第十六章二次根式测试题
- 格式:doc
- 大小:141.54 KB
- 文档页数:3
姓名: 班级: 学号: 成绩:一.选择题:(每小题3分,共15分)1.若m -3为二次根式,则m 的取值为 ( )A .m≤3 B.m <3 C .m≥3 D.m >32.以下运算错误的是( )A =B =C .2=D 2=3.下列二次根式中,最简二次根式是 ( )A .23aB .31 C .153 D .143 4.下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x 。
A .2个 B .3个 C .4个 D .5个5、若A =)A 、23a +B 、22(3)a +C 、22(9)a +D 、29a +二、填空题:(每空2分,共22分)6。
当x 时,式子1+x 有意义,当x 时,式子422--x x 有意义;7。
已知:()022=+++y x x ,则=-xy x 2 ; 8. 化简:=24 ;=3a ;=322 ; 9。
比较大小:23-______32-;10。
若x x x x --=--3232成立,则x 满足_____________________; 11. ()=-231 ,()=-25334 ;12. 要切一块面积为64002cm 的正方形大理石地板砖,则它的边长要切成 ㎝; 三.解答题: 13. 3222233--+ 14。
222333---15.⋅-121).2218( 16。
(4(3-16.已知:32-=x ,32+=y ,求代数式22y x +的值;17.有这样一类题目:如果你能找到两个数m 、n,使22m n a +=并且mn =则将a ±变成()2222m n mn m n +±=±(22232212111+=++=++=+==+ 仿照上例化简下列各式:(1)347+ (2)42213-18。
19。
.883x 252的值式或为相反数,求二次根与已知y x y y x -----20。
一、选择题1.是同类二次根式的是( )A B C D 2.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3= 3.下列计算正确的是( )A =±B .=C =D 2=4. )A .1B .2C .3D .45.下列计算正确的是( )A 2=B 1=C .22=D =6.下列计算正确的是( )A . 3B .1122+=C .3=D 37. )A .3BC D8. ) A .1个 B .2个 C .3个D .4个 9.下列各式中,错误的是( )A .2(3=B .3=-C .23=D 3=- 10.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .11.已知三个数2,4如果再添加一个数,使这四个数成比例,则添加的数是( ).A .B .或2C .D .2或12.下列根式是最简二次根式的是( )A B C D 13.下列二次根式中,最简二次根式是( )AB C D14.估计- )A .0到1之间B .1到2之间C .2到3之间D .3到4之间 15.已知a =,b =,则a 与b 的大小关系是( ).A .a b >B .a b <C .a b =D .无法确定二、填空题16.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2=※________.17.计算:2=___________.18.4y =,则y x =________.19.与-a 可以等于___________.(写出一个即可)20.23()a -=______(a≠0),2-=______,1-=______.21.已知1x =,求229x x ++=______.22.=______;23.计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.24.比较大小:“>”、“<”或“=”).25.已知2160x x -=,则x 的值为________.26.20y =,则x y +=________.三、解答题27.先化简,再求值:2232()111x x x x x x +÷---,其中1x =-.28.(1)计算2011(20181978)|242-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 29.计算(1) (2)22)-30.观察,计算,判断:(只填写符号:>,<,=)(1)①当2a =,2b =时,2a b +②当3a =,3b =时,2a b +;③当4a =,1b =时,2a b +④当5a =,3b =时,2a b +(2)写出关于2a b +______探究证明:(提示:20≥)(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为______.。
人教版八年级数学下册第十六章二次根式达标测试卷一、选择题。
1.计算(1524555⎛÷- ⎝的结果为( ) A .7 B .-5 C .5 D .-72.如图,数轴上的点可近似表示6306÷( )A .点AB .点BC .点CD .点D3.已知xy >0,化简二次根式2xy y --) A x B x - C .x - D .x --4.下列式子中,一定属于二次根式的是( ) A .B .C .D .5.下列各式:①,②,③,④中,最简二次根式有( ) A .1个B .2个C .3个D .4个6.实数a ,b 在数轴上的对应点如图所示,化简+|a +b |的结果为( )A .2a ﹣bB .﹣3bC .b ﹣2aD .3b7.实数a 、b 在数轴上的位置如图所示,化简+﹣的结果为( )A .2a+2bB .﹣2aC .﹣2bD .2a ﹣2b8.若0,0mn m n >+<,则化简nmn m÷=( ) A .mB .-mC .nD .-n9.从“+,﹣,×,÷”中选择一种运算符号,填入算式“()□”的“□”中,使其运算结果为有理数,则应选择的运算符号是( ) A .+ B .﹣C .×D .÷10.若a =﹣1,b =+1.则代数式a 3b ﹣ab 3的值是( )A .4B .3C .﹣3D .﹣411.使式子在实数范围内有意义,则实数m 的取值范围是( )A .m ≥1B .m >1C .m ≥1且m ≠3D .m >1且m ≠312.已知实数a 、b 在数轴上的位置如图所示,化简|a+b|-(b −a)2 ,其结果是( )A.-2aB.2aC.2bD.-2b二、填空题。
1.计算 √8−√92 的结果是 .2.已知223y x x =-+-+,则xy 的值为__________.3.若11xxx x =--,则x 的取值范围是______. 4.已知35,35m n =+=-,则22m n mm +-的值为______. 5.已知a ,b 在数轴上位置如图,化简﹣= .6.已知y =1++,则2x +3y 的算术平方根为 .7.已知实数m 满足(2−m)2 +m −4 =m2 ,则m=______.8.已知a <b <0<c ,化简式子:|a+b|+|a ﹣b|﹣|a ﹣c|﹣= .9.对于实数a,b,定义运算“◆”:a◆b=22,(),()a b a bab a b-≥<⎪⎩,例如3◆2,因为3>2,所以3◆22232-5x,y满足方程组2353210x yx y+=⎧⎨+=⎩,则(x◆y)◆x=__.三、解答题。
…○…………○…………内…………○…………装…………○…………订…………○…………线…………○…………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………学校: 班级: 考号 姓名:第十六章二次根式测试题一、选择题(每题3分,共30分) 1.下列各式成立的是( )A.222-=-)(B.552-=-)( C.x =2x D.662=-)(2.如果a 是任意数,下列各式中一定有意义的是( ) A.a B.2a1C.12+aD.2a - 3.下列根式中,最简二次根式是 ( ) A.a 25 B.22b a + C.2aD.5.0 4.计算)2012)(3252(+-的结果是( ) A.32 B.16 C.8 D.45.等式(1)(1)11a a a a +-=+•-成立的条件是( ) A. 1a ≥- B. 1a ≤ C. 1<1a -≤ D. 11a -≤≤6.若x <2,化简x x -+-3)2(2的正确结果是 ( ) A.-1 B.1 C.2x-5 D.5-2x7.若13-m 有意义,则m 能取的最小整数值是 ( ) A.m=0 B.m=1 C.m=2 D.m=38.131x 3+-=+-x xx 成立的条件是( ) A.x ≥-1 B.x ≤3 C.-1≤x ≤3 D.-1<x ≤39.下列各式(1)752=+(2)x x 32x 5=-(3)72542508=+=+ (4)a a a 362733=+ 其中正确的是( )A.(1)和(3)B.(2)和(4)C.(3)和(4)D.(1)和(4)10.实数a ,b 在数轴上的位置如图所示,则化简222)(a b a b ---的结果是( )A.-2bB.-2aC.2(b-a)D.0二、填空题(每题4分,共28分)11.当123x -=时,代数式22x 2++x 的值是12.52-的绝对值是 ,2的倒数是 (填最简二次根式) 13.当x 时,52+x 有意义,若xx-2有意义,则x . 14.化简=⨯04.0225 ,=-22108117 15.=•y xy 82 ,=⨯2712 . 16.比较大小:32 13(填“>”、“=”、“<”) 17.若2(2)2a a -=-,则a 的取值范围是三、解答题(42分)装订线内不许答题 18.计算(1)272833-+- (2)222664÷-)((3)22525522552)())((---+(4)a a aa a 278148a 72+-19.如图,用一个面积为x 的正方形和四个相同的长方形拼成一个面积为8x 的正方形图案,求长方形的周长。
【人教版八年级数学(下)单元测试】第十六章 二次根式单元测试(题数:20道 测试时间:45分钟 总分:100分) 班级:________ 姓名:________ 得分:________一、单选题(每小题3分,共24分) 1.要使式子52xx +有意义,则x 的取值范围是( ) A. 2x ≠B. 2x >-C. 2x <-D. 2x ≠-2.下列二次根式: ()112; ()222; ()233; ()427.能与3合并的是( ) A. ()1和()4B. ()2和()3C. ()1和()2D. ()3和()43.下列各式计算正确的是( ) A.633-= B. 1236⨯= C.3535+= D. 1025÷=4.把45220化成最简二次根式的结果是( ) A.32B.34C.52D. 255.计算(3+2)2018(3–2)2019的结果是( ) A. 2+3B.3–2C. 2–3D.36.若a b +与a -b 互为倒数,则( ) A. a =b -1B. a =b +1C. a +b =1D. a +b =-17.若3,m ,5为三角形三边,化简: ()222-)8m m --(得( ) A. -10B. -2m +6C. -2m -6D. 2m -108.若220x x --=,则()2222313x x xx -+--+的值等于( )A.233B.33C.3D.3或33二、填空题(每小题4分,共28分) 9.当x ________ 时,式子31-x 有意义10.若y =3x -+3x -+2,则x y =____.11.若最简二次根式243a a b -+与a b -是同类根式,则2a b -=__________. 12.当x =2+3时,式子x 2﹣4x +2017=________. 13.已知三角形三边的长分别为27cm,12cm, 48cm ,则它的周长为_____cm.14.如果一个直角三角形的面积为8,其中一条直角边为10,求它的另一条直角边____. 15.如图,将6,3,2,,1按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(15,2)表示的两数之积是 .三、解答题(共48分) 16.(10分)化简: (1)1262⨯ (2)1220-555+17.(8分)计算: ()()()551515231523-++-18.(8分)先化简,再求值:已知82a b ==,,试求144aa b b a +-+的值.19.(10分)已知长方形的长a =1322,宽b =1183. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.20.(12分)(1)已知x =512-,y =512+,求y x x y +的值;(2)已知x ,y 是实数,且满足y <2x -+2x -+14,化简: 244y y -+-(x -2+2)2.参考答案1.B【解析】依题意得:x +2>0,解得x >-2. 故选B . 2.A【解析】(1)12=23;(2)22=2;(3)26=33;(4)2733=. ∴(1)(4)能与3合并, 故选A . 3.B【解析】A 选项中,∵63、不是同类二次根式,不能合并,∴本选项错误; B 选项中,∵123=36=6⨯,∴本选项正确;C 选项中,∵35=35⨯,而不是等于3+5,∴本选项错误;D 选项中,∵10102=52÷≠,∴本选项错误; 故选B. 4.B 【解析】45353.4220225==⨯ 故选B. 5.B【解析】(3+2)2018(3–2)2018(3–2) =[(3+2)(3–2)]2018(3–2) =(-1)2018(3–2) =3–2. 故选B. 6.B【解析】根据倒数的定义得:()()1.a ba b a b +-=-=即 1.a b =+ 故选B.7.D【解析】根据题意,得:2<m <8, ∴2−m <0,m −8<0,∴原式=m −2+m −8=2m −10.故选D. 8.A【解析】∵220x x --=, ∴22x x -=,∴原式=()()()22+23332232+234323==632133+33+3)33-+==-+-(.故选A. 9.x ≥0且x ≠9【解析】由题意得,030≠-≥x x 且,解得.90≠≥x x 且 10.9【解析】根据题意得: 3030,x x ≥-≥⎧⎨⎩- 解得: 3.x =当3x =时, 2,y =239.y x ∴==故答案为: 9. 11.9【解析】∵243a a b -+是最简二次根式, ∴242a -=, ∴3a =3a b a b -=+22b a =- 3b a =-=-,∴()2233639a b -=⨯--=+=. 故答案为:9. 12.2016【解析】把所求的式子化成(x ﹣2)2+2013然后代入式子计算,即可得到:x 2﹣4x +2017=(x ﹣2)2+2013 =(3)2+2013=3+2013=2016. 故答案是:2016.【解析】三角形的周长为: 27124833234393++=++=.故本题应填93. 14.1.610【解析】根据三角形的面积公式可直角求出另一条直角边. 解:设直角三角形的另一直角边为x ,∵一个直角三角形的面积为8,其中一条直角边为10,11082x ∴⋅=, 161610810.5101010x ∴===⨯即它的另一条直角边是810.515.6【解析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m -1排有(m -1)个数,从第一排到(m -1)排共有:1+2+3+4+…+(m -1)个数((1)2m m-),根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.因此可由(5,4)可知是第5排第4个数,是2,然后由(15,2)可知是第15排第2个数,因此可知(1)2m m -=14152⨯=105,所以可得是第105+2个数,因此可知107÷4=26……3,因此这个数为3,这两个数的积为6. 16.(1) 6;(2) 45【解析】 (1)根据二次根式的乘法法则计算分子后化简,再约分即可;(2)把各项化简成最简二次根式后合并即可. 解:(1)原式=236218626.222⨯=== (2)原式=45-5 +5 =45. 17.853-【解析】第一项运用乘法分配律进行计算;第二项运用平方差公式进行计算即可. 解:原式=553-+15-1218.32ab +,42. 【解析】先把二次根式化成最简二次根式,然后合并同类二次根式,再代入求值. 解:1423422a a a ab b a b b b a +-+=+-+=+, 当82a b ==,时, 原式832232422=+=+=. 19.(1)62;(2)长方形的周长大于正方形的周长. 【解析】(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 解:(1) ()1111223218242322326 2.2323a b ⎛⎫⎛⎫+=⨯+=⨯⨯+⨯=⨯=⎪ ⎪⎝⎭⎝⎭∴长方形的周长为6 2. . (2)长方形的面积为:111132184232 4.2323⨯=⨯⨯⨯= 正方形的面积也为4.边长为4 2.= 周长为: 428.⨯=628.>∴长方形的周长大于正方形的周长. 20.(1)3;(2)-y【解析】()1先根据已知条件求出,.x y xy + 再化简所求式子,整体代入即可.()2根据二次根式有意义的条件,可求出x 的值和y 的范围,再结合求出的范围进行化简.解:()15151,,22x y -+== 5, 1.x y xy ∴+==()()22225212 3.1x y xy y x x yx y xy xy-⨯+-++====(2) 由已知,得20{20,x x -≥-≥ 2x ∴= ,1122.44y x x ∴<-+-+= 即14y <, 则20y -<, 原式()()22222222.y y y =---+=--=-。
第16 章单元测试卷班级:姓名:得分:一.选择题(共10小题,每题4分,共40分)1.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.2.下列等式正确的是()A.()2=3 B. =﹣3 C. =3 D.(﹣)2=﹣33.下列运算正确的是()A.a2+a=2a3 B. =a C.(a+1)2=a2+1 D.(a3)2=a6 4. 下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C. D.5.下列二次根式中能与2合并的是()A.B.C. D.6.已知x+y=3+22,x-y=3-22,则x2-y2的值为( ) A.4 2 B.6 C.1 D.3-2 2 7.如果最简二次根式3a-8与17-2a可以合并,那么使4a-2x有意义的x的取值范围是( )A.x≤10 B.x≥10 C.x<10 D.x>10 8.甲、乙两人计算a+1-2a+a2的值,当a=5时得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是( )A.甲、乙都对 B.甲、乙都错C.甲对,乙错 D.甲错,乙对9.若a3+3a2=-a a+3,则a的取值范围是( )A.-3≤a≤0 B.a≤0C.a<0 D.a≥-310.已知一个等腰三角形的两条边长a,b满足|a-23|+b-52=0,则这个三角形的周长为( )A.43+5 2 B.23+5 2C.23+10 2 D.43+52或23+10 2二.填空题(共3小题,每题5分,共20分)11.等式=成立的x的取值范围为12.如图,数轴上点A表示的数为a,化简:a+= .13.与最简二次根式5是同类二次根式,则a= .14. 计算6﹣10的结果是三.解答题(共1小题)15.观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+16.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,求△ABC的面积。
第16章 二次根式一、选择题(每小题2分,共20分)1.有意义,那么x 的取值范围是( ) A.3x ≠ B.3x < C.3x > D.3x ≥2.12a -,那么( ) A.a <12 B.错误!未找到引用源。
≤12 C.a >12D.a ≥123.能够合并,那么a 的值为( )A.2B.3C.4D.54.已知3y =错误!未找到引用源。
, 则2xy 的值为( )A.15-B.15C.152-D.1525..对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是3 6.下列计算正确的是 ( )①69494=-⋅-=--))((;②69494=⋅=--))((;③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个7. 下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:abab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共24分)11.实数范围分解因式:⑴52-x =⑵742-a = (3)2223y x-=12.比较大小;______错误!未找到引用源。
;23-______32-. 13.计算:(1)=-222425 (2)=⋅baa b 182____________;(3)=⋅b a 10253___________.14.已知a ,b 为两个连续的整数,且a b ,则a b -= . 15.若实数y x ,2(0y =,则xy 的值为 .16.已知,a b 为有理数,,m n 分别表示5的整数部分和小数部分, 且21amn bn +=,则2a b += .17.当x___________时,x 31-是二次根式;当a=3时,则=+215a ___________.18.已知:2420-=x ,则221x x +的值是___________;若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.⑴))((36163--⋅-; ⑵63312⋅⋅;⑶521312321⨯÷;⑷)(b a b b a 1223÷⋅.(5)1); (6)20.先化简,再求值:(1)((6)a a a a --,其中12a =(2)111x x ⎛⎫- ⎪+⎝⎭其中x .21. (6分)已知22x y ==+,求下列代数式的值:(1)222x xy y ++ ; (2)22x y -.22.(6分)一个三角形的三边长分别为54 (1)求它的周长(要求结果化简); (2)请你给出一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.23.(4分)已知,a b 为等腰三角形的两条边长,且,a b满足4b ,求此三角形的周长.24.(6分)阅读下面问题:1=;2=. (1的值;(2(n 为正整数)的值; (3⋅⋅⋅25.(8分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:23(1+=,善于思考的小明进行了一下探索:设2(a m ++ (其中,,,a b m n均为正整数),则有2222a m n +=++, ∴ 222,2a m n b mn =+=.这样小明就找到一种把部分a +. 请仿照小明的方法探索并解决下列问题:(1)当,,,a b m n均为正整数时,若2(a m ++,用含有,m n 的式子分别表示a ,b ,得a =______,b =__________. (2)利用所探索的结论,找一组正整数,,,a b m n 填空:.(答案不唯一)(3)若2(a m ++,且,,a m n 均为正整数,求a 的值.。
第十六章《二次根式》单兀测试题14. 选择题(本大题共10小题,每小题2分,共20分)1. 下列式子一定是二次根式的是( )A. . - X - 2B. 、. XC. X 2D.m-1 ----------------------2. 二次根式3 ^2(m 3)的值是( )A. 3.2B. 2,3C.2.2D. 03. 若,3m -1有意义,则m能取的最小整数值是(A. m= 0B. m= 1C. m= 2D. m = 3X_ X24. 若X < 0,则--一的结果是( )XA. 0B. - 2C. 0 或一2D. 2 15.16.17.18.19.20.21.5.下列二次根式中属于最简二次根式的是A.賦B. J48C. £) D. - 4a 46.如果x ・x - 6 = x(x - 6),那么( )A. X - 0B. x_6C. 0_x_6D. x 为一切实数7.小明的作业本上有以下四题:①』16a4 =4a2;②寸5a 汉』10a = 5V2a :③ a l- = ^/a^— = 7a •,④J3a 2a =V a。
\ a \ a做错的题是(A.①)B.②C.③D.④(118.化简•-V5 6的结果是()A.J1B.30、330C.一330D.30 11 30309.若最简二次根式1a与、4-2a的被开方数相冋, 则a的值为()34a 二1 a = TA. a 二B a =_C D.4310.若■■ 75n是整数, 则正整数n的最小值是()A.2B.3C.4 D.5填空题(本大题共10小题,每小题3分,共30分)11. 若J(3—b)2 =3—b,贝V b的取值范围是____________12. 1(2-丿5)2= ____________ 。
13. 若m < 0,贝U m +Pm2 +Vm3 = _______________ 。
1 一一—一—与43^12的关系是______________.3 - . 2;■' 2若x = •. 5 - 3,则i x 6^ 5的值为右一个长方体的长为2、6 cm,宽为.3 cm,咼为2 cm,则它的体积为_____________若y = J x- 3 +』3- x + 4,贝V x十y = ___________ 。
人教版八年级数学下册 第十六章 二次根式 单元测试题时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分) 1.下列的式子一定是二次根式的是( ) A .B .C .D .2.当x 分别取-3,-1,0,2时,使二次根式值为有理数的是( )A . -3B . -1C . 0D . 2 3.实数x 取任何值,下列代数式都有意义的是( ) A . B . C .D .4.式子y =中x 的取值范围是( )A .x ≥0B .x ≥0且x ≠1C . 0≤x <1D .x >1 5.化简得( )A . ±4B . ±2C . 4D . -4 6.下列计算正确的是( ) A . 3×4=12B .=×=(-3)×(-5)=15 C . -3==6 D .==57.计算÷÷的结果是( )A .B .72C .D .8.下列式子中,属于最简二次根式的是( ) A . B .C .D .9.计算-9的结果是( )A .B . -C . -D .10.对于任意的正数m 、n 定义运算※为:m ⊗n =计算(3⊗2)+(8⊗12)的结果为()A .+B. 2C.+3D.-二、填空题(共8小题,每小题3分,共24分)11.在,,,,中是二次根式的个数有________个.12.若实数a满足=2,则a的值为________.13.若二次根式有意义,则x的取值范围是________.14.已知实数a在数轴上的位置如图,则化简|1-a|+的结果为________.15.计算×结果是______________.16.已知x=3,y=4,z=5,那么÷的最后结果是____________.17.若二次根式是最简二次根式,则最小的正整数a=__________.18.设的整数部分为a,小数部分为b,则的值等于________.三、解答题(共8小题,每小题8分,共66分)19.(6分)判断下列各式,哪些是二次根式,哪些不是,为什么?,-,,,(a≥0),.20. (8分)计算(1)(2+)(2-);(2)(-)-(+).21. (8分)先化简,再求值: (a -)(a +)-a (a -6),其中a =+21.22. (8分)已知a ,b 为等腰三角形的两条边长,且a ,b 满足b =++4,求此三角形的周长.23. (8分)若实数a 、b 、c 在数轴上的对应点如图所示,试化简:-+|b +c |+|a -c |.24. (8分)有这样一道题: 计算+-x 2(x >2)的值,其中x =1 005,某同学把“x =1 005”错抄成“x =1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.25. (10分)观察下列各式及其验证过程2=.验证:2=×====;3=.验证:3====.按照上述两个等式及其验证过程的基本思路,猜想4的变形结果并进行验证.26. (10分)在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:==(一)==(二)===-1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====-1.(四)(1)请用不同的方法化简.①参照(三)式得=__________;②参照(四)式得=__________.(2)化简:+++…+答案解析1.【答案】C【解析】A.当x=0时,-x-2<0,无意义,错误;B.当x=-1时,无意义;故本选项错误;C.∵x2+2≥2,∴符合二次根式的定义;正确;D.当x=±1时,x2-2=-1<0,无意义;错误;故选C.2.【答案】D【解析】当x=-3时,=,故此数据不合题意;当x=-1时,=,故此数据不合题意;当x=0时,=,故此数据不合题意;当x=2时,=0,故此数据符合题意;故选D.3.【答案】C【解析】A.由6+2x≥0,得x≥-3,所以,x<-3时二次根式无意义,错误;B.由2-x≥0,得x≤2,所以,x>2时二次根式无意义,错误;C.∵(x-1)2≥0,∴实数x取任何值二次根式都有意义,正确;D.由x+1≥0,得x≥-1,所以,x<-1二次根式无意义,又x=0时分母等于0,无意义,错误.4.【答案】B【解析】要使y=有意义,必须x≥0且x-1≠0,解得x≥0且x≠1,故选B.5.【答案】C【解析】=4.故选C.6.【答案】D【解析】3×4=24,A错误;==3×5=15,B错误;-3=-=-,C错误;==5,D正确.故选D.7.【答案】A【解析】原式==.故选A.8.【答案】A【解析】是最简二次根式,A正确;=3,不是最简二次根式,B不正确;=2,不是最简二次根式,C不正确;被开方数含分母,不是最简二次根式,D不正确,故选A.9.【答案】B【解析】-9=2-9×=2-3=-.故选B.10.【答案】C【解析】(3⊗2)+(8⊗12)=-++=-+2+2=+3.故选C.11.【答案】2【解析】当a<0时,不是二次根式;当a≠0,b<0时,a2b<0,不是二次根式;当x<-1即x+1<0时,不是二次根式;∵x2≥0,∴1+x2>0,∴是二次根式;∵3>0,∴是二次根式.故二次根式有2个.12.【答案】5【解析】平方,得a-1=4.解得a=5.13.【答案】x≥1【解析】根据二次根式有意义的条件,x-1≥0,∴x≥1.14.【答案】1-2a【解析】由数轴可得出:-1<a<0,∴|1-a|+=1-a-a=1-2a.15.【答案】2【解析】原式===2.16.【答案】【解析】当x=3,y=4,z=5时,原式=÷===.17.【答案】2【解析】二次根式是最简二次根式,则最小的正整数a=2.18.【答案】7-12【解析】∵3<<4,∴a=3,b=-3,∴===7-12.19.【答案】解,-,(a≥0),符合二次根式的形式,故是二次根式;,是三次根式,故不是二次根式;,被开方数小于0,无意义,故不是二次根式.【解析】根据形如(a ≥0)的式子是二次根式,可得答案.20.【答案】解 (1)原式=(2)2-()2=20-3 =17; (2)原式=2---=-.【解析】(1)利用平方差公式计算;(2)先把各二次根式化为最简二次根式,然后合并即可. 21.【答案】解原式=a 2-3-a 2+6a =6a -3,当a =+21时,原式=6+3-3=6.【解析】先理由平方差公式,再化简.22.【答案】解 ∵,有意义,∴∴a =3, ∴b =4,当a 为腰时,三角形的周长为3+3+4=10; 当b 为腰时,三角形的周长为4+4+3=11.【解析】根据二次根式有意义:被开方数为非负数可得a 的值,继而得出b 的值,然后代入运算即可.23.【答案】解 根据题意,得a <b <0<c ,且|c |<|b |<|a |, ∴a +b <0,b +c <0,a -c <0,则原式=|a |-|a +b |+|b +c |+|a -c |=-a +a +b -b -c -a +c =-a .【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,合并即可得到结果.24.【答案】解原式=+-x2=+-x2=-x2=-2因为化简结果与x的值无关,所以该同学虽然抄错了x的值,计算结果却是正确的.【解析】将二次根式进行分母有理化,根据题中给出的条件准确计算,计算结果是正确的,因为通过根式化简结果与x的值无关.25.【答案】解4=;理由:4====.【解析】观察上面各式,可发现规律如下规律:n=,按照规律计算即可26.【答案】解(1)===-,===-.(2)原式=+++…+=+…+=.【解析】仿照题中的方法将原式分母有理化即可.。
八年级下册数学《二次根式》单元测试卷评卷人得分一、单选题1x 的取值范围是()A .2x >B .x ≥2C .2x <D .x ≤22有意义,则满足条件的a 的个数为()A .1B .2C .3D .43.下列计算正确的是()A =-3B .2=2C =D .+=4.下列计算正确的是()A =B =C .3-=D .8182+=5.估计8×3的运算结果应在()A .1到2之间B .2到3之间C .3到4之间D .4到5之间6.下列式子中,最简二次根式的是()A B C D .7中,最简二次根式是()A .①②B .③④C .①③D .①④8.若式子2−1−1−2+1有意义,则x 的取值范围是()A .x≥0.5B .x≤0.5C .x=0.5D .以上答案都不对9.算式⨯之值为何?()A .B .C .D .10.把()A .B C .D .-111.下列计算正确的是().A =B .÷==C .()(222557-=-=-D .(((226+=-=-12.设++ S 的最大整数[S]等于()A .98B .99C .100D .101评卷人得分二、填空题13x 的取值范围是__.14.计算:+=_________.15.如果最简二次根式3−3和7−2是同类二次根式,那么a 的值是_____________16-(填“>”、“<”或“=”)17.已知x ,y ﹣2)2=0,则x ﹣y=__________.18.若x=2,则x 2﹣4x+8=_____.评卷人得分三、解答题1920÷.21.计算:1324+-+22.计算:212+23.已知:1x =-,1y =2222x y xy x y +--+的值.24.先简化,再求值:x 25x 32x 6x 3--⎛⎫÷-- ⎪--⎝⎭,其中x 2=.25.若a 、b 都是实数,且12++的值.26.已知:,的值.27.阅读理解材料:把分母中的根号去掉叫做分母有理化,例如:255;1==+等运算都是分母有理化.根据上述材料,(1(2++(3++ 参考答案1.B【解析】【分析】根据二次根式中的被开方数必须是非负数,即可求解.【详解】根据题意得:x-2≥0,解得:x≥2.故选B .【点睛】本题考查的知识点为:二次根式的被开方数是非负数.2.A【解析】试题分析:根据二次根式有意义的条件和偶次方的非负性,可以得,﹣(1﹣a)2≥0,则(1﹣a)2≤0,又(1﹣a)2≥0,可得(1﹣a)2=0,解得,a=1,故选A.考点:二次根式有意义的条件3.B【解析】【分析】将选项中的各式子计算出正确的结果,然后对照即可解答本题.【详解】解:A.∵3=,故A错误;B.22=,故B正确;C.+=,故C错误;不能合并故错误.D.,,D故选B【点睛】本题考查二次根式的性质、混合运算,解题关键是明确二次根式的混合运算的计算方法.4.B【解析】【分析】根据二次根式加减法则即可判定.【详解】A、不是同类项不能合并,故选项错误;B、+=,故选项正确;C、不是同类项不能合并,故选项错误;D、8182+=22+3252=22,故选项错误.故选B.【点睛】此题主要考查二次根式的加减运算,注意只有同类二次根式才能合并.同类二次根式:①根指数是2,②被开方数相同.二次根式的加减运算,只有同类二次根式才能合并.5.C【解析】【分析】先计算出原式=2+3,再进行估算即可.【详解】8×3=22+3=2+3,3的数值在1-2之间,所以2+3的数值在3-4之间.故选C.6.B【解析】试题解析:3=,故该选项错误;是最简二次根式,故该选项正确;=,故该选项错误;3=,故该选项错误.故选B.考点:最简二次根式.7.C【解析】【分析】直接根据最简二次根式的定义求解即可.【详解】不能化简,是最简二次根式;=55,不是最简二次根式;不能化简,是最简二次根式;,不是最简二次根式,故选C.【点睛】本题考查了最简二次根式:满足①被开方数不含分母;②被开方数中不含开得尽方的因数或因式的二次根式叫最简二次根式.8.C【解析】试题解析:要使二次根式有意义,则2−1≥01−2≥0,解得x=12,故选C.考点:二次根式有意义的条件.9.D【解析】【分析】先算括号内乘法,再合并同类二次根式,最后算括号外乘法即可.【详解】原式=),故选D.【点睛】本题考查了二次根式的混合运算的应用,主要考查学生的计算能力,题目比较好,难度适中.10.A【解析】【分析】直接利用二次根式的性质得出a的符号进而化简求出答案.【详解】由题意可知a<0,∴故选A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.11.D【解析】【分析】根据二次根式的运算法则计算各个选项,再判断.【详解】A、被开方数不同,不能相加,错误;B、原式==,错误;C、应利用完全平方公式计算,错误;D、符合平方差公式,正确.故选D.【点睛】本题考查了二次根式的混合运算.12.B【解析】【分析】1111n n=+-+,代入数值,求出=99+1-1100,由此能求出不大于S的最大整数为99.【详解】=()211n nn n++=+=111+1n n-+,∴S==1111111+11122399100-++-+++-=199+1100-=100-1100,∴不大于S的最大整数为99.故选B.【点睛】本题主要考查了二次根式的化简求值,知道1111nn=+-+是解答本题的基础.13.【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,同时结合分式的分母不能为0,即可求x的取值范围.由题意得,解得,故x的取值范围是.考点:本题主要考查了二次根式的意义和性质点评:解答本题的关键是掌握二次根式中的被开方数必须是非负数,分式的分母不能为0,否则二次根式、分式无意义14.2【解析】【分析】利用平方差公式求解,即可求得答案.【详解】=2-)2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.15.2【解析】【分析】根据最简二次根式及同类二次根式的定义列方求解.【详解】解:∵最简二次根式3−3与7−2是同类二次根式,∴3−3=7−2,解得:=2.故答案是:2.【点睛】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.16.<【解析】【分析】根据二次根式的加减,可化简二次根式,根据被开方数越大,算术平方根越大,可得答案.【详解】=,故答案为<.【点睛】本题考查了实数比较大小,先化简,再比较大小.17.-3【解析】【分析】根据非负数的性质得到3020x y y -+⎧⎨-⎩==,再利用代入消元法解方程组得到x 和y 的值,然后计算x-y 的值.【详解】根据题意得3020x y y -+⎧⎨-⎩==,解得12x y -⎧⎨⎩==,所以x-y=-1-2=-3.故答案为-3.【点睛】本题考查了解二元一次方程组:利用加减消元法或代入消元法解二元一次方程组.也考查了非负数的性质.18.14.【解析】根据配方法,原式变形为2x 4x 8-+=(x-2)2+4,代入可得(-2)2+4=10+4=14.故答案为14.19.7【解析】【分析】先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【详解】7==.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后合并同类二次根式,再进行二次根式的乘除运算.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.7【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】,,=7.【点睛】在进行二次根式相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.21.27344--【解析】【分析】先把括号内的各二次根式化为最简二次根式,再去括号,合并同类二次根式即可得解.【详解】1324+-,=1324+-+=233293+2244--,=-44-.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,再进行去括号,然后进行二次根式的加减运算.22.2【解析】原式=43+23-3=63-43=2323.【解析】试题分析:根据x 、y 的值可以求得x-y 的值和xy 的值,从而可以解答本题.试题解析:∵x =1,y =1+,∴x -y =(1)-(1)=-,xy =(1-)(1)=-1,∴x 2+y 2-xy -2x +2y=(x -y)2-2(x -y)+xy=(-)2-2×(-)+(-1)=7+.24.24-【解析】【分析】根据分式混合运算的法则把原式进行化简,再把x 的值代入进行二次根式化简即可.【详解】解:原式=()()()()()()()x 2x 2x 2x 2x 312x 3x 32x 3x 2x 22x 2-+----÷=⋅=-----+-+.当x 2=时,原式=4==-.25【解析】【分析】先由二次根式的非负性可知,1﹣4a=0,求解出a 值后再代入求解b 值,最后将a 和b 的值代入原式进行求解.【详解】解:∵1﹣4a≥0且4a ﹣1≥0,∴1﹣4a=0,解得a=14,则b=12,所以原式22=-=【点睛】本题考查了利用二次根式的非负性求解参数并进行二次根式运算.26.【解析】【分析】先化简a ,b ,最后代值计算.【详解】∵=(2)2=7﹣)2,∴a+b=14,ab=1,∴a 2+4ab+b 2=(a+b)2+2ab=142+2×1=198,.【点睛】=a(a≥0)27.(1;(2﹣1;(3﹣1.【解析】【分析】(1+,即可得出答案;(2)根据分母有理化,可得实数的减法,根据实数的减法运算,可得答案.【详解】(1)==+;(2+1...++1=(3+⋯1...+-+﹣1【点睛】运用了二次根式的分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相等.找出分母的有理化因式是解本题的关键.。
第十六章二次根式测试题
1 / 3
第十六章二次根式测试题
一、选择题(每题3分,共30分) 1.下列各式成立的是( )
A.222-=-)(
B.552
-=-)( C.
x =2x D.662
=-)(
2.如果a 是任意数,下列各式中一定有意义的是( ) A.a B.
2a
1
C.12+a
D.2a - 3.下列根式中,最简二次根式是 ( ) A.a 25 B.22b a + C.
2
a
D.5.0 4.计算)2012)(3252(+-的结果是( ) A.32 B.16 C.8 D.4
5.等式(1)(1)11a a a a +-=+•-成立的条件是( ) A. 1a ≥- B. 1a ≤ C. 1<1a -≤ D. 11a -≤≤
6.若x <2,化简x x -+-3)2(2的正确结果是 ( ) 1 B.1 C.25 D.5-2x
7.若13-m 有意义,则m 能取的最小整数值是 ( ) 0 1 C2 3
8.
1
31
x 3+-=
+-x x
x 成立的条件是( ) ≥-1 ≤3 1≤x ≤3 1<x ≤3
9.下列各式
(1)752=+(2)x x 32x 5=-(3)72542
50
8=+=+ (4)a a a 362733=+ 其中正确的是( )
A.(1)和(3)
B.(2)和(4)
C.(3)和(4)
D.(1)和(4)
10.实数a ,b 在数轴上的位置如图所示,则化简222)(a b a b ---的结果是( )
2b 2a C.2() D.0
二、填空题(每题4分,共28分)
11.当123x -=时,代数式22x 2++x 的值是
12.52-的绝对值是 ,2的倒数是 (填最简二次根式) 13.当x 时,52+x 有意义,若
x
x
-2有意义,则x . 14.化简=⨯04.0225 ,=-22108117 15.=•y xy 82 ,=⨯2712 . 16.比较大小:32 13(填“>”、“=”、“<”) 17.若2(2)2a a -=-,则a 的取值范围是
三、解答题(42分)
第十六章二次根式测试题
2 / 3
18.计算
(1)272833-+- (2)
222664÷-)(
(3)2
2525522552)())((---+
(4)a a a
a a 2781
48a 72+-
19.如图,用一个面积为x 的正方形和四个相同的长方形拼成一个面积为8x 的正方形图案,求长方形的周长。
第十六章二次根式测试题
3 / 3
20.阅读下面问题:
12)12)(12()12(11
21-=-+-⨯=
+;
;23)
23)(23(2
3231-=-+-=
+
34)34)(34(3
43
41-=-+-=
+.
……
试求:(1)6
71+的值; (2)
n
n ++11(n 为正整数)的值.。