抽水试验原始资料以及数据计算
- 格式:doc
- 大小:376.50 KB
- 文档页数:3
抽水试验报告抽水试验是指对地下水井进行测试,以确定井的水文地质特性,包括井的生产能力、水位变化、水化学特性等等。
本报告将详细介绍抽水试验的过程和结果。
一、抽水试验的目的及意义抽水试验的主要目的是为了测定井的储水能力、地下水的流动状态和水文地质条件,进而确定井的生产能力、水位变化规律和水化学特性,指导水资源的开发和管理。
抽水试验对于地下水开发利用具有重要的意义,尤其对于确定井的生产能力和水位变化规律等方面有重要的指导作用。
二、抽水试验的方法本次抽水试验采用了静态抽水试验的方法进行,测试周期为48小时。
在试验期间,以恒定流量的方式排出水井的地下水量,从而确定井的水文地质特性。
三、试验过程1.试验前的准备工作a. 检查设备在进行试验前,首先需要检查设备,确保设备齐全完好、使用安全可靠。
检查设备包括泵、试验管、计时器、空气压缩机等,确保这些设备能够正常运转。
b. 制定试验计划制定试验计划是试验的关键,需要根据实际情况制定合理的试验方案。
试验计划需要考虑井的深度、直径、孔径以及孔隙度、渗透系数等地下水文地质参数,在此基础上确定试验周期。
c. 安装试验管试验管是连接地下水井和地面设备的管道,安装试验管需要特别小心谨慎。
在安装试验管时,需要确保试验管与井壁之间的空隙足够小,以防止地下水通过空隙渗透入土壤和岩石中。
2.试验过程中的数据测量a. 测量地下水位在试验中需要不断地测量井口的水位,以便了解井的液位变化情况。
为了确保水位的准确性,测量需要同时进行多次,然后取平均值。
在试验期间,需要测量地下水的流量,以确定井的生产能力。
测量地下水流量的方法有多种,包括喷嘴测量法、磁流量计法、涡街流量计法等。
3.试验后的数据处理和分析在试验结束后,需要对试验数据进行处理和分析,以确定井的水文地质特性。
数据处理和分析包括流量曲线绘制、水位变化规律分析、水力学参数的计算。
四、试验结果及分析本次试验的结果显示,井的水位随时间的变化呈现出一个典型的随时间逐渐下降的趋势,而井的流量则随时间的变化对应呈现出一个典型的随时间逐渐上升的趋势。
抽水试验规范方法及计算公式第四章抽水试验抽水试验是确定含水层参数,了解水文地质条件的主要方法。
采用主孔抽水、带有多个观测孔的群孔抽水试验,包括非稳定流和稳定流抽水实验,要求观测抽水期间和水位恢复期间的水位、流量、水温、气温等内容。
要求了解试验基地及其所在地区的水文气象、地质地貌及水文地质条件,了解并掌握抽水试验的目的意义、工作程序、现场记录的主要内容、数据采集与处理方法,掌握相关资料的整理、编录方法和要求,了解对抽水试验工作质量进行评价的一般原则,能够利用学过的理论及方法进行水文地质参数计算,并对参数的合理性和精确性进行分析和检验。
§4.1 基本要求掌握抽水试验的目的、分类、方法及抽水试验准备工作。
4.1.1 抽水试验的目的(1) 确定含水层及越流层的水文地质参数:渗透系数K、导水系数T、给水度、弹性释水系数?、导压系数a、弱透水层渗透系数K'、越流系数 b、越流因素 B、影响半径 R等。
(2) 通过测定井孔涌水量及其与水位下降(降深)之间的关系,分析确定含水层的富水程度、评价井孔的出水能力。
(3) 为取水工程设计提供所需的水文地质数据,如影响半径、单井出水量、单位出水量、井间干扰出水量、干扰系数等,依据降深和流量选择适宜的水泵型号。
(4) 确定水位下降漏斗的形状、大小及其随时间的增长速度;直接评价水源地的可开采量。
(5) 查明某些手段难以查明的水文地质条件,如确定各含水层间以及与地表水之间的水力联系、边界的性质及简单边界的位置、地下水补给通道、强径流带位置等。
4.1.2 抽水试验分类抽水试验主要分为单孔抽水、多孔抽水、群孔干扰抽水和试验性开采抽水。
(1)单孔抽水试验:仅在一个试验孔中抽水,用以确定涌水量与水位降深的关系,概略取得含水层渗透系数。
(2)多孔抽水试验:在一个主孔内抽水,在其周围设置若干个观测孔观测地下水位。
通过多孔抽水试验可以求得较为确切的水文地质参数和含水层不同方向的渗透性能及边界条件等。
抽水试验参数计算抽水试验是一种用于测量地下水井的产水能力和水井与地下水的互作用的方法。
它能够提供有关水井的许多重要参数,例如渗透系数、有效孔隙度、渗透容许值等。
在进行抽水试验之前,需要确定一系列参数,包括抽水率、试验时间、水井变水位、渗透系数等。
下面是抽水试验参数计算的详细步骤。
1.确定抽水井的地下水位(基准水位)和抽水井孔底低于地下水位的提升值。
这些值可以通过在井中放置压力传感器、液位计等仪器来测量得到。
2.确定试验井周围的水位变化。
通常,在试验井周围的井点或观测孔中安装相应的水位测量仪器,以记录试验期间的水位变化情况。
3.确定试验开始时刻的初始水位(H0)和试验结束时的终止水位(Ht)。
4.通过观测井中的液位变化来计算地下水干扰头的取水量。
地下水干扰头是指与试验井相隔一定距离的控制点或均匀分布的观测井点,在试验期间的水位变化可用于计算地下水干扰头取水量。
5.确定抽水井的抽水率(Q)。
抽水率是指单位时间内从井中抽出的水量。
可以通过流量计等仪器来测量得到,也可以通过Q=ΔV/Δt来计算,其中ΔV是试验期间抽出的总水量,Δt是试验时间。
6.确定试验井的抽水水位变化量(ΔH)。
试验井的抽水水位变化量与抽水水位变化量之比可用于计算地下水井的产水能力。
7.确定试验井的储水系数(S)。
储水系数是指单位体积土壤或岩石中储存的有效水量。
可通过试验井抽水期间的总抽水量与试验井的有效孔隙容积来计算。
8.确定地下水位对时间的变化曲线(泻水曲线)。
根据抽水试验期间的水位变化情况,可以绘制地下水位对时间的变化曲线,从而得到地下水位的泻水规律和特征。
9.根据抽水试验数据,可以计算地下水井的渗透系数(K)。
渗透系数是指岩石或土壤中单位时间单位面积的水流通过能力。
可通过多种公式计算得到,如T-方法、电脑算法等。
10.最后,利用得到的抽水试验数据计算其他参数,如渗透容许值、渗透强度等。
这些参数对于工程设计和地下水资源评价具有重要意义。
可编辑第四章抽水试验抽水试验是确定含水层参数,了解水文地质条件的主要方法。
采用主孔抽水、带有多个观测孔的群孔抽水试验,包括非稳定流和稳定流抽水实验,要求观测抽水期间和水位恢复期间的水位、流量、水温、气温等内容。
要求了解试验基地及其所在地区的水文气象、地质地貌及水文地质条件,了解并掌握抽水试验的目的意义、工作程序、现场记录的主要内容、数据采集与处理方法,掌握相关资料的整理、编录方法和要求,了解对抽水试验工作质量进行评价的一般原则,能够利用学过的理论及方法进行水文地质参数计算,并对参数的合理性和精确性进行分析和检验。
§4.1 基本要求掌握抽水试验的目的、分类、方法及抽水试验准备工作。
4.1.1 抽水试验的目的(1) 确定含水层及越流层的水文地质参数:渗透系数 K、导水系数 T、给水度、弹性释水系数∗、导压系数 a、弱透水层渗透系数 K'、越流系数 b、越流因素 B、影响半径 R等。
(2) 通过测定井孔涌水量及其与水位下降(降深)之间的关系,分析确定含水层的富水程度、评价井孔的出水能力。
(3) 为取水工程设计提供所需的水文地质数据,如影响半径、单井出水量、单位出水量、井间干扰出水量、干扰系数等,依据降深和流量选择适宜的水泵型号。
(4) 确定水位下降漏斗的形状、大小及其随时间的增长速度;直接评价水源地的可开采量。
(5) 查明某些手段难以查明的水文地质条件,如确定各含水层间以及与地表水之间的水力联系、边界的性质及简单边界的位置、地下水补给通道、强径流带位置等。
4.1.2 抽水试验分类抽水试验主要分为单孔抽水、多孔抽水、群孔干扰抽水和试验性开采抽水。
(1)单孔抽水试验:仅在一个试验孔中抽水,用以确定涌水量与水位降深的关系,概略取得含水层渗透系数。
(2)多孔抽水试验:在一个主孔内抽水,在其周围设置若干个观测孔观测地下水位。
通过多孔抽水试验可以求得较为确切的水文地质参数和含水层不同方向的渗透性能及边界条件等。
机民井简易抽水试验参数计算机民井简易抽水试验参数计算说明(2005年11月)2005年度共进行机民井简易抽水试验5眼,并进行了有关水文地质参数的计算。
计算方法主要采用非稳定流的抽水数据直线图解法、恢复数据直线图例法、稳定流方法等。
一、抽水数据直线图解法 本次计算理论基础为泰斯公式:()u W TQ S π4=225.2ln 4r at T Q π≈(承压水))(42u W KQ H H S π--=2225.2ln2r atK Q H H π--≈ (潜水)其中:S ——降深; Q ——涌水量;T ——导水系数; K ——渗透系数; H ——初始水位; W (u )——泰斯井函数; u=r 2/4at ;r ——观测点至抽水井距离(抽水井取井半径); a ——压力传导系数(T/μ); μ——给水度(弹性释水系数); t ——抽水时间。
将实测数据投在单对数座标(时间正取对数天度)纸上并作成曲线,此实测数据曲线将在一定的区间上呈线直线,因而可以依据直线的两个要素确定含水层的两个参数。
本次采用S-lgt 曲线。
1、原理当u ≤0.05时,泰斯公式(承压水)可以近似表示为:t TQ r a T Q S lg 183.025.2lg 183.02+=此方程为直线方程此直线的斜率为:TQI 183.0=T QT 183.0=则此直线的截距为S 0 :22025.2lg 25.2lg 183.0raI r T Q S ⋅==则:)(210445.0IS r a ⋅=潜水时⎪⎩⎪⎨⎧⋅==SI r a I Q K 10445.0366.02()[]IS S H SI 02⋅-=maT S μμμ==(m 含水层厚度)2、步骤:①在单对数坐标纸上作S-lgt 曲线(承压水)或(2H-S )·S-lgt 曲线(潜水);②将曲线的直线部分延长,交纵轴坐标得S 。
或[(2H-S )S]。
;③求直线斜I ;④利用上述有关公式求有关参数。
一、前言XXXXX基坑人工挖孔桩施工时,发现桩孔涌水量较大,尤其是施工5#基坑(桩基挖孔桩孔深≥25m)时,涌水量更大,为方便基础施工,业主委托我公司对5#栋基础进行抽水试验,提供单孔涌水量。
二、工程地质条件该工程所在地区的第四系地层为中更新世纪白沙井组双层结构粘性土、卵砾土,基岩为白垩系下统神皇山组泥钙质砂岩、砾岩综合体。
该岩层裂隙发育,由于5#栋为砂岩与砾砂的交界处,具有富水构造的裂隙更发育。
三、试验方法及技术要求3.1试验原理:试验时,抽水孔以设计的流量向外抽水时,在抽水孔影响半径以内会形成一降落漏斗。
通过布置在观测线上的观测孔,在规定时间内观测到水位。
利用稳定流理论,依据裘布依计算完整孔抽水计算公式计算出单孔涌水量。
3.2试验方法:单孔抽水试验采用稳定流抽水试验,抽水试验孔宜采用完整井。
观测孔深应尽量与抽水孔一致。
设置抽水孔1个,设计孔深50m,孔径0.5m,在距抽水孔10m、20m处各设置1个观测孔,孔深45m。
孔径0.2m。
采用100m型专用钻机成孔,专用抽水试验设备进行抽水。
测钟量测水位。
3.3技术要求:(1)动水位的观测:为满足非稳定流抽水试验计算参数的要求,抽水初期动水位观测时间应按1、2、3、4、5、6、7、8、9、10、15、20、25、30min(累计时间)进行观测,以后每隔30min观测一次。
观测孔观测时间与抽水孔性同。
(2)涌水量观测:按稳定流抽,水位流量同时测定,观测时间应为5、10、20、30min(累计时间),以后30分钟观测一次。
(3)试验时间:本次试验时间从2009年3月30日21:00时进行至2009年3月31日21:00结束,试验进行24小时。
四、数据整理4.1现场记录表格见附表。
4.2根据实测的流量与计算的降深绘制Q~S关系曲线见下图。
由图中曲线看出,随降深增大,流量亦增加。
五、结论经过抽水试验得出单孔累计涌水量为61.2T/D,并由此推断该基坑涌水量每天不小于61.2吨。
精品文档第四章抽水试验抽水试验是确定含水层参数,了解水文地质条件的主要方法。
采用主孔抽水、带有多个观测孔的群孔抽水试验,包括非稳定流和稳定流抽水实验,要求观测抽水期间和水位恢复期间的水位、流量、水温、气温等内容。
要求了解试验基地及其所在地区的水文气象、地质地貌及水文地质条件,了解并掌握抽水试验的目的意义、工作程序、现场记录的主要内容、数据采集与处理方法,掌握相关资料的整理、编录方法和要求,了解对抽水试验工作质量进行评价的一般原则,能够利用学过的理论及方法进行水文地质参数计算,并对参数的合理性和精确性进行分析和检验。
§4.1 基本要求掌握抽水试验的目的、分类、方法及抽水试验准备工作。
4.1.1 抽水试验的目的(1) 确定含水层及越流层的水文地质参数:渗透系数K、导水系数T、给水度、弹性释水系数∗、导压系数a、弱透水层渗透系数K'、越流系数b、越流因素B、影响半径R等。
(2) 通过测定井孔涌水量及其与水位下降(降深)之间的关系,分析确定含水层的富水程度、评价井孔的出水能力。
(3) 为取水工程设计提供所需的水文地质数据,如影响半径、单井出水量、单位出水量、井间干扰出水量、干扰系数等,依据降深和流量选择适宜的水泵型号。
(4) 确定水位下降漏斗的形状、大小及其随时间的增长速度;直接评价水源地的可开采量。
(5) 查明某些手段难以查明的水文地质条件,如确定各含水层间以及与地表水之间的水力联系、边界的性质及简单边界的位置、地下水补给通道、强径流带位置等。
4.1.2 抽水试验分类抽水试验主要分为单孔抽水、多孔抽水、群孔干扰抽水和试验性开采抽水。
(1)单孔抽水试验:仅在一个试验孔中抽水,用以确定涌水量与水位降深的关系,概略取得含水层渗透系数。
(2)多孔抽水试验:在一个主孔内抽水,在其周围设置若干个观测孔观测地下水位。
通过多孔抽水试验可以求得较为确切的水文地质参数和含水层不同方向的渗透性能及边界条件等。
原始资料1、根据资料作Q~S 曲线(见图表),呈直线型。
2、利用最小二乘法确定单位涌水量q 值。
∑Q i S in = 37.13 m 3/h.m∑( S i )2i=1ni=1q3、计算最大涌水量根据曲线形状,可将抽水井最大降深延伸至1.5S max ,即S max =1.5ⅹ3.78=5.67 (m),最大涌水量Q max =qS=37.13ⅹ5.67=210.53 (m 3/h)=5052.48 (m 3/d)。
根据开挖深度为16m 左右,地下水位需控制在17 m 左右,降深为13 m ,其涌水量为Q=qS=37.13ⅹ13=482.69 (m 3/h)=11584.56 (m 3/d)。
4、计算K 值根据Q-S 曲线形状,选择带两个观测孔的承压完整井公式计算:其中 Q----涌水量,单位(m 3/d),取3360m 3/d M----含水层厚度,单位(m ),取35mr 1----观测孔r 1距抽水井的距离,单位单位(m ),取10.8m r 2----观测孔r 2距抽水井的距离,单位单位(m ),取46m采用最大涌水量计算K 值5、计算引用影响半径R采用图解法,因为S-lgr 呈直线关系,当r=R 时,S=0。
作S-lgr 关系曲线,该直线在r 轴(对数轴)上截点处的读数目即为R 值,R=179 m ,具体见附图表。
采用公式计算,带两个观测孔的承压完整井公式:Lgr 2/r 1= 55.50 (m 3/d) k Q S 2 = - 0366S 1 . M( ) S 1Lgr 2- S 2Lgr 1 = 176 (m) (S1 - S2)R = Lgr 2/r 1 = 82.90 (m 3/d) k Q max S2 = - 0366S 1 . M( )。
抽水试验资料整理及参数确定方法
摘要
本文主要介绍了抽水试验所需的数据整理与参数确定的方法,包括实
验目的、确定试验样本尺寸、确定试验条件及参数、确定抽水运行曲线和
结果分析等步骤。
首先,针对不同的实验目的,确定不同的试验样本尺寸
及运行条件,在此基础上进行试验;其次,根据试验结果,绘制抽水运行
曲线,以及综合参数及观测数据,确定抽水设备的关键参数;最后,进行
实验数据结果的分析,总结出本次试验的结果,为今后抽水工程的设计和
应用提供参考依据。
关键词:抽水试验数据整理参数确定
1引言
抽水试验是水文地理学研究中的重要内容,用于确定抽水机械(泵)
的关键性能参数。
它既可以作为抽水设备的调试和检修标准,也可以作为
抽水机械指标的基础或参考。
由于抽水试验的结果在抽水设计和应用中具
有重要意义,所以其试验数据必须精确、可靠。
通过本文,介绍抽水试验
数据整理和参数确定的方法,以便为抽水试验提供一个可靠的参考和依据。
2抽水试验原理
抽水试验是由一台抽水机组成的,用于测量抽水机械性能参数的实验
设备。
采用承压转无压完整式大井涌水量解析法公式计算,即:20ln ])2[(r R h M M H K Q --=π (1)式中:Q —大井涌水量,m 3/d ;K —含水层渗透系数,m/d ;H —抽水前大井的水柱高度(从含水层底板到初始静止水位),(m )M —承压含水层厚度,(m )h 0—抽水稳定后大井中的水柱高度(从含水层底板到动水位),(m )r 0—大井的引用半径(基坑的等效半径),(m ); R 0—引用影响半径,R 0=R+r ,其中R —为用抽水试验资料或者经验公式计算出的影响半径,(m ):(1)基坑等效半径的确定r 0引用半径为基坑的假想等效半径,当基坑为矩形或者长条形时,基坑的等效半径可可按下式计算:40ba r +=η, (2) 式中,a ——基坑长度;b ——基坑宽度(m );η为概化系数,η值取值见下表:(基坑工程手册)表1 系数η与b/a 关系表本次降水基坑长度为98m,宽度为3m,这样计算出的r为:r0=1.15×(98+43)/4=40.54m(2)大井法引用影响半径的确定对承压水,当降深一定时,可采用承压水影响半径的经验公式吉哈尔特公式近似计算大井的影响半径:=(3)R10ksR——影响半径,m;s——大井中的水位降深,m;K——渗透系数对于潜水,当降深一定时,可采用下面的经验公式来计算大井的影响半径:=(4)R2sKH其中,H——含水层厚度,m;若采用承压水计算影响半径的公式,则计算出的影响半径为:⨯10⨯sR=433.5m=k=10.17750.5若采用潜水计算影响半径的公式,则计算出的影响半径为:2=20.5⨯==75⨯⨯.s17mR37KH6212.由于本次基坑的降水过称为承压转无压,所以既不能采用承压水的经验公式,也不能采用潜水的经验公式来计算大井的影响半径。
而应该根据实际情况和以往经验综合判定。
结合以往的降水经验,本次采用二者的平均值,即323m。
采用承压转无压完整式大井涌水量解析法公式计算,即:20ln ])2[(r R h M M H K Q --=π (1)式中:Q —大井涌水量,m 3/d ;K —含水层渗透系数,m/d ;H —抽水前大井的水柱高度(从含水层底板到初始静止水位),(m )M —承压含水层厚度,(m )h 0—抽水稳定后大井中的水柱高度(从含水层底板到动水位),(m )r 0—大井的引用半径(基坑的等效半径),(m ); R 0—引用影响半径,R 0=R+r ,其中R —为用抽水试验资料或者经验公式计算出的影响半径,(m ):(1)基坑等效半径的确定r 0引用半径为基坑的假想等效半径,当基坑为矩形或者长条形时,基坑的等效半径可可按下式计算:40ba r +=η, (2) 式中,a ——基坑长度;b ——基坑宽度(m );η为概化系数,η值取值见下表:(基坑工程手册)表1 系数η与b/a 关系表本次降水基坑长度为98m,宽度为3m,这样计算出的r为:r0=1.15×(98+43)/4=40.54m(2)大井法引用影响半径的确定对承压水,当降深一定时,可采用承压水影响半径的经验公式吉哈尔特公式近似计算大井的影响半径:=(3)R10ksR——影响半径,m;s——大井中的水位降深,m;K——渗透系数对于潜水,当降深一定时,可采用下面的经验公式来计算大井的影响半径:=(4)R2sKH其中,H——含水层厚度,m;若采用承压水计算影响半径的公式,则计算出的影响半径为:⨯10⨯sR=433.5m=k=10.17750.5若采用潜水计算影响半径的公式,则计算出的影响半径为:2=20.5⨯==75⨯⨯.s17mR37KH6212.由于本次基坑的降水过称为承压转无压,所以既不能采用承压水的经验公式,也不能采用潜水的经验公式来计算大井的影响半径。
而应该根据实际情况和以往经验综合判定。
结合以往的降水经验,本次采用二者的平均值,即323m。
原始资料
1、根据资料作Q~S 曲线(见图表),呈直线型。
2、利用最小二乘法确定单位涌水量q 值。
∑Q i S i
n = 37.13 m 3/h.m
∑( S i )2
i=1
n
i=1
q
3、计算最大涌水量
根据曲线形状,可将抽水井最大降深延伸至1.5S max ,即S max =1.5ⅹ3.78=5.67 (m),最大涌水量Q max =qS=37.13ⅹ5.67=210.53 (m 3/h)=5052.48 (m 3/d)。
根据开挖深度为16m 左右,地下水位需控制在17 m 左右,降深为13 m ,其涌水量为Q=qS=37.13ⅹ13=482.69 (m 3/h)=11584.56 (m 3/d)。
4、计算K 值
根据Q-S 曲线形状,选择带两个观测孔的承压完整井公式计算:
其中 Q----涌水量,单位(m 3/d),取3360m 3/d M----含水层厚度,单位(m ),取35m
r 1----观测孔r 1距抽水井的距离,单位单位(m ),取10.8m r 2----观测孔r 2距抽水井的距离,单位单位(m ),取46m
采用最大涌水量计算K 值
5、计算引用影响半径R
采用图解法,因为S-lgr 呈直线关系,当r=R 时,S=0。
作S-lgr 关系曲线,该直线在r 轴(对数轴)上截点处的读数目即为R 值,R=179 m ,具体见附图表。
采用公式计算,带两个观测孔的承压完整井公式:
Lgr 2/r 1
= 55.50 (m 3/d) k Q S 2 = - 0366S 1 . M( ) S 1Lgr 2- S 2Lgr 1 = 176 (m) (S1 - S2)
R = Lgr 2/r 1 = 82.90 (m 3/d) k Q max S
2 = - 0366S 1 . M( )。