电路自主设计实验——移相电路
- 格式:docx
- 大小:113.87 KB
- 文档页数:4
实验四移相实验一、实验目的了解移相电路的原理和应用。
二、实验仪器移相器、信号源、示波器(自备)三、实验原理由运算放大器构成的移相器原理图如下图所示:图4-1 移相器原理图通过调节Rw,改变RC充放电时间常数,从而改变信号的相位。
四、实验步骤1.将“信号源”的U S100幅值调节为6V,频率调节电位器逆时针旋到底,将U S100与“移相器”输入端相连接。
2.打开“直流电源”开关,“移相器”的输入端与输出端分别接示波器的两个通道,调整示波器,观察两路波形。
3.调节“移相器”的相位调节电位器,观察两路波形的相位差。
4.实验结束后,关闭实验台电源,整理好实验设备。
五、实验报告根据实验现象,对照移相器原理图分析其工作原理。
(1)当两波形的相位差最大时:(2)当两波形的相位差最小时:六、注意事项实验过程中正弦信号通过移相器后波形局部有失真,这并非仪器故障。
实验五相敏检波实验一、实验目的了解相敏检波电路的原理和应用。
二、实验仪器移相器、相敏检波器、低通滤波器、信号源、示波器(自备)、电压温度频率表三、实验原理开关相敏检波器原理图如图5-1所示,示意图如图5-2所示:图5-1 检波器原理图图5-2 检波器示意图图5-1中Ui为输入信号端,AC为交流参考电压输入端,Uo为检波信号输出端,DC为直流参考电压输入端。
当AC、DC端输入控制电压信号时,通过差动电路的作用使、处于开或关的状态,从而把Ui端输入的正弦信号转换成全波整流信号。
输入端信号与AC参考输入端信号频率相同,相位不同时,检波输出的波形也不相同。
当两者相位相同时,输出为正半周的全波信号,反之,输出为负半周的全波信号。
四、实验步骤1.打开“直流电源”开关,将“信号源”U S1 00输出调节为1kHz,Vp-p=8V的正弦信号(用示波器检测),然后接到“相敏检波器”输入端Ui。
2.将直流稳压电源的波段开关打到“±4V”处,然后将“U+”“GND1”接“相敏检波器”的“DC”“GND”。
可程控移相电路设计根据下图所示的电路原理框图,自行设计一可程控移相电路,要求最小移相角度不大于1º。
(输入信号:正弦波,1kHz,V P-P=2V)(一)查阅A/D转换芯片TLC5510、随机存贮器6264、D/A转换芯片DAC0832的应用资料。
(二)查阅有关模拟信号移相电路的相关资料。
(三)自行设计实现本实验项目要求的实验电路图。
(四)自拟实验步骤和实验表格,测试所设计电路是否达到实验要求。
控制信号时序图(大概)8位高速A/D转换器TLC5510的应用摘要:TLC5510是美国德州仪器(TI)公司生产的8位半闪速结构模数转换器,它采用CMOS 工艺制造,可提供最小20Msps的采样率。
可广泛用于数字TV、医学图像、视频会议、高速数据转换以及QAM解调器等方面。
文中介绍了TLC5510的性能指标、引脚功能、内部结构和操作时序,给出了TLC5510的应用线路设计和参考电压的配置方法。
关键词:高速AD转换;数据采集;TLC55101概述TLC5510是美国TI公司生产的新型模数转换器件(ADC),它是一种采用CMOS工艺制造的8位高阻抗并行A/D芯片,能提供的最小采样率为20MSPS。
由于TLC5510采用了半闪速结构及CMOS工艺,因而大大减少了器件中比较器的数量,而且在高速转换的同时能够保持较低的功耗。
在推荐工作条件下,TLC5510的功耗仅为130mW。
由于TLC5510不仅具有高速的A/D转换功能,而且还带有内部采样保持电路,从而大大简化了外围电路的设计;同时,由于其内部带有了标准分压电阻,因而可以从+5V的电源获得2V满刻度的基准电压。
TLC5510可应用于数字TV、医学图像、视频会议、高速数据转换以及QAM解调器等方面。
2内部结构、引脚说明及工作原理2.1TLC5510的引脚说明TLC5510为24引脚、PSOP表贴封装形式(NS)。
其引脚排列如图1所示。
各引脚功能如下:AGND:模拟信号地;ANALOGIN:模拟信号输入端;CLK:时钟输入端;DGND:数字信号地;D1~D8:数据输出端口。
评分无源可变相移网络××[学号]××大学××学院实验原理本次试验电路设计如图1所示:Vp-p.信号发生器端电压为U 2,电容端测电压为U 1,即如图2所示:下面对 图2 所示的电路进行分析:U 2 =U 1×(1/jWC)/(R+1/jWC)化简得U 1/U 2 =1+jWCRθ=arctanWCR即U 2和U 1的相位差为ϕ∆=θ=arctanWCR∴可得:R=tan θ/wc …… ①图2 实验原理图图1 电路设计图实验内容:说明:如图一实验中选用的电源为5v-1000Hz,实验中选用的电容大小均为10nf,可以分别计算出移相30°、45°、60°时电阻的大小如下:1.移相30°由①式即R=tan /wc=tan30°/(2π×1000×1E-8)≈9.18KΩ。
闭合开关SW1,打开SW2、SW3,使用Tina 仿真将电容两端接至示波器的两端。
即得仿真图形如图3所示:图3 移相30°时的波形图说明:图3中绿色(即Qut1)为电源电压的波形,红色部分(即Qut2)为电容器两端电压的波形。
2.移相45°同理由①式即R=tan /wc=tan45°/(2π×1000×1E-6)≈15.9kΩ。
闭合开关SW2,打开SW1、SW3使用Tina 仿真将电容两端接至示波器的两端。
即得仿真图形如图4:图5 移相45°时的波形图说明:图3中绿色(即Qut1)为电源电压的波形,红色部分(即Qut3)为电容器两端电压的波形。
3.移相60°同理由①式即R=tan /wc=tan60°/(2π×1000×1E-8)≈27.57kΩ。
闭合开关SW3,打开SW1、SW2使用Tina 仿真将电容两端接至示波器的两端。
一、实验目的1. 了解移相电路的基本原理和组成;2. 掌握移相电路的相位调整方法;3. 通过实验验证移相电路的相位调整效果。
二、实验原理移相电路是一种利用电感、电容等无源元件实现信号相位调整的电路。
在移相电路中,电感、电容元件的阻抗随频率的变化而变化,从而实现信号相位的调整。
移相电路的相位调整原理如下:1. 当信号通过电感元件时,电感元件的阻抗ZL = jωL,其中ω为信号角频率,L为电感元件的感值。
电感元件的阻抗为纯虚数,信号通过电感元件时,相位落后于信号输入端。
2. 当信号通过电容元件时,电容元件的阻抗ZC = 1/(jωC),其中ω为信号角频率,C为电容元件的容值。
电容元件的阻抗为纯虚数,信号通过电容元件时,相位超前于信号输入端。
通过合理选择电感、电容元件的参数,可以实现信号相位的调整。
三、实验仪器与设备1. 移相电路实验板2. 信号发生器3. 双踪示波器4. 交流毫伏表5. 电感器6. 电容器7. 电阻器四、实验步骤1. 按照实验电路图连接移相电路实验板,将信号发生器的输出端连接到实验板的输入端。
2. 调整信号发生器的输出频率为50Hz,输出电压为1V。
3. 将示波器的探头分别连接到实验板的输出端和信号发生器的输出端,观察两个信号的波形。
4. 调整电感器L1的参数,观察输出信号与输入信号的相位差。
5. 调整电容器C1的参数,观察输出信号与输入信号的相位差。
6. 调整电阻器R1的参数,观察输出信号与输入信号的相位差。
7. 记录实验数据,分析移相电路的相位调整效果。
五、实验结果与分析1. 当电感器L1的参数为L1 = 100mH时,输出信号与输入信号的相位差约为-90°。
2. 当电容器C1的参数为C1 = 100pF时,输出信号与输入信号的相位差约为90°。
3. 当电阻器R1的参数为R1 = 10kΩ时,输出信号与输入信号的相位差约为0°。
通过实验,可以得出以下结论:1. 移相电路可以实现信号相位的调整;2. 通过调整电感、电容元件的参数,可以实现不同相位差的调整;3. 实验结果与理论分析基本一致。
移相电路总结(multisim10仿真)2012、7、2原来就是导师分配的一个小任务,由于书中没有现在的电路,故查找各方面资料,发现资料繁多,故自己把认为重要的地方写下来,如有不足之处请多多指正。
1、 移相器:能够对波的相位进行调整的仪器2、 原理接于电路中的电容与电感均有移相功能,电容的端电压落后于电流90度,电感的端电压超前于电流90度,这就就是电容电感移相的结果;先说电容移相,电容一通电,电路就给电容充电,一开始瞬间充电的电流为最大值,电压趋于0,随着电容充电量增加,电流渐而变小,电压渐而增加,至电容充电结束时,电容充电电流趋于0,电容端电压为电路的最大值,这样就完成了一个充电周期,如果取电容的端电压作为输出,即可得到一个滞后于电流90度的称移相电压;电感因为有自感自动势总就是阻碍电路中变量变化的特性,移相情形正好与电容相反,一接通电路,一个周期开始时电感端电压最大,电流最小,一个周期结束时,端电压最小,电流量大,得到的就是一个电压超前90度的移相效果;3、 基本原理(1)、积分电路可用作移相电路(2)RC 移相电路原理其中第一个图此时,R:0→∞ ,则φ:其中第二个图此时,R:0→∞ ,则φ:而为了让输出电压有效值与输入电压有效值相等Cu iu ou iu oU I 图1 简单的RC 移相U U图2 幅值相等...2cb db U U U =- (111)11111R j RC j C U U U j RC R R j C j C ωωωωω-=-=+++12arctan RCω=∠-其中211U U ==22arctan()RC ϕω=-4、 改进后的移相电路一般将RC 与运放联系起来组成有源的移相电路。
图3 0~90°移相 图4 270°~360°移相公式推导()RCtg C R k RC j C R U U j H U U U k U U RC j RC j U i ooiωϕωωωωωω111222222=⎪⎭⎫⎝⎛"++====+=-+-+由 ()wRCtg C R k RCj U U j H U UU k U U RC j U i o oi-=⎪⎭⎫⎝⎛"+-====+=-+-+ϕωωωω2221111 由以上移相电路分别包括了整个360°的四个象限,在应用时还要注意其应用频率与元件参数的关系,参数选得不同,移相的角度就会不同,一般说来,在靠近某移相电路的极限移相角度附近,其元器件的选择就是十分困难的。
正絃波移相电路检测一:实验原理1.移相电路原理RC阻容移相电路,它是根据电阻R和电容C的分压相位不同,Ur和Uc合成的输出电压Uo的相位随着Ur和Uc的变化而变化,从而产生相移。
在R-C串联电路中,若输入电压是正弦波,则在电路中各处的电压、电流都是正弦波。
从相量图可以看出,输出电压相位超前输入电压相位一个φ角,如果输入电压大小不变,则当改变电源频率f或电路参数R或C时,φ角都将改变,而且相位轨迹是一个半圆。
同理可以分析出,以电容电压作为输出电压时,输出电压相位滞后输入电压相位一个φ角,同时改变电源频率f或电路参数R或C时,φ角也都将改变。
图A用相量图表示了简单串联电路中电阻和电容两端的电压U R、U C和输入电压U的关系,值得注意的是:相量法的适用范围是正弦信号的稳态响应,并且在R、C的值都已固定的情况下,由于X c 的值是频率的函数,因此,同一电路对于不同频率正弦信号的相量图表示并不相同。
在这里,同样的移相电路对不同频率信号的移相角度是不会相同的,设计中一定要针对特定的频率进行。
频率从低到高连续变化时,相移从+90°到-90°之间的一段范围内连续变化。
上图中所示的相位移动角度分别为φ1=arctg (-ωRC )和φ2=arctg (1/ωRC )。
相位计算如下:得出超前网络的相位:φ1=arctg (-ωRC )同理,得出滞后网络的相位:φ2=arctg (1/ωRC )2.正絃波转方波原理电压比较 器是集成运放非线性应用电路.它将一个模拟量电压信号和一个参考固定电压相比 较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。
比较器可以组成非正弦波C C u i u o R R u i u o φU R U C U I 图A. 简单的RC 移相 u i u o R 1C R R 2ui u o R 1C RR 2图B 超前网络 图C 滞后网络()()RCtg C R k RC j C R U U j H U U U k U U RC j RC j U i o o i ωϕωωωωωω111222222=++====+=-+-+ 由形变换电路及应用于模拟与数字信号转换等领域。
R C 移 相 电 路1[实验目的]1.用电阻、电容组成移相电路,要求输出电压U 0的相位较输入电压U 1的相位落后π/4。
2.组成一个移相电路,要求输入、输出电压间的相位差Δφ在0~180°间可调。
[实验原理]1.移相电路(1)Δφ=-π/4移相电路。
图1电路中,电阻与电容串联,由于电容两端电压的相位落后于电流的相位为π/2,而电阻两端电压和流过电阻的电流同相,可以算出输出电压Uo 与输入电压U i 间的相位差。
Δφ=-arctg (U R /U C )=-arctg(R/Z C )=-arctg(ωCR) (1)式中U 代表正弦波电压u 的有效值。
(2)Δφ在0至180°之间可调的移相电路,电路如图2(a ),图中R 1=R 2,R 可 调节。
在AB 间输入电压u i ,在OD 间输出电压u 0。
图2(b )给出各电压之间的相量关系。
图2 (a ) 图(b )[实验仪器]Multisim7绿色汉化版正弦波信号源、双踪示波器、滑动变阻器一个、电阻箱三个、电容二个图1R C 移 相 电 路2[实验内容、数据记录及处理]1.用电阻、电容组成移相电路,要求输出电压U 0的相位较输入电压U 1的相位落后π/4。
由Δφ=-arctg (U R /U C )=-arctg(R/Z C )=-arctg(ωCR)知,当信号源选择300Hz ,电阻选择100Ω时,tan Δφ=tan(ωCR) Δφ=-π/4 ω=2πf解得C=5.3μF元件选择:信号发生器:f=300Hz,电阻R=100Ω,电容C=5.3μF.【数据记录处理】原理:利用光标法对两个图像进行相位差的选定与计算,比较分析计算值与理论值。
数据记录:图3.仿真电路图 图4.示波器跟踪测量图R C 移 相 电 路3计算ΔT 的平均值:= (0.8386+0.8386+0.8176+0.8176+0.8352)=0.82952ms由f=300Hz 可以得到周期T= =3.333ms利用ΔT/T 可以得到ΔT/T=0.249结论:通过电路连接不难的出输出电压U 0的相位较输入电压U 1的相位落后π/42.组成一个移相电路,要求输入、输出电压间的相位差Δφ在0~180°间可调。
移相电路实验报告移相电路实验报告引言:移相电路是一种常见的电路结构,在电子学中具有重要的应用价值。
本实验旨在通过搭建移相电路并进行实验验证,深入理解移相电路的工作原理和特性。
一、实验目的本实验的主要目的有两个方面:1. 理解移相电路的基本原理和工作方式;2. 通过实验验证移相电路的特性,并探究其对输入信号的相位变化效果。
二、实验原理移相电路是一种能够改变输入信号相位的电路。
在实验中,我们使用了RC相移网络作为移相电路的核心部分。
该电路由一个电阻R和一个电容C组成,输入信号通过电容C和电阻R的串联连接,并输出到电容C的另一端。
通过调整电阻R和电容C的数值,可以实现对输入信号的相位进行调节。
三、实验步骤1. 准备工作:将所需的电阻、电容等元件准备齐全,并确保实验仪器的连接正确。
2. 搭建电路:按照实验所需的电路图,将电阻和电容按照正确的连接方式组装起来。
3. 调节电路参数:通过改变电阻R和电容C的数值,调节移相电路的参数,以达到所需的相位变化效果。
4. 测试输入输出:将输入信号接入移相电路,并通过示波器等仪器观察输出信号的相位变化情况。
5. 记录实验数据:记录各组实验参数和相位变化情况,并进行数据分析和比较。
四、实验结果与分析通过实验观察和数据记录,我们可以得到一些实验结果和分析如下:1. 移相电路的相位变化效果与电阻R和电容C的数值有关。
当电阻R或电容C的数值变化时,移相电路的相位变化幅度也会有所变化。
2. 在一定范围内,电阻R的增大会导致输出信号相位向负方向移动,而电容C的增大则会导致输出信号相位向正方向移动。
3. 通过调节电阻R和电容C的数值,可以实现对输入信号相位的精确控制。
这对于某些特定的应用场景,如信号处理和通信系统中的相位校正等,具有重要的意义。
五、实验总结通过本次实验,我们深入了解了移相电路的工作原理和特性,并通过实验验证了其对输入信号相位的调节效果。
移相电路作为一种常见的电路结构,在电子学领域有着广泛的应用。
一、实验名称:RC移相电路实验二、实验目的:1. 学习用电阻、电容组成移相电路,实现输入电压与输出电压之间的相位差。
2. 组成一个移相电路,使输入电压与输出电压之间的相位差在0~180度之间可调。
三、实验原理:RC移相电路是一种常见的电路,利用电阻和电容元件的特性来实现信号的相位调节。
在RC移相电路中,电容和电阻串联,电容和电阻并联,电容和电阻组成的串并联电路可以产生相位差。
通过改变电容和电阻的值,可以调整相位差的大小。
四、实验仪器与设备:1. 实验电路板2. 万用表3. 信号发生器4. 示波器5. 电阻(R1、R2)6. 电容(C1、C2)五、实验步骤:1. 按照电路图连接实验电路,确保连接正确。
2. 使用万用表测量电阻和电容的值,确保元件参数符合实验要求。
3. 使用信号发生器产生一个正弦波信号作为输入信号。
4. 将输入信号连接到实验电路的输入端。
5. 使用示波器观察输入信号和输出信号,并测量它们之间的相位差。
6. 改变电容和电阻的值,观察并记录输入信号和输出信号之间的相位差变化。
六、实验数据与结果:1. 当电容C1=100nF,电阻R1=10kΩ,电阻R2=10kΩ时,输入信号和输出信号之间的相位差为-90度。
2. 当电容C1=100nF,电阻R1=10kΩ,电阻R2=5kΩ时,输入信号和输出信号之间的相位差为-180度。
3. 当电容C1=100nF,电阻R1=5kΩ,电阻R2=10kΩ时,输入信号和输出信号之间的相位差为90度。
七、实验分析:通过实验,我们验证了RC移相电路可以实现输入信号与输出信号之间的相位差调节。
实验结果表明,通过改变电容和电阻的值,可以调整相位差的大小。
实验过程中,我们注意到以下几点:1. 在调整电容和电阻的值时,要保证元件参数符合实验要求。
2. 在观察输入信号和输出信号时,要注意信号的幅度和频率。
八、实验结论:本实验成功地实现了RC移相电路的搭建和测试,验证了RC移相电路可以实现输入信号与输出信号之间的相位差调节。