2019-2020年初二上册数学期末试卷有答案
- 格式:doc
- 大小:122.10 KB
- 文档页数:4
2019-2020学年八年级上期末考试数学试卷一.选择题(共6小题,满分12分,每小题2分)1.(2分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7C.a10D.﹣a102.(2分)下列航空公司的标志中,是轴对称图形的是()A.B.C.D.3.(2分)无论a取何值时,下列分式一定有意义的是()A.B.C.D.4.(2分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形5.(2分)下列计算正确的是()A.5a4•2a=7a5B.(﹣2a2b)2=4a2b2C.2x(x﹣3)=2x2﹣6x D.(a﹣2)(a+3)=a2﹣66.(2分)在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF二.填空题(共8小题,满分24分,每小题3分)7.(3分)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=度.8.(3分)因式分解:4a3b3﹣ab=.9.(3分)请用代数式表示:一个长方形的长为a,宽是长的,则这个长方形的周长是.10.(3分)如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C=度.11.(3分)如果x2﹣mx+81是一个完全平方式,那么m的值为.12.(3分)如果分式的值为9,把式中的x,y同时扩大为原来的3倍,则分式的值是.13.(3分)如图,△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于D,交AB 于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC中点.其中正确的命题序号是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC 于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为。
2019-2020学年八年级数学第一学期期末考试试卷一、选择题(每小题3分,共30分)1、下列四个手机APP 图标中,是轴对称图形的是( )A 、B 、C 、D 、2、下列图形中具有稳定性的是( )A 、正方形B 、长方形C 、等腰三角形D 、平行四边形 3、下列长度的三根木棒能组成三角形的是( )A 、1 ,2 ,4B 、2 ,2 ,4C 、2 ,3 ,4D 、2 ,3 ,6 4、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为( )A 、152×105米B 、1.52×10﹣5米C 、﹣1.52×105米D 、1.52×10﹣4米 5、下列运算正确的是( )A 、(a +1)2=a 2+1B 、a 8÷a 2=a 4C 、3a ·(-a )2=﹣3a 3D 、x 3·x 4=x 7 6、如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A 、AB =2BD B 、AD ⊥BC C 、AD 平分∠BAC D 、∠B =∠C第6题 第8题7、如果(x +m )与(x -4)的乘积中不含x 的一次项,则m 的值为( )A 、4B 、﹣4C 、0D 、18、如图,已知点A 、D 、C 、F 在同一直线上,AB =DE ,AD =CF ,且∠B =∠E =90°,判定△ABC ≌△DEF 的依据是( )A 、SASB 、ASAC 、AASD 、HL 9、分式2mn m +n中的m 、n 的值同时扩大到原来的5倍,则此分式的值( )A 、不变B 、是原来的15 C 、是原来的5倍 D 、是原来的10倍 10、如图,在四边形ABCD 中,∠A +∠D =α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =( )A 、90°-12α B 、12α C 、90°+12α D 、360°-α二、填空题(每小题4分,共24分)11、若分式xx+2有意义,则x的取值范围为。
2019-2020学年度第一学期期末教学质量检测八年级数学试卷一、选择题(共10 个小题,每小题2 分,共20 分)下列各题均有四个选项,其中只有一个是符合题意的.1.若代数式x 1x 1有意义,则x的取值范围是A.x 1且x 1B.x1C.x 1D.x≥-1且x 12.下列各式从左到右的变形正确的是x y x x 1x13x3x2 A.=-1B.=C.= D.()2= x y y y 1x y1y y y23.在实数223π,3,,39,3.14中,无理数有72A.2个B.3个C.4个D.5个4.已知等腰三角形的两边长分别为4和9,则这个三角形的周长是A.22B.19C.17D.17或225.在下列四个图案中,是轴对称图形的是A. B. C. D.6.在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的可能性大小是A.2311B.C.D.55327.下列事件中,属于必然事件的是A.2018年2月19日是我国二十四节气中的“雨水”节气,这一天会下雨B.某班级11名学生中,至少有两名同学的生日在同一个月份C.用长度分别为2cm,3cm,6cm的细木条首尾相连能组成一个三角形D. 从分别写有π,2,0.1010010001(两个1之间依次多一个0)三个数字的卡片中随机抽出一张,卡片上的数字是无理数8.下列运算错误的是A.236B.623C.235D.(2)229.如图,AD是△ABC 的角平分线,DE⊥AB于点E,S=10,DE=2,AB=4,则AC 长是△ABCA.9B.8C.7D.610.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=222=423=8…31=332=933=27…新运算log2=1log4=2log8=3…log3=1log9=2log27=32 2 23 3 3…根据上表规律,某同学写出了三个式子:1①log16=4,②log25=5,③log=﹣1.其中正确的是2A.①②B.①③C.②③D.①②③二、填空题(共10 个小题,每小题2分,共20分)11.25的平方根是.12.计算:( 32)2=.13.若实数x,y满足x 3y 50,则代数式xy2的值是.14.已知:ABC中,AB AC,B A30,则A .15.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.16.边长为10cm的等边三角形的面积是.17.如图,在△ABC中,按以下步骤作图:1①分别以B,C为圆心,以大于BC的同样长为半径画弧,两弧相交于两点M,N;2②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为.MCB D AN(第17 题图)18.已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的可能性大小是系式是.14,则y与x 之间的关2521 1 2a 5a b 4b a 2b 4ab 3a 6b的值为.20.已知: 如图 △,ABC中,ABC 45, H是高 AD和 BE的交点,AD12 ,BC 17,则线段 BH的长为.三、解答题 (共 12 个小题,共 60 分)21.(4 分)51520 10 222.(5 分)计算:5( 515) ( 15 2 3)( 15 2 3)23.(4 分)已知:x y 1,( x 2 y )364,求代数式x y x 2 y2的值.24. (5 分)先化简,再求值:x 25x 3x 2 3x 2 6 x,其中 x 满足 x 2 3x 10 .25.(5 分).已知: 如图,点 B 、A 、D 、E 在同一直线上,BD=AE ,BC ∥E F ,∠C =∠F . 求证:AC =DF .26.(5 分) 解关于 x的方程:3 2 x2x 1 x 1.27.(4 分) 在一个不透明的袋子中装有仅颜色不同的 10 个小球,其中红球 4 个,黑球 6 个.(1)先从袋子中取出 m (m >1)个红球,再从袋子中随机摸出 1 个球,将“摸出黑球”记为事件 A .请 完成下列表格:事件 Am 的值必然事件随机事件(2)先从袋子中取出 m 个红球,再放入 m 个一样的黑球并摇匀,随机摸出 1 个球是黑球的可能性 大小是 ,求 m 的值.28.(5 分) 某服装厂接到一份加工 3000 件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的 1.5 倍,结果提前 10 天完工.原计划每天加工 多少件服装?19.已知 3 ,则代数式29. (5 分) 在ABC中, AB,BC,AC三边的长分别为 5,3 2,17,求这个三角形的面积.小明同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为 1),再在网格中画出格点 ABC 中,(即 ABC 三个顶点都在小正方形的顶点处),如图 1 所示,这样不需 要 ABC 高,借用网格就能计算出它的面积.(1)△ABC 的面积为;(2)如果MNP 三边的长分别为 10 , 2 5 , 26 ,请利用图 2 的正方形网格(每个小正方形的边长为 1)画出相应的格点MNP,并直接写出MNP的面积为.30.(5 分) 已知:如图,在ABC 中, C90.(1)求作: ABC 的角平分线 AD (要求:尺规作图,不写作法,保留作图痕迹); (2)在(1)的条件下,若 AC 6 , BC 8 ,求C D 的长.31.(5 分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这 个分式为“和谐分式”.(1)下列分式: ①(填写序号即可);x 1 a 2b x y a 2 b 2;② ;③ ;④ . 其中是“和谐分式”是x 2 1 a 2 b 2 x 2 y 2 ( a b ) 2(2)若 a 为正整数,且x 1 x 2ax 4为“和谐分式”,请写出 a 的值;(3) 在化简4a 2a b ab 2b 3b 4时,小东和小强分别进行了如下三步变形:小东:原式=4a2a44a24aab2b3b b ab2b3b24a2b24a ab 2b3ab 2b3b2小强:原式=4a2a44a24a4aab b b b b2a b b224aa ba b b2显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单,原因是:请你接着小强的方法完成化简.,32.(6分)已知:如图,D是ABC的边BA延长线上一点,且AD AB,E是边AC上一点,且DE BC.求证:DEA C.23数学试题答案及评分参考一、选择题题号答案1D2A3B4A5C6B7D8C9D10B二、填空题题号11121314151617181920答案5526154075253cm2105y 3x 51213三、解答题21.解:原式=5255=25………………………………………3分(各1 分)…………………………………………4分22.解:原式=553(1512)…………………………………4分(前2分后2 分)=853…………………………………………5 分23解:∵x y 1,(x 2y)364,∴x y 1x2y 4………………………………………………2分(各1 分)解得x 2y 1……………………………………………4分(各1 分)∴x y213x2y222125………………………………………5分24解:原式=(x 2)(x 2)5x 33x(x 2)………………………1分=x293x(x 2)x 2x 3……………………………………………2分x 2=(x 3)(x 3)3x(x 2)x 2x 3……………………………3分=3x29x……………………………………………4分∵∴x23x 10 x23x 1∴原式=3x29x 3(x23x)313……………………5分25.证明:∵BD AE,∴BD AD AE AD.即AB DE.……………………………………………………………… 1 分∵BC∥EF,∴B E.………………………………………………………………2分又∵C F………………………………………………………………3分在ABC和DEF中,B E,C F,AB DE,∴ABC≌DEF.………………………………………………………4分∴AC DF.……………………………………………………………5分26.解:方程两边同乘以(x 1)(x 1),……………………………………………1分3(x 1)2x(x 1)2(x 1)(x 1).……………………………………………2分3x+32x22x 2x22.……………………………………………3分解这个整式方程,得x5.……………………………………………4分检验:当x 5时,(x 1)(x 1)0.…………………………………………5分x5是原方程的解.27.解:(1)事件A必然事件随机事件m的值43,2…………………………………………… 3分(2)依题意,得解得6 m 410 5m 2…………………………………………… 4 分…………………………………………… 5 分所以 m 的值为 228. 解:设该服装厂原计划每天加工 x 件服装,则实际每天加工1.5x 件服装.……………1分 根据题意,列方程得3000 300010x 1.5 x…………………………………3 分 解这个方程得 x 100 …………………………………………4 分 经检验, x 100 是所列方程的根. ………………………………5 分 答:该服装厂原计划每天加工 100 件服装.29. 解: (1)ABC 的面积为 4.5………………………………………… 2 分正确画图………………………………………4 分(2)MNP 的面积为 7………………………………………… 5 分30. 解:(1)如图………………1 分 (2)过点 D 作 DE ⊥AB 于 E .………………2 分∵DE ⊥AB ,∠C =90°∴由题意可知 DE =DC , ∠DEB =90°又∵DE =DC ,AD =AD∴AD -ED =AD -DC∴AE =AC =6 ………………3 分∵A B =10 ∴BE =AC -AE =4 ………………4 分 设 DE =DC =x ,则 BD =8-x∴在 △R t BED 中8x216x 2∴x =3 ………………5 分 ∴CD =3.31. (1)②………………1 分2 2 2 2(2)4,5………………3分(2)小强通分时,利用和谐分式找到了最简公分母.………………4分解:原式4a24a24a ba b b24a ba b b24aa b4ab a b b2………………5分32.证明:过点D作BC的平行线交CA的延长线于点F.………………1 分∴C F.∵点A是BD的中点,∴AD=AB.……………………………2 分在△ADF和△ABC中,C F,DAF BAC,AD AB,∴△ADF≌△ABC.…………………3分∴DF=BC.…………………………… 4 分∵DE=BC,∴DE=DF.∴F DEA.…………………………………………………………5分又∵C F,∴C DEA.……………………………………………………………6分其它证法相应给分。
2019-2020学年八年级上学期期末考试数学试卷一、选择题(3*8=24)1.下列运算结果正确的是( )A.236(2)8a a a = B.325()x x = C.326(2)3xy xy y ÷-=- D.2()x x y x y -=-2.如果把223y x y-中的x 和y 都扩大5倍,那么分式的值( ) A.不变 B.扩大5倍 C.缩小5倍 D.扩大4倍3.下列各式由左边到右边的变形中,是分解因式的是( )A.()a x y ax ay +=+B.244(4)4x x x x -+=-+C.42216(4)(4)x x x -=+-D.21055(21)x x x x -=-4.一个多边形的内角和是720°,则这个多边形的边数是( )A.5B.6C.7D.85.在下列图形中,对称轴最多的是( )A.等腰三角形B.等边三角形C.正方形D.圆6.若二次三项式214x mx ++为完全平方式,则m 的值为( ) A.±2 B.2 C.±1 D.17.将一个四边形截去一个角后,它不可能是( )A.六边形B.五边形C.四边形D.三角形8.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为∆EBD ,那么,有下列说法:①∆EBD 是等腰三角形,EB=ED ;②折叠后∠ABE 和∠CBD 一定相等;③折叠后得到的图形是轴对称图形;④∆EBA 和∆EDC 一定是全等三角形.其中正确的是( )A.①②③B.①③④C.①②④D.①②③④二、填空题(3*6=18)9.分解因式:21a -=.10.若分式2||2x x -+的值为零,则x 的值为. 11.已知P (2a+b,b )与Q (8,-2)关于y 轴对称,则a+b=.12.若3,2a b ab +=-=,则22a b +的值为 .13.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=.14.已知∆ABC 的三条边长分别为3,4,6,在∆ABC 所在平面内画一条直线,将∆ABC 分割成两个三角形,使其中一个是等腰三角形,则这样的直线最多可画条.三、解答题(5*5=25)15.计算:(23)(23)a b a b ---16.如图,点B 、E 、C 、F 在同一条直线上,BE=CF,∠A=∠D,∠1=∠2.求证:AC=DE.17.解分式方程:21324x x =--18.已知等腰三角形一腰上的中线将三角形的周长分成6cm 和15cm 的两部分,求这个三角形的腰和底边的长度.19.先化简:542()11x x x x x ---÷++,再从-1,0,2三个数中任选一个你喜欢的数代入求值.四、解答题(3*6=18)20.如图,(1)画出∆ABC 关于y 轴对称的∆A 1B 1C 1,并写出∆A 1B 1C 1的各顶点坐标;(2)求∆A 1B 1C 1的面积.21.如图,已知∆ABC.(1)用直尺和圆规作出∆ABC的角平分线CD;(不写作法,但保留作图痕迹)(2)过点D画出∆ACD的高DE和∆BCD的高DF;(3)量出DE,DF的长度,你有怎样的发现?并把你的发现用文字语言表达出来.22.证明:如果两个三角形有两条边和其中一边上的中线分别相等,那么这两个三角形全等.五、解答题(7+8=15)23.“成自”高铁自贡仙市段在建设时,甲、乙两个工程队计划参与该项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工30天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过40天,则乙队至少施工多少天才能完成该项工程?24.如图,∆ABC中,AB=BC=AC=12cm,现有两点M,N分别从现有两点M、N分别从点A、点B 同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B 点时,M 、N 同时停止运动.(1)点M 、N 运动几秒后,M 、N 两点重合?(2)点M 、N 运动几秒后,可得到等边三角形△AMN ?(3)当点M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形?如存在,请求出此时M 、N 运动的时间.参考答案一.选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.C ;2.A ;3.D ;4.B ;5.D ;6.C ;7.A ;8.B ;二.填空题(本题有6个小题,每小题3分,共计18分)9.()()11a a +-; 10.2; 11.-5; 12.5; 13.80; 14.7三.解答题(本题有5个小题,每小题5分,共计25分) 15.解:= ..............................................3分 . ............................................5分16.证明:∵BE=CF∴BE+CE=CF+CE既BC=EF ...............................................1分在ABC ∆和DFE ∆中12A D BC FE ∠=∠⎧⎪∠=∠⎨⎪=⎩.........................................4分22)2()3(a b --2249a b -=ABC DFE∆≅∆∴AC=DE ................................5分17.解: ∵ 434222-=-+x x x ...............................2分 ∴ 1x =..................................3分经检验1x = 是原方程的解 .................................4分∴ 原分式方程的解是1x =......................................5分18.解:如图所示,在ABC ∆中,AB AC =,AD BD =设BD x = , BC y =..... .....1分由题意有 6215x y x x +=⎧⎨+=⎩ 解得51x y =⎧⎨=⎩....2分 或 ⎩⎨⎧=+=+6215x x y x 解得213x y =⎧⎨=⎩......3分∵ 三角形任意两边之和大于第三边。
2019—2020学年度上期八年级期末素质测试数学试题参考答案一、选择题1.犃2.犆3.犅4.犃5.犅6.犃7.犅8.犇9.犆10.犇二、填空题11.3-12-113.50或13014.±215.3犮犿16.3717.4三、解答题18.(1)原式=2+2-3-1=0(2)原式=2狓12+狓4·狓8+狓12+狓6·狓6=2狓12+狓12+狓12+狓12=5狓12(3)∵狓2-2狓=7,∴2狓2-4狓=14∴(狓-2)2+(狓+3)(狓-3)=狓2-4狓+4+狓2-9=2狓2-4狓-5=14-5=9(4)原式=(1+12)(1-12)(1+13)(1-13)…(1+1狀)(1-1狀)=(1-12)(1+12)(1-13)(1+13)…(1-1狀)(1+1狀)=12×32×23×43×…×狀-1狀×狀+1狀=狀+12狀19.解:(1)如图所示……………(4分)(2)连结犃犘,∵犃犘平分∠犆犃犅,∴设∠犅=∠犅犃犘=∠犘犃犆=狓°.在犚狋△犃犆犘中,∠犃犘犆=2狓°.则3狓=90,解得狓=30.∴当∠犅=30°时,犃犘平分∠犆犃犅……………(8分)20.解:(1)∵犃犅⊥犅犈,犇犈⊥犅犈,∴∠犅=∠犈=90°,在犚狋△犃犅犆和犚狋△犆犈犇中,犃犆=犆犇.犃犅=犆犈烅烄烆.∴犚狋△犃犅犆≌犚狋△犆犈犇(犎犔).……………(5分)(2)由(1)知犚狋△犃犅犆≌犚狋△犆犈犇.∴∠犃=∠犇犆犈,∴∠犃+∠犃犆犅=90°,∴∠犇犆犈+∠犃犆犅=90°,∴犃犆⊥犆犇.……………(9分)21.解:(1)∵犃犆=10,犆犇=8,犃犇=6∴犆犇2+犃犇2=犃犆2∴△犃犇犆是直角三角形∴犅犇2=犅犆2-犆犇2=152∴犅犇=15……………(6分)(2)∵犃犅=犃犅+犅犇=21由(1)知犆犇是△犃犅犆的高∴犛△犃犅犆=12犃犅·犆犇=84.……………(9分)22.解:(1)∵13÷26%=50,……………(3分)∴本次调查的人数是50人,统计图如图:……………(6分)(2)∵1500×26%=390,∴该校最喜欢篮球运动的学生约390人.……………(9分)(3)只要建议合理即可.……………(11分)23.解:(1)如图1所示:∵△犃犅犇和△犃犆犈都是等边三角形,∴犃犇=犃犅,犃犆=犃犈,∠犅犃犇=∠犆犃犈=60°,∴∠犅犃犇+∠犅犃犆=∠犆犃犈+∠犅犃犆,即∠犆犃犇=∠犈犃犅,在△犆犃犇和△犈犃犅中,∵犃犇=犃犅∠犆犃犇=∠犈犃犅,犃犆=烅烄烆犃犈∴△犆犃犇≌△犈犃犅(犛犃犛),∴犅犈=犆犈;……………(3分)(2)犅犈=犆犇,理由同(1),∵四边形犃犅犉犇和犃犆犌犈均为正方形,∴犃犇=犃犅,犃犆=犃犈,∠犅犃犇=∠犆犃犈=90°,∴∠犆犃犇=∠犈犃犅,∵在△犆犃犇和△犈犃犅中,犃犇=犃犅∠犆犃犇=∠犈犃犅,犃犆=烅烄烆犃犈∴△犆犃犇≌△犈犃犅(犛犃犛),∴犅犈=犆犇;……………(9分)(3)如图3,由(1)、(2)的解题经验可知,过犃作等腰直角△犃犅犇,∠犅犃犇=90°,则犃犇=犃犅=200米,∠犃犅犇=45°,∴犅犇=20米,连接犆犇,犅犇,则由(2)可得犅犈=犆犇,∵∠犃犅犆=45°,∴∠犇犅犆=90°,在犚狋△犇犅犆中,犅犆=200米,犅犇=200米,根据勾股定理得:犆犇==20米),则犅犈=犆犇=20米.故答案为:20……………(12分)。
八年级数学试卷注意:本试卷共8页,三道大题,26小题。
总分120分。
时间120分钟。
题号一二20212223242526总分得分得分评卷人一、选择题(本题共16小题,总分42分。
1-10小题,每题3分;11-16小题,每题2分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确选项的代号填写在下面的表格中)题号12345678910111213141516答案1.点P(﹣1,2)关于y轴的对称点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)∆≅∆,则∠α等于()2. 如图,已知ABC EFGA.72°B.60°C.58°D.50°3.用一条长16cm的细绳围成一个等腰三角形,若其中一边长4cm,则该等腰三角形的腰长为()A.4cm B.6cm C.4cm或6cm D.4cm或8cm 4.在以下四个图案中,是轴对称图形的是()A.B.C.D.5.一个多边形,每一个外角都是45°,则这个多边形的边数是()A.6 B.7 C.8 D.96.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值是()A.﹣2B.2 C.0D.17.若3x=4,3y=6,则3x+y的值是()A.24 B.10 C.3 D.28. “已知∠AOB,求作射线OC,使OC平分∠AOB”的作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD、OE,使OD=OE;③分别以D、E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C.A.①②③B.②①③C.②③①D.③②①9. 下列计算中,正确的是()A.x3•x2=x4B.(x+y)(x﹣y)=x2+y2C.3x3y2÷xy2=3x4D.x(x﹣2)=﹣2x+x210.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy11.在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD等于()A.30°B.45°C.50°D.75°12. 某市政工程队准备修建一条长1200米的污水处理管道。
2019-2020学年人教版八年级上学期期末考试数学试题(本卷共五个大题,满分150分,考试时间 120分钟)一、选择题(每小题4分,共48分)每小题下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后对应的表格中. 1.下列几个图形是国际通用的交通标志,其中是轴对称图形的有( )个A .4B .3C .2D .1 2.若分式11x +有意义,则x 的取值范围是 ( ) A .0x ≠ B .1x =- C .1x ≠ D .1x ≠- 3.下列计算正确的是( )A .8442x x x =+ B .()326x yx y =C .210532xy )xy ()y x (=÷D .()853x x x =-⋅-4.已知点B 、C 、F 、E 共线,12,AF CD ∠=∠=,要使ABF ∆≌DEC ∆,还需补充一个条件,下列选项中不能满足要求的是( )A .AB DE = B .A D ∠=∠C .AB ∥DED .BC EF = 5.等腰三角形的两边分别为3和6,则它的周长等于( ) A.12 B.12或15 C.15或18 D.156.如图,△ABC 中,AB=AC =10,DE 是AB 的中垂线,△BDC 的周长为16,则BC 长为( ) A .5 B .6 C .8 D .107.已知xx mn ==23,,2m n x +=( )A.12B. 108C. 18D. 36 8.下列各式中,不能用平方差公式计算的是( )A.)43)(34(x y y x ---B.)2)(2(2222y x y x +- C.))((a b c c b a +---+ D .))((y x y x -+- 9.方程11161122+=---x x x 的增根为( ) (4题图)A.1B.1和-1C. -1D.010.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是( )A .18B .19C .20D .21 11. 如图,ABC ∆中,A ∠=84°,BD 、CD 分别平分ABC ∠、ACB ∠,M 、N 、Q 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分MBC ∠、BCN ∠,BF 、CF 分别平分EBC ∠、ECQ ∠,则F ∠=( )A.15°B.12°C.18°D.24°12. 初二(1)班为元旦文艺表演者发奖,用一定数量的钱去买奖品.若以1支钢笔和2个笔记本为一份奖品,正好能买60份;若以1支钢笔和3个笔记本为一份奖品,正好能买50份;若以1支钢笔和1个笔记本为一份奖品,则这笔钱能买奖品( )份 A .80 B .70 C .75 D .55二、填空题:(每小题4分,共24分)请将答案填在题后的横线上. 13.利用科学记数法表示:0.0000000135= . 14. 若229a ka ++是一个完全平方式,则k 等于 . 15.分解因式:222(4)16x x +-=___________;16. A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 .17.若关于x 的方程的解是负数,则m 的取值范围是 .18.正方形ABCD 中,E 、F 分别在AD 、DC 上,15ABE CBF ∠=∠=︒,G 是AD 上另一点,且 120BGD ∠=︒,连接EF 、BG 、FG ,EF 、BG交于点H ,则下面结论:①DE DF =;②BEF ∆ 是等边三角形;③45BGF ∠=︒;④BG EG FG =+中. 正确的是 .(请填番号)三、解答题:(每小题7分、共14分)解答时必须给出必要的演算过程或推理步骤. 19.计算:|2|8)31()9()1(3202013--+⨯----π.20.解分式方程:11262213x x=---.HG FE DCBA四、解答题:(21题、22题每小题8分,23、24题每小题10分,共36分)解答时必须给出必要的演算过程或推理步骤.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,ABC ∆的顶点均在格点 (1)作出ABC ∆关于y 轴对称的111A B C ∆;(2) 写出1A 、1B 、1C 三点的坐标,并求111A B C ∆的面积.22.如图,点E 、F 在线段BD 上,AB CD =,B D ∠=∠,BF DE =. 求证:(1)AE CF =; (2)AF //CE .23.先化简,再求值:12)11(222+-+÷---+x x x x x x x x ,其中x 为不等式组⎪⎩⎪⎨⎧≤+≤252322-x x的一个整数解.24.ABC ∆中,AB BC ⊥,AB BC =,E 为BC 上一点,连接AE ,过点C 作CF AE ⊥交AE 的延长线于点F ,连结BF ,过点B 作BG BF ⊥交AE 于G . (1)求证:ABG ∆≌CBF ∆;(2)若E 为BC 中点,求证:CF EF EG +=.五.解答题:(每小题12分,共24分)解答时必须给出必要的演算过程或推理步骤. 25.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款1.8万元,付乙工程队工程款1.3万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案: (方案一)甲队单独完成这项工程,刚好按规定工期完成; (方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三) 若由甲乙两队合作做4天 ,剩下的工程由乙队单独做,也正好按规定工期完工. (1)请你求出完成这项工程的规定时间;来源:学*科*网Z*X*X*K](2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.AC26.长方形ABCD 中,18AB CD cm ==,以AB 为边向上作正ABE ∆,AE 、BE 分别交CD 于F 、G ,5DF cm =,两动点P 、Q 运动速度分别为4scm 、v (scm).(1)AF 的长为 cm ;(2)若点P 从A 出发沿线段AB 向B 运动,同时点Q 从B 出发沿线段BE 向点E 运动,设运 动时间为()t s ,在运动过程中,以A 、F 、P 为顶点的三角形和以P 、B 、Q 为顶点的三 角形全等,求Q 的运动速度v ;(3)若点Q 以(2)中的速度从点B 出发,同时点P 以原来的速度从点A 出发,逆时针沿四边形ABGF 运动.问P 、Q 会不会相遇?若不相遇,说明理由.若相遇,请求出经过多长时间 P 、Q 第一次在四边形ABGF 的何处相遇?AFGEDCBQP八年级数学答案一.选择题(每小题4分,共48分) 1-12 ADDAD BADAC BC 二、填空题:(每小题4分,共24分)13、8-1035.1⨯ 14、3± 15、()()2222-+x x16、9448448=-++x x 17、m <2, 且m ≠0 18、①、②、④ 三、解答题:(每小题7分、共14分)解答时必须给出必要的演算过程或推理步骤. 19.2-291-1-+⨯=原式 ……………………5分 =-10 ……………………7分 20.解:去分母得:1=3x-1+4 ……………………3分X=32-……………………5分 经检验:X=32-是原方程的根 ……………………7分四.解答题:(每小题10分,共40分)解答时必须给出必要的演算过程或推理步骤 21.(1)图略 ……………………2分 (2)()()()112240111,,,,,C B A 三角形111A B C ∆的面积=2…10分22.证明略23.原式=()222)1()1(11-+÷---+x x x x x x x ……………………3分 =)1()1(112+-⨯-+x x x x x ……………………5分 =xx 1- ……………………7分解不等式得:21-≤≤x ,因为分式的分母不能为0,且x 为整数,所以x=2 …………9分 原式=21……………………10分 24.(1)略 ……………………4分(2)证明:过B 做BH ⊥AF 于H∵E 是BC 的中点 ∴BE=EC又∵CF AE ⊥,∴∠CFE=∠BFG ∠CEF=∠BEH ∴△CFE ≌△BEH ;∴EH=EF,BH=CF又由(1)ABG ∆≌CBF ∆;∴BG=BF 又∵BG BF ⊥ ∴△BGF 是等腰直角三角形 ∴∠BGH=45°,又知∠BHG=90°∴∠HBG=45°∴△BHG 是等腰直角三角形 ∴BH=GH又∵GE=GH+HE ∴GH=CF+EF ……………………10分 五.解答题:(每小题12分,共24分)解答时必须给出必要的演算过程或推理步骤.25.(1)设:完成这项工程的规定时间为x 天。
2019--2020学年度八年级数学(上学期)期末综合检测卷姓名分数一、选择题(每小题3分,共30分)1在平面直角坐标系中,点A(1,2)的横坐标乘-1,纵坐标不变,得到点A',则点A与点A'的关系是( )A.关于x轴对称B.将点A向y轴负方向平移2个单位长度得到点A'C.关于y轴对称D.将点A向x轴负方向平移1个单位长度得到点A'2.下列命题为真命题的是()A.五边形的内角和为540°B.证明两个三角形全等的方法有SSS,SAS,ASA,SSA及HL等C.同底数幂相乘,指数不变,底数相加D.分式的分子与分母乘(或除以)同一个整式,分式的值不变3.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为( )A.15°B.17.5C.20°D.22.5°4.8x3y3·(-2xy)3等于()A.0B.-64x6y6C.-16x6y6D.-64x3y55.下列关系式中,正确的是()A.(a+b)2=a2-2ab+b2B.(a-b)2=a2-b2C.(a+b)(-a+b)=b2-a2D.(a+b)(-a-b)=a2-b26.x2y—x—y2y—x化简的结果是A.-x-yB. y-xC.x-yD.x+y7如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC与∠ACB的平分线,且相交于点F,则图中的等腰三角形共有( )A.6个B.7个C.8个D.9个8若m+n=7,mn=12,则m2-mn+n2的值是()A .11 B.13 C.37 D.619.如图,在△ABC中,AB=AC,BC=6,点E,F是中线AD上的两点,且BC边上的高为4,则图中阴影部分的面积是()A.6B.12C.24D.3010.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC 上有一点P,使PD+PE最小,则这个最小值为()A.1B.2C.4D.8二、填空题(每小题3分,共15分)1.分解因式:a3b—ab= .2.如图,∠AOB=40°,CD⊥OA于点D,CE⊥OB于点E,且CD=CE,则∠DOC的度数是.3.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,交BC于点D,BC=16,且DC:DB=3:5,则点D到AB的距离是.4.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是.(要求写三个)5.如图,在△ABC中,∠B=54°,∠ACB=70°,AD平分∠BAC,MGAD于点G,分别交AB、AC 及BC的延长线于E、F、M,则∠BME的读数为.三、解答题(共75分)1.(8分)(1)因式分解:3x3—12x2y+12xy2;(2)计算:x·x3+(—2x2)2+24x6÷(—4x2)2.(9分)先化简,再求值:x2—2xx2—4÷(x—2—2x—4x+2),其中x=53.(9分)解方程:1x+2—4x4—x 2=3x—24.(9分)已知A=3x2—12,B=5x2y3+10xy3,C=(x+1)(x+3)+1,问:多项式A、B、C是否有公因式?若有,请求出其公因式;若没有,请说明理由。
人教版2019-2020学年八年级(上)期末数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)一个三角形的两边长分别是3和7,则第三边长可能是()A.2B.3C.9D.102.(3分)点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)3.(3分)下列运算正确的是()A.a2+a2=a4B.(﹣2a3)2=4a6C.(a﹣2)(a+1)=a2+a﹣2D.(a﹣b)2=a2﹣b24.(3分)如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.5.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对6.(3分)一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A.4B.6C.8D.107.(3分)下列各式从左到右的变形正确的是()A.=B.C.D.8.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2+4x﹣2=x(x+4)﹣2C.x2﹣4=(x+2)(x﹣2)D.x2﹣4+3x=(x+2)(x﹣2)+3x9.(3分)解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3D.2﹣(x+2)=3(x﹣1)10.(3分)已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n11.(3分)已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°12.(3分)“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x人,则所列方程为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)13.(3分)当x时,分式有意义.14.(3分)三角形的三边长分别为5,8,2x+1,则x的取值范围是.15.(3分)化简()的结果是.16.(3分)如果x2+mx+4是一个完全平方式,那么m的值是.17.(3分)如图,已知∠AOB=30°,点P在边OA上,OD=DP=14,点E,F在边OB上,PE=PF.若EF=6,则OF的长为.18.(3分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P、Q是边AC、BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E.设点P、Q运动的时间是t秒(t>0).若点P从A点出发沿AC以每秒3个单位的速度向点C匀速运动,到达点C后立刻以原来的速度沿CA返回到点A停止运动;点Q从点C出发沿CB以每秒1个单位的速度向点B匀速运动,到达点B后停止运动,当t=时,△APD和△QBE全等.三.解答题(共8小题,满分66分)19.(6分)化简:(1);(2).20.(6分)如图,若在象棋盘上建立直角坐标系,使“帥”位于点(﹣2,﹣3),“馬”位于点(1,﹣3),(1)画出所建立的平面直角坐标系;(2)分别写出“兵”和“炮”两点位于你所建立的平面直角坐标系的坐标.21.(8分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.22.(8分)已知点M(2a﹣b,5+a),N(2b﹣1,﹣a+b).(1)若点M、N关于x轴对称,试求a,b的值;(2)若点M、N关于y轴对称,试求(b+2a)2019.23.(8分)如图,已知:点B、F、C、E在一条直线上,∠B=∠E,BF=CE,AC∥DF.求证:△ABC≌△DEF.24.(8分)如图,在Rt△ABC中,∠ACB=Rt∠,∠B=30°,AE是∠BAC的角平分线,CD是AB上的高,请从图中找出一个等边三角形,并说明理由.25.(10分)新世纪广场进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商场又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商场销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商场共赢利多少元?26.(12分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.2.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.3.【解答】解:A.a2+a2=2a2,错误;C.(a﹣2)(a+1)=a2+a﹣2a﹣2=a2﹣a﹣2,错误D.(a﹣b)2=a2﹣2ab+b2,错误故选:B.4.【解答】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选:C.5.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.6.【解答】解:多边形的边数为:360÷45=8.故选:C.7.【解答】解:A、a扩展了10倍,a2没有扩展,故A错误;B、符号变化错误,分子上应为﹣x﹣1,故B错误;C、正确;D、约分后符号有误,应为b﹣a,故D错误.故选:C.8.【解答】解:A、(x+2)(x﹣2)=x2﹣4,是整式的乘法运算,故此选项错误;B、x2+4x﹣2=x(x+4)﹣2,不符合因式分解的定义,故此选项错误;C、x2﹣4=(x+2)(x﹣2),是因式分解,符合题意.D、x2﹣4+3x=(x+2)(x﹣2)+3x,不符合因式分解的定义,故此选项错误;故选:C.9.【解答】解:方程变形得:﹣=3,去分母得:2﹣(x+2)=3(x﹣1),故选:D.10.【解答】解:(a﹣b)2=(a+b)2﹣4ab=m2﹣4n.故选:D.11.【解答】解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.12.【解答】解:设原来参加游览的同学共x人,由题意得﹣=3.故选:D.二.填空题(共6小题,满分18分,每小题3分)13.【解答】解:因为4x+5≠0,所以x≠﹣.故答案为≠.14.【解答】解:根据三角形的三边关系可得:8﹣5<2x+1<5+8,解得:1<x<6.故答案为:1<x<6.15.【解答】解:()==﹣,故答案为:﹣.16.【解答】解:∵x2+mx+4是一个完全平方式,∴m=±4,故答案为:±417.【解答】解:作PM⊥OB于M,如图所示:∵OD=DP=14,∴∠DPO=∠AOB=30°,∴∠PDM=∠FPD+∠AOB=60°,∵PM⊥OB,∴∠DPM=30°,∴DM=PD=7,又∵PE=PF,∴EM=FM=EF=3,∴DF=DM﹣FM=7﹣3=4,∴OF=DF+OD=4+14=18;故答案为:18.18.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∵PD⊥AB,∴∠A+∠APD=90°,∴∠APD=∠B,∴当AP=BQ时,△APD和△QBE全等,当点P从A点出发沿AC向点C运动时,3t=6﹣t,解得,t=1.5(秒),当点P沿CA返回时,8﹣3(t﹣)=6﹣t,解得,t=5(秒),故答案为:1.5秒或5秒.三.解答题(共8小题,满分66分)19.【解答】解:(1)原式==.(2)原式====.20.【解答】解:(1)∵在象棋盘上建立直角坐标系,使“帅”位于点(﹣2,﹣3).“馬”位于点(1,﹣3),可得出原点的位置,即可建立直角坐标系;(2)“兵”和“炮”两点位于你所建立的平面直角坐标系的坐标是:兵(﹣4,0);炮(﹣1,﹣1).21.【解答】解:原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=时,原式=50﹣7=43.22.【解答】解:(1)∵M、N关于x轴对称,∴,解得;(2)∵M、N关于y轴对称,∴,解得,∴(b+2a)2019=1.23.【解答】证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).24.【解答】解:结论:△CEF为等边三角形,理由:在Rt△ACB中,∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵AE平分∠CAB,∴∠CAE=∠CAB=30°,∴∠AEC=90°﹣∠CAE=60°,∵CD⊥AB,∴∠CDB=90°,∴∠BCD=90°﹣∠B=60°∴∠CEF=∠ECF=∠CFE=60°,∴△CEF是等边三角形.25.【解答】解:设商场第一次购进x件衬衫,则第二次购进2x件,根据题意得:.160000=176000﹣8x解这个方程得:x=2000.经检验:x=2000是原方程的根.∴2x=4000商场利润:(2000+4000﹣150)×58+58×0.8×150﹣80000﹣176000=90260(元).答:在这两笔生意中,商场共盈利90260元.26.【解答】(1)证明:∵△ABC和△DBE是等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)证明:延长AD分别交BC和CE于G和F,如图所示:∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,∴∠AFC=∠ABC=90°,∴AD⊥CE.。
2019-2020 学年度第 1 学期期末教学质量检测八年级数学试题完成时间:120 分钟满分:150 分 姓名 成绩一、选择题:(每小题 4 分,共 40 分。
请将唯一正确答案的字母填写在表格内)题号 1 2 3 4 5 6 7 8 9 10选项1.下列图形是轴对称图形的有( )A .1 个B .2 个C .3 个D .4 个2.如图,在折纸活动中,小明制作了一张△ABC 纸片,点 D 、E 分别是边 AB 、AC 上的点, 将△ABC 沿着 DE 折叠压平,A 与 A ′重合,若∠A =70°,则∠1+∠2=( )A .110°B .140°C .220°D .70°8.如图是用 4 个相同的小矩形与 1 个小正方形镶嵌而成的正方形图案,已知该图案的面积为 49,小正方形的面积为 4,若用 x ,y 表示 小矩形的两边长 (x >y ),请观察图案,指出以下关系式中,不正确 的是( )A. x+y=7B. x -y=2C. 4xy+4=49D. x +y =252 3 69.解分式方程 + = 分以下几步,其中错误的一步是( )x +1 x -1 x -1A .方程两边分式的最简公分母是(x -1)(x +1)B .方程两边都乘以(x -1)(x +1),得整式方程 2(x -1)+3(x +1)=6C .解这个整式方程,得 x =1D .原方程的解为 x =110.施工队要铺设一段全长 2000 米的管道,因在中考期间需停工两天,实际每天施工需 比原计划多 50 米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工 x 米,则根据题意所列方程正确的是( )2 000 2 000 2 000 2 000 A. - =2 B. - =2x x +50 x +50 x 2 000 2 000 2 000 2 000 C. - =2 D. - =2x -50 x -50二、填空题:(每小题 4 分,共 20 分) 11.如图,在△ABC 中,∠B =42° △,ABC 的外角∠DAC 和∠ACF 的平分线交于点 E , 则∠AEC = .第 2 题图 第 3 题图 第 4 题图第 5 题图3.如图,已知△ABC ≌△EDF ,点 F ,A ,D 在同一条直线上,AD 是∠BAC 的平分线,∠EDA =20°,∠F =60°,则∠DAC 的度数是( )A .50°B .60°C .100°D .120°4.在正方形网格中,∠AOB 的位置如图所示,到∠AOB 两边距离相等的点应是( ) A .M 点 B .N 点 C .P 点 D .Q 点5.如图,在△ABC 中,AC =4 cm ,线段 AB 的垂直平分线交 AC 于点 N ,△BCN 的周长是 7 cm ,则 BC 的长为( )A .1 cmB .2 cmC .3 cmD .4 cm6.把一张正方形纸片如图①,图②对折两次后,再如图 ③挖去一个三角形小孔,则展开后的图形是( )7.(x -m) =x +nx +36,则 n 的值为( )A .12B .-12C .-6D .±12第 11 题图 第 12 题图 第 13 题图12.如图,在△ABC 和△FED 中,AD =FC ,AB =FE ,当添加条件 时,即可以得到△ABC ≌△FED.(只需填写一个你认为正确的条件)13.如图所示,顶角 A 为 120°的等腰△ABC 中,DE 垂直平分 AB 于 D ,若 DE =2, 则 EC = .14.某种电子元件的面积大约为 0.000 000 69 平方毫米,将 0.000 000 69 这个数用科学记 数法表示为 .x -1 m 15.若关于 x 的方程 = 无解,则 m =.x -5 10-2x三、解答题:(共 90 分)16.(1)计算:5a b ·(-3b) +(-ab)(-6ab) ;(8 分)2 2 2 x x 2 23 2 2(2)先化简(a b -2ab -b )÷b -(a +b)(a -b),然后对式子中 a 、b 分别选择一个自己最喜欢的 数代入求值.(8 分)21.有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期 3 天完成;现在先由甲、乙两队合做 2 天后,剩下的工程再由乙队单独做,也刚好在规 定日期完成,问规定日期多少天?(10 分)(3)解方程:3 2 1+ = .(8 分)x +2 x -4 x -222.如图,已知∠AOB =90°,OM 是∠AOB 的平分线,三角尺的直角顶点 P 在射线 OM 上滑动,两直角边分别与 OA ,OB 交于点 C ,D ,求证:PC =PD. (12 分)1 1 3x +5xy -3y 17.已知 - =5,求y -3xy -x的值.(8 分)18.如图是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形.(6 分)19.如图所示,求∠A +∠B +∠C +∠D +∠E. (8 分)23.(12 分)阅读理解:如图 1,在△ABC 中,若 AB =10,AC =6,求 BC 边上的中线 AD 的取值范围.解决此问题可以用如下方法:延长 AD 到点 E 使 DE =AD ,连接 BE(或 将△ACD 绕着点 D 逆时针旋转 180°得到△EBD),把 AB ,AC ,2AD 集中在△ABE 中.利 用三角形三边的关系即可判断中线 AD 的取值范围是 ;问题解决:如图 2,在△ABC 中,D 是 BC 边上的中点,DE ⊥DF 于点 D ,DE 交 AB 于点 E ,DF 交 AC 于点 F ,连接 EF ,求证 BE +CF >EF.20.如图所示,MP 和 NQ 分别垂直平分 AB 和 AC. (10 分) (1)若△APQ 的周长为 12,求 BC 的长; (2)∠BAC =105°,求∠PAQ 的度数.2 23 2 x y参考答案完成时间:120 分钟 满分:150 分 姓名 成绩 一、选择题:(每小题 4 分,共 40 分。
2019-2020年初二上册数学期末试卷有答案
二、填空题:(每小题3分,共24分)
11. 如果一个三角形的两个内角分别为75o 和30o ,那么这个三角形是 三角形。
12.
36的算术平方根是。
13. 直线y=3x -21与x 轴的交点坐标是 ,与y 轴的交点坐标是。
14. 已知6m =2,6n =3,则63m+2n = 。
15. 方程3x(x+1)=18+x(3x -2)的解是。
16. 已知一个长方形的面积是a 2-b 2(a>b ),其中短边长为a -b ,则长边长是 。
17. 直线y=kx+b 经过点A (-4,0)和y 轴正半轴上的一点B ,如果△ABO (O 为坐标原点)的面积为8,则b 的值为 。
18. 小林暑假去北京,汽车驶上A 地的高速公路后,平均车速是95km/h ,已知A 地直达北京的高速公路全程为760km ,则小林距北京的路程s (km )与在高速公路上行驶的时间t (h )之间的函数关系式为 。
三、解答题:(共34分) 19、计算:(每小题4分,共16分)
(1)(-3x 2y 2)2·(2xy)3÷(xy)2 (2)8(x+2)2-(3x -1)(3x+1)
(3))13(3864
49253
-+-+-
(4))5536()53(453-+--
20、分解因式:(每小题4分,共8分)
(1)(2x -1)(3x -2)-(2x -1)2 (2)4a 2-3b(4a -3b)
21、已知a 2+b 2+4a -2b+5=0,求3a 2+5b 2-4的值。
(5分)
22、已知3a -2的算术平方根是4,2a+b -2的算术平方根是3,求a 、b 的值。
(5分)
四、按要求解答:(每小题6分,共18分)
23、如图,正方形ABCD 关于x 轴、y 点A 、B 、C 、D 的坐标。
24、如图,已知点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB ,垂足分别为D 、E ,求证:OB=OC 。
25、如图,在△ABC 中,AB=AC ,点O 在△ABC 的内部,且∠ABO=∠BCO ,∠BOC=126o ,求∠A 的度数。
A B C D
五、解答:(第26题6分,第27题8分,共14分)
26、如图所示,直线l是一次函数y=kx+b的图象。
(1)求k、b的值;(2)当x=2时,求y的值;(3)当y=4时,求x的值。
27、一根台式弹簧秤的原长为14cm,它能称的质量不超过20kg,并且每增加1kg就缩短1/2cm。
(1)写出放物后的弹簧长度y(cm)与所放物体质量x(kg)之间的函数关系式;
(2)求自变量x的取值范围;(3)当放重物12kg后,求此弹簧的长度;
(3)弹簧长度为6cm时,求此时所放物体的质量。
弹簧的长度能否为2cm?
岳池县2012—2013学年度上期八年级期末考试
数学试卷参考答案及评分意见
二、填空题:(每小题3分,共24分)
11.等腰
12.6
13.(7,0),(0,-21)
14.72
15.x=18/5
16.a+b
17.4
18.S=760-95t
三、解答题:(共34分)
19、计算:(每小题4分,共16分)
(1)原式=9x4y4•8x3y3÷x2y2…………2分=72x7-2y4+3-2
=72x5y5…………2分(2)原式=8(x2+4x+4)-(9x2-1) …………2分=8x2+32x+32-9x2+1
=-x2+32x+33 …………2分(3)原式=5-
8
7
-2+3-3…………2分
=
38
41
- …………2分 (4)原式=5536543453-++-
…………2分 =3252+
…………2分
20、分解因式:(每小题4分,共8分) (1)原式=(2x -1)(3x -2-2x+1)
…………2分 =(2x -1)(x -1)
…………2分 (2)原式=4a 2-12ab+9b 2
…………2分 =(2a -3b)2
…………2分
21、∵a 2+b 2+4a -2b+5=0 ∴(a 2+4a+4)+(b 2-2b+1)=0 即 (a+2)2+(b -1)2=0 …………2分 ∴a+2=0且b -1=0 ∴a= -2且b=1 …………2分 ∴3a 2+5b 2-4=3×(-2)2+5×12-4
=13
…………1分
22、∵16的算术平方根是4 ∴3a-2=16
∵9的算术平方根是3 ∴2a+b -2=9 …………3分 解这二式组成的方程组,可得 a=6,b= -1 …………2分
四、按要求解答:(每小题6分,共18分) 23.设正方形的边长为a 则 a 2=100 ∴ a=10 …………2分 ∴ A (5,5),B (-5,5),C (-5,-5),D (5,-5)
…………4分 24.证明:∵ 点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB ∴ OE=OD ,∠BEO=∠CDO=90o …………2分
在△BEO 和△CDO 中
∵ ⎪⎩
⎪
⎨⎧∠=∠=∠=∠DOC EOB OD OE CDO BEO
∴ △BEO ≌△CDO …………3分 ∴ OB=OC
…………1分
25.设∠AOB=α,∠OBC=β 由题意有α+β+∠BOC=180o ∵ ∠BOC=126o
∴ α+β=180o -126o =54o …………3分
∵ AB=AC
∴ ∠ABC=∠ACB ∴ ∠A+2(α+β)=180o ∠A=180o -2(α+β)
=180o -2×54o =72o
…………3分
注:其它求法仿此给分。
五、解答:(第26题6分,第27题8分,共14分) 26.(1)由图象可知,直线l 过点(1,0)和(0,2/3)
∴ ⎪⎩⎪⎨⎧=+=+32
b 00b k ⇒ ⎪⎪⎩
⎪⎪⎨⎧
=-=32b 32k 即 k=32-
,b=3
2
…………2分
(2)由(1)知,直线l 的解析式为y=32-
x+3
2
当x=2时,有y=32-
×2+32=3
2- …………2分
(3)当y=4时,代入y=32-x+3
2
有
4=32-x+3
2
,解得x= -5
…………2分 27.(1)y=142
1
-x
…………2分 (2)自变量x 的取值范围是 0≤x ≤20 …………2分
(3)当x=12时,代入y=142
1
-x ,得到 y=142
1
-
×12=8 即当放重物12kg 后,此弹簧的长度为8cm …………2分
(4)由y=1421-
x ,当y=6时,有6=142
1-x
解得 x=16
即当弹簧长度为6cm 时,此时所放物体的质量为16kg …………1分
当y=2时,由y=1421-
x ,得2=142
1
-x ,解得x=24 因x=24不在0≤x ≤20范围,故弹簧的长度不能为2cm 。
…………1分。