班级多多少分?(3)若每个班的人数均为50人,求这5个班级的平均分.23.(本题8分)我们规定:有理数x A用数轴上点A表示,x A叫做点A在数轴上的坐标;有理数x B用数轴上点B表示,x B叫做点B在数轴上的坐标.|AB|表示数轴上的两点A,B之间的距离.(1)借助数轴,完成下表:(2)观察(1)中的表格内容,猜想|AB|= ;(用含x A,x B的式子表示,不用说理)(3)已知点A在数轴上的坐标是﹣2,且|AB|=8,利用(2)中的结论求点B在数轴上的坐标.参考答案1.D【解析】【分析】根据收入50元记作+6元,可以得到支出10元记作多少,本题得以解决.【详解】解:∵收入50元记作+50元,∴支出10元记作-10元,故选B.【点睛】本题考查正数和负数,解题的关键是明确正数和负数在题目中表示的实际意义.2.A【解析】【分析】根据正数大于0,0大于负数即可求出答案.【详解】解:-2、0、1、3这四个数中比0小的数是-2.故选:A.【点睛】本题考查比较有理数数的大小,要求学生掌握比较有理数数大小的方法,会比较数的大小,属基础题.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:∵科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.∴将64000用科学记数法表示为6.4×104.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【解析】【分析】由于0.38万=3800,而8在百位上,所以近似数0.38万精确到百位.【详解】解:近似数0.38万精确到百位.故选:B.【点睛】本题考查了近似数和有效数字,经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.5.D【解析】【分析】依据有理数的加减乘除乘方运算即可判断.【详解】A、-3+5=2,故A错;B、(-2)×(-3)=6,故B错;C、,故C错;D、-32=-9,故D正确.【点睛】熟练掌握有理数的加减乘除乘方的运算法则是解决本题的关键.6.C【解析】【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【详解】解:∵|-2|=2,|+2.5|=2.5,|-0.5|=0.5,|+1|=1,0.5<1<2<2.5,∴从质量轻重的角度看,最接近标准的是-0.5.故选C.【点睛】本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大. 7.D【解析】【分析】先把加减法统一成加法,再省略括号和加号,即可将一个加减混合运算的式子写成省略加号的和的形式,再读出来,然后根据有理数的加减法法则计算.【详解】解:根据有理数的加减混合运算可知,原式=(﹣2)﹣(﹣5)+(﹣3)﹣(﹣1)=﹣2+5﹣3+1.【点睛】本题考查了有理数的加减混合运算,注意将一个加减混合运算的式子写成省略加号的和的形式时,必须统一成加法后,才能省略括号和加号.8.B【解析】【分析】直接运用乘法的分配律来判断即可.【详解】解:运用乘法的分配律可知原式=故选择答案B.【点睛】正确运用乘法的分配律:m(a+b+c)=ma+mb+mc,是解本题的关键.9.D【解析】【分析】依据7月1日的水平水位,根据题意,可以依次求出7月2日、3日、4日的水位高度.【详解】解:∵7月1日的水位是14.6m,7月2日下跌了0.4m;7月3日上涨了1.2m;7月4日又下跌了0.3m,∴7月2日的水位为:14.6m-0.4m=14.2m;7月3日的水位为:14.2m+1.2m=15.4m;7月4日的水位为:15.4m-0.3m=15.1m.故选择D.【点睛】掌握正负号的含义,以及有理数的加减法运算是解决本题的关键.10.C【解析】【分析】由题目中给出的运算方法,即可推出原式=(-3)2-(-3)×(-1)- (-1),通过计算即可推出结果.【详解】解:(﹣3)★(﹣1)=(-3)2-(-3)×(-1)- (-1)=7,故选择C.【点睛】此题主要考查了有理数的混合运算,解题的关键是根据题意掌握新运算的规律.11.2.【解析】【分析】根据“a相反数为-a”即可得出答案.【详解】解:-2的相反数是2,故答案为2.【点睛】此题考查了相反数的性质,要求掌握相反数的性质及其定义,并能熟练运用到实际当中.12.﹣2.3﹣1.5(答案不唯一).【解析】【分析】既是负数,又是分数的有理数即为负分数.根据负分数的定义即可写出.【详解】解:因为负数小于0,整数和分数统称有理数,所以小于0的非整数即可.例如-2.3,-1.5(答案不唯一).【点睛】需要注意,中学阶段分数和小数都是分数,不再有小数这一说法.本题是开放题,答案不唯一,符合条件即可.13.0.【解析】【分析】利用乘方的意义计算即可得到结果.【详解】解:原式=-1+1=0,故答案为:0【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.①②④【解析】【分析】由图可知:,再依据绝对值的还有理数的加减乘除法则即可解题.【详解】解:由图可知:,∴b+c>0,ab>0,故①②正确,又∵,∴,故③错误。
流曲镇初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)计算的结果为A. -5x2B. 5x2C. -x2D. x22.(2分)(2015•毕节市)2014年我国的GDP总量为629180亿元,将629180亿用科学记数法表示为()A. 6.2918×105元B. 6.2918×1014元C. 6.2918×1013元D. 6.2918×1012元3.(2分)(2015•天津)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A. 0.227×107B. 2.27×106C. 22.7×105D. 227×1044.(2分)(2015•曲靖)﹣2的倒数是()A. ﹣B. ﹣2C.D. 25.(2分)(2015•雅安)如图是某正方体的表面展开图,则展开前与“我”字相对的面上的字是()A. 是B. 好C. 朋D. 友6.(2分)(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A. 0.675×105B. 6.75×104C. 67.5×103D. 675×1027.(2分)(2015•资阳)﹣6的绝对值是()A. 6B. -6C.D. -8.(2分)(2015•嘉兴)2014年嘉兴市地区生产总值为335 280 000 000元,该数据用科学记数法表示为()A. 33528×107B. 0.33528×1012C. 3.3528×1010D. 3.3528×10119.(2分)首都北京奥运会体育场——“鸟巢”能容纳91000位观众,将91000用科学记数法表示为A. B. C. D.10.(2分)(2015•巴彦淖尔)﹣3的绝对值是()A. ﹣3B. 3C. ﹣3﹣1D. 3﹣111.(2分)(2015•遵义)在0,﹣2,5,,﹣0.3中,负数的个数是()A. 1B. 2C. 3D. 412.(2分)(2015•柳州)如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A. 147.40元B. 143.17元C. 144.23元D. 136.83元二、填空题13.(1分)(2015•梅州)据统计,2014年我市常住人口约为4320000人,这个数用科学记数法表示为________ .14.(1分)(2015•昆明)据统计,截止2014年12月28日,中国高铁运营总里程超过16000千米,稳居世界高铁里程榜首,将16000千米用科学记数法表示为 ________ 千米.15.(1分)(2015•益阳)如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有 ________16.(1分)(2015•三明)观察下列图形的构成规律,依照此规律,第10个图形中共有________ 个“•”.17.(1分)(2015•呼伦贝尔)将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是 ________.18.(1分)(2015•衡阳)在﹣1,0,﹣2这三个数中,最小的数是________ .三、解答题19.(10分)某位同学做一道题:已知两个多项式A,B,求的值.他误将看成,求得结果为,已知.(1)求多项式A;(2)求A-B的正确答案.20.(10分)已知A=ax2-3x+by-1,B=3-y-x+x2且无论x,y为何值时,A-2B的值始终不变.(1)分别求a、b的值;(2)求b a的值.21.(13分)如图,数轴上点A、B 到表示-2 的点的距离都为6,P为线段AB 上任一点,C,D 两点分别从P,B 同时向A 点移动,且C 点运动速度为每秒2 个单位长度,D点运动速度为每秒3 个单位长度,运动时间为t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若P 点表示的数是0,①运动1 秒后,求CD 的长度;②当D 在BP 上运动时,求线段AC、CD之间的数量关系式.(3)若t=2 秒时,CD=1,请直接写出P 点表示的数.22.(15分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案甲超市规定累计购买商品超出300元之后,超出部分按标价8折优惠;乙超市规定累计购买商品超出200元之后,超出部分按9折优惠(1)王老师计划购买500元的商品,他选哪个超市较划算?(2)当购物总价大于300元时,顾客累计购买多少元的商品时,在甲、乙两家超市花费一样多?(3)有没有购买同样标价商品,在乙超市的花费比在甲超市的花费高出10%的情况?试说明.23.(7分)从2开始,连续的偶数相加,它们的和的情况如下表:加数的个数n连续偶数的和S12=1×222+4=6=2×332+4+6=12=3×442+4+6+8=20=4×552+4+6+8+10=30=5×6(1)如果n=8时,那么S的值为________;(2)根据表中的规律猜想:用n的代数式表示S的公式为S=2+4+6+8+…+2n=________;(3)由上题的规律计算100+102+104+…+2014+2016+2018的值(要有计算过程)24.(12分)已知,数轴上点A和点B所对应的数分别为,点P 为数轴上一动点,其对应的数为.(1)填空:________ ,________ .(2)若点P到点A、点B 的距离相等,求点P 对应的数.(3)现在点A、点B分别以2 个单位长度/秒和0.5 个单位长度/秒的速度同时向右运动,点P以3 个单位长度/秒的速度同时从原点向左运动.当点A与点B之间的距离为2个单位长度时,求点P所对应的数是多少?25.(10分)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的(探究).(提出问题)两个有理数a、b满足a、b同号,求的值.(解决问题)解:由a、b同号,可知a、b有两种可能:①当a,b都正数;②当a,b都是负数.①若a、b都是正数,即a>0,b>0,有|a|=a,|b|=b,则= =1+1=2;②若a、b都是负数,即a<0,b<0,有|a|=﹣a,|b|=﹣b,则= =(﹣1)+(﹣1)=﹣2,所以的值为2或﹣2.(探究)请根据上面的解题思路解答下面的问题:(1)两个有理数a、b满足a、b异号,求的值;(2)已知|a|=3,|b|=7,且a<b,求a+b的值.26.(10分)已知,.(1)求3A+6B;(2)若3A+6B的值与无关,求的值.流曲镇初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题1.【答案】D【考点】合并同类项法则及应用【解析】【分析】根据合并同类项法则计算:.故选D2.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】将629180亿用科学记数法表示为:6.2918×1013.故选:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.3.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将2270000用科学记数法表示为2.27×106.故选B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.4.【答案】A【考点】倒数【解析】【解答】解:有理数﹣2的倒数是﹣.故选:A.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.5.【答案】A【考点】几何体的展开图【解析】【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选A.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.6.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】将67500用科学记数法表示为:6.75×104.故选:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.7.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:|﹣6|=6,故选:A.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值.8.【答案】D【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将335 280 000 000用科学记数法表示为:3.3528×1011.故选:D.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.9.【答案】D【考点】科学记数法—表示绝对值较大的数【解析】【分析】.故选D.10.【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】﹣3的绝对值是3,故选B.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.11.【答案】B【考点】正数和负数【解析】【解答】在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.【分析】根据小于0的是负数即可求解.12.【答案】A【考点】有理数大小比较,有理数的加减混合运算【解析】【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.【分析】根据存折中的数据进行解答.二、填空题13.【答案】4.32×106【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:4320000=4.32×106,故答案为:4.32×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于4320000有7位,所以可以确定n=7﹣1=6.14.【答案】1.6×104【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.15.【答案】5n+1【考点】探索图形规律【解析】【解答】解:∵第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…∴第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.故答案为:5n+1.【分析】由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…由此得出第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.16.【答案】111【考点】探索图形规律【解析】【解答】解:由图形可知:n=1时,“•”的个数为:1×2+1=3,n=2时,“•”的个数为:2×3+1=7,n=3时,“•”的个数为:3×4+1=13,n=4时,“•”的个数为:4×5+1=21,所以n=n时,“•”的个数为:n(n+1)+1,n=10时,“•”的个数为:10×11+1=111.【分析】观察图形可知前4个图形中分别有:3,7,13,21个“•”,所以可得规律为:第n个图形中共有[n (n+1)+1]个“•”.再将n=10代入计算即可.17.【答案】4n+1【考点】探索图形规律【解析】【解答】解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,则第n次得到4n+1个正方形,故答案为:4n+1.【分析】仔细观察,发现图形的变化的规律,从而确定答案.18.【答案】-2【考点】有理数大小比较【解析】【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0,所以在﹣1,0,﹣2这三个数中,最小的数是﹣2.故答案为:﹣2.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.三、解答题19.【答案】(1)解:由已知,A+B=3x2﹣3x+5,B=x2﹣x﹣1,则A=A+B-B=3x2﹣3x+5﹣(x2﹣x﹣1)=3x2﹣3x+5﹣x2+x+1=2x2﹣2x+6(2)解:A﹣B=2x2﹣2x+6﹣(x2﹣x﹣1)=2x2﹣2x+6﹣x2+x+1=x2﹣x+7【考点】整式的加减运算【解析】【分析】(1)根据A+B=3x2﹣3x+5,将B代入求出A即可。