全等三角形模型之手拉手模型
- 格式:docx
- 大小:72.36 KB
- 文档页数:5
完整版)全等三角形之手拉手模型
本文将介绍手拉手模型中的全等三角形。
所谓手拉手模型,是指有公共顶点的两个等腰三角形,顶角相等。
因为顶点相连的四条边,形象的可以看作两双手,所以通常称为手拉手模型。
基本模型如下:已知,△ABB'和△ACC'都是等腰三角形,AB=AB',AC=AC',且∠BAB'=∠CAC'。
可以得出三个结论:结论1:△ABC≌△AB'C'(SAS),BC=B'C';结论2:
∠BOB'=∠BAB';结论3:AO平分∠BOC'。
在共顶点的等腰直角三角形中,也可以应用手拉手模型。
例如,如下图所示,△ABC和△ADE是等腰直角三角形,且
∠BAC=∠DAE=90°。
可以证明:⑴BD=CE⑵BD⊥CE。
另外,在共顶点的等边三角形中,也可以使用手拉手模型。
如下图,点A为线段BD上一点,△ABC和△ADE均是等边
三角形。
可以求出:(1)CD=BE;(2)∠DAE+
∠BFD=180°;(3)∠BFA=∠DFA=60°。
总之,手拉手模型在全等三角形的证明中是一个非常有用的工具,能够帮助我们更好地理解和应用三角形的性质。
《三角形证明》题型解读12 全等典型模型:“手拉手”模型【知识梳理】(一)“手拉手模型”的基本图形题型特征:△ABC 与△BDE 是等边三角形,A 、B 、D 三点在同一直线上。
解题方法:一定有以下六个结论(三组全等、一个60°、一个等边△、一组平行线) ①△ABE ≌△CBD证明过程:∵△ABC 与△BDE 是等边三角形,∴∠1=∠2=∠3=60°,∴∠ABE=∠CBD=120°,∵AB=BC ,BE=BD , ∴△ABE ≌△CBD (SAS ) ②△ABH ≌△CBF证明过程:∵△ABE ≌△CBD ,∴∠4=∠5,∵AB=BC ,∠1=∠2,∴△ABH ≌△CBF (SAS ) ③△BHE ≌△BFD证明过程:∵△ABE ≌△CBD ,∴∠6=∠7,∵BE=BD ,∠2=∠3,∴△BHE ≌△BFD (SAS ) ④∠AGC=60°证明过程:∵△ABE ≌△CBD ,∴∠6=∠7,在△GFE 和△BFD 中(“8”字模型),∠3=180°-∠BFD-∠7,∠EGF=180°-∠GFE-∠6,∵∠6=∠7,∠GFE=∠BFD ,∴∠3=∠EGF ,∵∠AGC=∠EGF ,∠3=60°,∴∠AGC=∠3=60° ⑤△BHF 是等边三角形证明过程:∵△BHE ≌△BFD (SAS ),∴BH=BF ,∵∠2=60°,∴△BHF 是等边三角形(有一个角是60°的等腰三角形是等边三角形) ⑥HF//AD证明过程:∵△BHF 是等边三角形,∴∠8=60°,∵∠3=60°,∴∠8=∠3,∴HF//AD (二)“手拉手模型”的变化图形题型特征:△ABC 与△BDE 是等边三角形,A 、B 、D 三点不在同一直线上。
图2M N 765431H GFEDCBA765431HG F ED CBA解题方法:一定有以下三个结论(一组全等,一个60°、一个角平分线) ①△ABE ≌△CBD证明过程:∵△ABC 与△BDE 是等边三角形,∴∠1=∠3=60°,∴∠ABE=∠CBD (共角模型),∵AB=BC ,BE=BD , ∴△ABE ≌△CBD (SAS ) ②∠AGC=60°证明过程:∵△ABE ≌△CBD ,∴∠6=∠7,在△GFE 和△BFD 中(“8”字模型),∠3=180°-∠BFD-∠7,∠EGF=180°-∠GFE-∠6,∵∠6=∠7,∠GFE=∠BFD ,∴∠3=∠EGF ,∵∠AGC=∠EGF ,∠3=60°,∴∠AGC=∠3=60° ③BG 平分∠HBF证明过程:作BM ⊥AE 于点M ,BN ⊥GD 于点N ,如图2,∵△ABE ≌△CBD ,∴∠4=∠5,∵AB=BC ,∠AMB=∠CNB=90°,∴△ABM ≌△CBN (AAS ),∴BM=BN ,∴BG 平分∠HBF (到角两边的距离相等的点,在这个角的角平分线上) (三)常见“手拉手”变化图形【典型例题】例1.如图,C 为线段AE 上一动点(不与A 、E 重合),在AE 同侧分别作等边△ABC 和等 边△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,以下五个结论: ①AD =BE ;②PQ ∥AE ;③CP =CQ ;④BO =OE ;⑤∠AOB =60°,恒成立的结论有( )。
【最新整理,下载后即可编辑】手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180°(3)OA平分∠BOC变形:例1.如图在直线ABC的同一侧作两个等边三角形ABD∆,∆与BCE 连结AE与CD,证明(1)DBC∆ABE∆≅(2)DCAE=(3)AE与DC之间的夹角为︒60(4)DFB≅∆AGB∆(5)CFB≅∆EGB∆(6)BH平分AHC∠(7)ACGF//变式精练1:如图两个等边三角形ABD∆与∆,连结AE与CD,BCE证明(1)DBC∆≅ABE∆(2)DCAE=(3)AE与DC之间的夹角为︒60(4)AE与DC的交点设为H,BH平分AHC∠变式精练2:如图两个等边三角形ABD∆与∆,连结AE与CD,BCE证明(1)DBC∆≅ABE∆(2)DCAE=(3)AE与DC之间的夹角为︒60(4)AE与DC的交点设为H,BH平分AHC∠例2:如图,两个正方形ABCD与DEFG,连结CEAG,,二者相交于点H问:(1)CDE ADG ∆≅∆是否成立?(2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度?(4)HD 是否平分AHE ∠?例3:如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H问:(1)CDE ADG ∆≅∆是否成立?(2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度?(4)HD 是否平分AHE ∠?例4:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD , 问:(1)DBC ABE ∆≅∆是否成立?(2)AE 是否与CD 相等?(3)AE 与CD 之间的夹角为多少度?(4)HB 是否平分AHC ∠?。
专题12.19 三角形全等几何模型-“手拉手”模型(知识讲解)图一图二图三图四图五图六图七手拉手模型的定义:定义:有两个顶角相等而且有公共顶点的等腰三角形开成的图形。
特别说明:其中图一、图二为两个基本图形----等腰三角形,图二至图七为手拉手的基本模型,(左手拉左手,右手拉右手)3、如右图:手拉手模型的重要结论:结论1:∆ABC≅∆A/B/C/(SAS)BC=B/C/(左手拉左手等于右手拉右手)结论2:∠BOB=∠BAB(利用三角形全等及顶角相等的等腰三角形底角相等)结论3:AO平分∠B O C/(利用三角形全等面积相等,再利用角平分线性质定理证明)典型例题讲练:在学习全等三角形知识时、教学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型” 兴趣小组进行了如下操究:(1)如图1、两个等腰三角形△ABC和△ADE中,AB=AC,AE=AD,△BAC=△DAE,连接BD、CE、如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和△ADB 全等的三角形是,此线BD和CE的数量关系是(2)如图2、两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,△BAC=△DAE=90°,连接BD,CE,两线交于点P,请判断线段BD和CE的数量关系和位置关系,并说明理由:(3)如图3,已知△ABC、请完成作图:以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE(等边三角形三条边相等,三个角都等于60°),连接BE,CD,两线交于点P,并直接写出线段BE和CD的数量关系及△PBC+△PCB的度数、【答案】(1)△AEC,BD=CE;(2)BD=CE且BD△CE,理由见解析;(3)作图见解析,BE=CD,△PBC+△PCB=60°.【分析】(1)根据SAS证明两个三角形全等即可证明;(2)通过条件证明△DAB△△EAC(SAS),得到△DBC+△ECB=90°,即可证明BD△CE,从而得到结果;≅即可得到证明;(3)根据已知条件证明DAC BAE解:(1)△AB=AC,AE=AD,△BAC=△DAE,∠+∠=∠+∠,△DAE EAB BAC EAB即DAB EAC ∠=∠,△()△△ADB AEC SAS ≅,△BD=CE ;(2)BD=CE 且BD△CE ;理由如下:因为△DAE=△BAC=90°,如图2.所以△DAE+△BAE=△BAC+△BAE .所以△DAB=△EAC .在△DAB 和△EAC 中,,,.AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩所以△DAB△△EAC (SAS ).所以BD=CE ,△DBA=△ECA .因为△ECA+△ECB+△ABC=90°,所以△DBA+△ECB+△ABC=90°.即△DBC+△ECB=90°.所以△BPC=180°-(△DBC+△ECB )=90°.所以BD△CE .综上所述:BD=CE 且BD△CE .(3)如图3所示,BE=CD ,△PBC+△PCB=60°.由图可知60DAB EAC ∠=∠=︒,AD=AB ,AE=AC ,△+DAB BAC EAC BAC ∠∠=∠+∠,即DAC BAE ∠=∠,△()△DAE △BAE SAS ≅,△BE=CD ,ABE ADC ∠=∠,又△60BDA ∠=︒,△60ADC BDC ABE BDC ∠+∠=∠+∠=︒,△120BPC ABP BDC BDA ∠=∠+∠+∠=︒,△△PBC+△PCB=60°.【点拨】本题主要考查了全等三角形的知识点应用,准确分析图形是解题的关键. 举一反三变式1:如图,AC △BC ,DC △EC ,AC =BC ,DC =EC ,AE 与BD 交于点F .(1)求证:AE =BD ;(2)求△AFD 的度数.【答案】(1)详情见解析;(2)90AFD ∠=︒【分析】(1)利用角的等量代换求出ACE BCD ∠=∠,再判断ACE ≌BCD △即可求解; (2)利用全等三角形的性质得到E D ∠=∠,再通过角的等量代换求解即可.解:(1)△AC BC ⊥,DC EC ⊥△90ACB ECD ∠=∠=︒△ACB BCE ECD BCE ∠+∠=∠+∠△ACE BCD ∠=∠在ACE 和BCD △中AC BC ACE BCD DC EC =⎧⎪∠=∠⎨⎪=⎩△ACE ≌BCD △(SAS)△AE BD =(2)设BD 与CE 的交点为G ,如图所示:△ACE ≌BCD △△E D ∠=∠△180EFG FGE E ++=︒∠∠∠,180GCD CGD D ++=︒∠∠∠,且BGE CGD ∠=∠△90EFG GCD ==︒∠∠△90AFD ∠=︒【点拨】本题主要考查了全等三角形的性质和判定,灵活运用角的等量代换是解题的关键.例题2.已如:如图1,B ,C ,D 三点在一条直线上,△ABC 和△ECD 均为等边三角形,连接BE ,AD 交于点F ,BE 交AC 于点M ,AD 交CE 于点N .(1)以下结论正确的有 ;△AD =BE △△EFD =60° △MC =NC △△AMB =△END(2)探究:将图1中的△ECD 绕点C 顺时针旋转一个角度(旋转角小于60°),如图2所示. △问:(1)中的正确结论哪些还成立?若成立,请说明理由;△连接FC ,如图3所示,求证:FC 平分△BFD【答案】(1)△△△;(2)△ △△;△见解析.【分析】(1)△根据等边三角形的性质得CA =CB ,CD =CE ,△ACB =60°,△DCE =60°,则△ACE =60°,利用“SAS ”可判断△ACD △△BCE ,则AD =BE ;△根据三角形外角关系得△EFD =△EBC +△ADC =△DAC +△ADC =△ACB =60°,从而可得结论; △连接MN ,证明△MCN 是等边三角形即可得出结论;△60,60AMB EBC END NDC ∠=︒+∠∠=︒+∠,而AC ≠CD 得CAD CDA ∠≠∠,从而可得出结论;(2)△方法同(1),逐个结论进行证明即可;△作,CG BE CH AD ⊥⊥于点G ,H ,证明△BGC △△AHC ,△CGF △△CHF 可得△CFG CFH =∠,从而可得结论.解:(1)△△ABC ,△ECD 是等边三角形,△AC=BC ,CE=CD ,△ACB=△ECD=60°△△ACD=△BCE=△120°△△ACD△△BCE△AD=BE ,故△正确;△△FEN=△NDC又△△ENF=△CND△△EFD=△ECD=60°,故△正确;又△△ACE=△NCD=60°△MEC=△NDCEC=CD△△EMC△△DNC△MC=NC ,故△正确;又△△AMB=△ACB+△ECB=60°+△ECB ,△END=△ECD+△NDC=60°+△NDC而AC CD ≠△CAD CDA ∠≠∠△MBC NDC ∠≠∠△MBC END ∠≠∠,故△错误;故答案为:△△△;(2)△△ACB=△ECD=60°△△BCE=△ACD又AC=BC ,CE=CD△△ACD△△BCE△AD=BE,故△正确;△△ADC=△BEC又△ENF=△CND△△EFD=△ECD=60°,故△正确△△ACE≠60°=△ECD△△EMC 不全等于△DNC ,△MC≠NC ,故△错误(3),CG BE CH AD ⊥⊥于点G ,H ,如图,由(2)△知,△CBG=△CAHAC=BC△BGC=△AHC=90°△△BGC△△AHC△CG=CH又CF=CF ,△CGF=△CHF=90°△△CGF△△CHF△△CFG=△CFH△FC 平分△BFD【点拨】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.举一反三变式:如图,在ABC∆中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD交于点O,则AOB∠的度数为()A.100︒B.120︒C.130︒D.150︒【答案】B【分析】先证明△DCB△△ACE,求出△CAE=△CDB,再利用“8字型”证明△AOH=△DCH =60°即可解决问题.解:如图:AC与BD交于点H,△△ACD,△BCE都是等边三角形,△CD=CA,CB=CE,△ACD=△BCE=60°,△△DCB=△ACE,在△DCB和△ACE中,CD CADCB ACECB CE⎧⎪∠∠⎨⎪⎩===,△△DCB△△ACE,△△CAE=△CDB,△△DCH+△CHD+△BDC=180°,△AOH+△AHO+△CAE=180°,△DHC=△OHA,△△AOH=△DCH=60°,△△AOB=180°−△AOH=120°.故选:B.【点拨】本题考查全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形,学会利用“8字型”证明角相等,属于中考常考题型.例题3.(阅读材料)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若△BAC=△DAE,AB=AC,AD=AE,则△ABD△△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:△BD=EC;△△BOC=60°;△△AOE=60°;△EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,△ABC=△BDC=60°,试探究△A与△C的数量关系.【答案】(1)证明见解析;(2)△△△;(3)△A+△C=180°.【分析】(1)利用等式的性质得出△BAD=△CAE,即可得出结论;(2)同(1)的方法判断出△ABD△△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出△BOC=60°,再判断出△BCF△△ACO,得出△AOC=120°,进而得出△AOE=60°,再判断出BF<CF,进而判断出△OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,△DBP=60°,进而判断出△ABD△△CBP(SAS ),即可得出结论.(1)证明:△△BAC=△DAE ,△△BAC+△CAD=△DAE+△CAD , △△BAD=△CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== ,△△ABD△△ACE ;(2)如图2,△△ABC 和△ADE 是等边三角形, △AB=AC ,AD=AE ,△BAC=△DAE=60°, △△BAD=△CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== ,△△ABD△△ACE ,△BD=CE ,△正确,△ADB=△AEC , 记AD 与CE 的交点为G ,△△AGE=△DGO ,△180°-△ADB -△DGO=180°-△AEC -△AGE , △△DOE=△DAE=60°,△△BOC=60°,△正确,在OB上取一点F,使OF=OC,△△OCF是等边三角形,△CF=OC,△OFC=△OCF=60°=△ACB,△△BCF=△ACO,△AB=AC,△△BCF△△ACO(SAS),△△AOC=△BFC=180°-△OFC=120°,△△AOE=180°-△AOC=60°,△正确,连接AF,要使OC=OE,则有OC=12 CE,△BD=CE,△CF=OF=12 BD,△OF=BF+OD,△BF<CF,△△OBC>△BCF,△△OBC+△BCF=△OFC=60°,△△OBC>30°,而没办法判断△OBC大于30度,所以,△不一定正确,即:正确的有△△△,故答案为△△△;(3)如图3,延长DC至P,使DP=DB,△△BDC=60°,△△BDP 是等边三角形,△BD=BP ,△DBP=60°,△△BAC=60°=△DBP ,△△ABD=△CBP ,△AB=CB ,△△ABD△△CBP (SAS ),△△BCP=△A ,△△BCD+△BCP=180°,△△A+△BCD=180°.【点拨】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.举一反三变式:如图,C 为线段AE 上一动点(不与点,A E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形,CDE AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下结论:①AD BE =;①//PQ AE ;①60AOB ∠=︒;①CPQ 是等边三角形,恒成立的是______.【答案】△△△△【分析】△由△ABC 和△CDE 都是等边三角形,可知AC=BC ,CD=CE ,△ACB=△DCE=60°,所以△ACD=△BCE=120°,所以△ACD△△BCE (SAS ),从而AD=BE ,故△正确;△△由△ACD△△BCE 得△CBE=△DAC ,加之AC=BC ,易得△ACB=△BCQ=60°,可证△CQB△△CPA (ASA ),从而CP=CQ ,再加之△PCQ=60°,可推出△PCQ 为等边三角形,易得△PQC=60°=△DCE ,根据内错角相等,两直线平行,可知△△正确;△结合△ACD△△BCE 和三角形的外角的性质,可得△AOB=60°,故△正确.解:△△等边△ABC 和等边△CDE ,△AC=BC ,CD=CE ,△ACB=△DCE=60°,△△ACB+△BCD=△DCE+△BCD ,即△ACD=△BCE ,△在△ACD 与△BCE 中,AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===△△ACD△△BCE (SAS ),△AD=BE ,故△正确;△△△△ACD△△BCE ,△△CBE=△DAC ,△由△ACB=△DCE=60°得△BCD=60°,△△ACP=△BCQ ,又△AC=BC ,△△CQB△△CPA (ASA ),△CP=CQ ,又△△PCQ=60°△△PCQ 为等边三角形,△△PQC=60°,△△PQC=60°=△DCE△PQ△AE故△△正确;△△△ACD△△BCE (SAS ),△△CAD=△CBE ,△△AOB=△CAD+△CEB=△CBE+△CEB ,又△△ACB=△CBE+△CEB=60°,△△AOB=△ACB=60°,故△正确.故答案为:△△△△.【点拨】本题考查了等边三角形的性质、全等三角形的判定与性质、三角形外角的性质,熟练应用三角形全等的判定是解题的关键.。
专题12全等三角形模型之手拉手模型全攻略【模型说明】【例题精讲】例1(等边三角形)如图,已知B C E、、三点共线,分别以BC CE、为边作等边ABC∆和等边CDE∆,连接BD AE、分别与AC CD、交于,M N AE、与BD的交点为F.(1)求证:BD AE=;(2)求AFB∠的度数;(3)连接MN,求证://BCMN【答案】(1)证明见解析(2)60AFB∠=︒(3)证明见解析【分析】(1)根据等边三角形的性质去证明BCD ACE≌,即可得证BD AE=;(2)根据等边三角形的性质得60ABC BAC∠=∠=︒,再根据(1)中BCD ACE≌可得CAE DBE=∠∠,再根据三角形的外角的性质即可求出AFB∠的度数;(3)根据等边三角形的性质去证明BCM ACN△≌△,可得CM CN=,从而求得60CMN ACB==︒∠∠即可得证//MN BC.【详解】(1)∵ABC∆和CDE∆是等边三角形∴,,60AC BC CD CE ACB DCE====︒∠∠∴,BCD ACB ACD ACE DCE ACD=+=+∠∠∠∠∠∠∴BCD ACE∠=∠在△BCD和△ACE中AC BCBCD ACECE BD=⎧⎪∠=∠⎨⎪=⎩∴BCD ACE≌拓展研究:(2)如图③,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,点A 、D 、E 在同一条直线上,CF 为△DCE 中DE 边上的高,连接BE .请求∠AEB 的度数及线段CF 、AE 、BE 之间的数量关系,并说明理由.【答案】(1)证明见解析;∠AEB=60︒;(2)∠AEB=90︒;2AE BE CF =+;理由见解析.【分析】(1)小雪的题目:先利用SAS 证明ADC BEC ≅ ,再利用全等三角形的性质、三角形外角的性质及等量代换即可得证;小华的题目:先利用SAS 证明ADC BEC ≅ ,再利用全等三角形的性质得出ADC BEC ∠∠=,然后根据等边三角形的性质求出60CDE CED ∠=∠=︒,最后根据邻补角的概念和角的和与差即可得出答案;(2)根据题意易证ADC BEC ≅ ,再根据全等三角形的性质及邻补角的概念即可求得∠AEB 的度数;然后根据三线合一即可得出CF DF EF ==,最后根据线段的和与差及等量代换即可得出答案.【详解】(1)小雪的题目:证明:ACB DCE∠=∠ ACD BCE∠∠∴=在ADC △和DCE △中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△CAD CBE∴∠=∠又ACD BCE ∠=∠ ,CDE CAD ACD∠=∠+∠CDE CBE BCE ∴∠=∠+∠;小华的题目:解:ACB DCE∠=∠ ACD BCE∠∠∴=在ADC △和DCE △中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△ADC BEC∠∠∴=CDE 为等边三角形60CDE CED ∴∠=∠=︒又 点A 、D 、E 在同一条直线上120ADC BEC ∴∠=∠=︒60AEB BEC CED ∴∠=∠-∠=︒(2)∠AEB=90︒;2AE BE CF =+;理由如下:△ACB 和△DCE 均为等腰直角三角形,,,9045AC BC CD CE ACB DCE CDE CED ∴==∠=∠=︒∠=∠=︒,,ACB DCB DCE DCB∴∠-∠=∠-∠即ACD BCE∠=∠在ADC △和DCE △中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△,BE AD BEC ADC ∴=∠=∠,点A 、D 、E 在同一直线上18045135ADC ∴∠=︒-︒=︒135BEC ∴∠=︒1354590AEB BEC CED ∴∠=∠-∠=︒-︒=︒90,DCE CD CE CF DE∠=︒=⊥ ,CF DF EF∴==2DE DF EF CF∴=+=2AE AD DE BE CF ∴=+=+.【点睛】本题考查了全等三角形的判定及性质、等腰三角形的性质、等边三角形的性质,熟练掌握性质定理是解题的关键.例4.(拓展)如图,在ABC 中,90C ∠=︒,AC BC =,点O 是AB 中点,90MON ∠=︒,将MON ∠绕点O 旋转,MON ∠的两边分别与射线AC 、CB 交于点D 、E .(1)当MON ∠转动至如图一所示的位置时,连接CO ,求证:COD BOE ≅ ;(2)当MON ∠转动至如图二所示的位置时,线段CD 、CE 、AC 之间有怎样的数量关系?请说明理由.【答案】(1)见解析(2)CE ﹣CD =AC .理由见解析【分析】(1)结论:CD CE AC +=.连接OC .证明()ASA COD BOE ≅ ;(2)结论:CE CD AC -=,证明方法类似(1).【详解】(1)证明:∵AC BC =,90C ∠=︒,AO OB =,∴OC AB ⊥,OC AO OB ==,∴45OCD B ∠=∠=︒,∵90MON COB ∠=∠=︒,∴DOC EOB ∠=∠,在COD △和BOE △中,OCD B OC OB OCD BOE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA COD BOE ≅ .(2)解:CE CD AC -=.理由:连接OC .∵AC BC =,90C ∠=︒,AO OB =,∴OC AB ⊥,OC AO OB ==,∴45OCD B ∠=∠=︒,∴135DOC CBE ∠=∠=︒,∵90MON COB ∠=∠=︒,∴DOC EOB ∠=∠,在COD △和BOE △中,OCD B OC OB OCD BOE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA COD BOE ≅ ,∴CD BE =,∴CE CD CE BE BC AC -=-==.【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.例5.(培优综合)已知,在ABC ∆中,90BAC ︒∠=,45ABC ︒∠=,点D 为直线BC 上一动点(点D 不与点B C ,重合),以AD 为边作正方形ADEF ,连接CF .(1)如图①,当点D 在线段BC 上时,求证CF CD BC +=.(2)如图②,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF BC CD ,,三条线段之间的关系.(3)如图③,当点D 在线段BC 的反向延长线上,且点A ,F 分别在直线BC 的两侧时,其他条件不变,请直接写出CF BC CD ,,三条线段之间的关系.【答案】(1)见解析;(2)CF CD BC -=,见解析;(3)CD CF BC -=,见解析.【分析】(1)△ABC 是等腰直角三角形,利用SAS 即可证明△BAD ≌△CAF ,从而证得CF=BD ,据此即可证得;(2)同(1)相同,利用SAS 即可证得△BAD ≌△CAF ,从而证得BD=CF ,即可得到CF-CD=BC ;(3)同理,证明△BAD ≌△CAF 即可得出结论.【详解】(1)证明:如图1,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC ,∵四边形ADEF 是正方形,∴AD=AF ,∠DAF=90°,∵∠BAD=90°-∠DAC ,∠CAF=90°-∠DAC ,∴∠BAD=∠CAF ,在△BAD 和△CAF 中,AB AC BAD CAF AD AF ⎧⎪∠∠⎨⎪⎩===,∴△BAD ≌△CAF (SAS ),∴BD=CF ,∵BD+CD=BC ,∴CF+CD=BC ;(2)解:CF-CD=BC .理由如下:如图2,∵∠BAD=90°+∠CAD ,∠CAF=90°+∠CAD ,∴∠BAD=∠CAF ,在△BAD 和△CAF 中,AB AC BAD CAF AD AF ⎧⎪∠∠⎨⎪⎩===,∴△BAD ≌△CAF (SAS ),∴BD=CF ,∵BD=BC+CD ,∴CF-CD=BC .【答案】65°【分析】先判断出ACD BCE∆,再判断出≅∆(1)①如图1,求证:ABD ACE ≌△△;②当点D 在BC 边上时,请直接写出ABC ,ACD 所满足的关系;(2)当点D 在BC 的延长线上时,试探究ABC ,ACD ,ACE △的面积(ABC S ,ACD S ,ACE S )所满足的关系,并说明理由.【答案】(1)①证明见解析;②AC ABC C D A E S S S =+ ,理由见解析(2)ACE ABC ACD S S S =+△△△,理由见解析【分析】(1)①先证明BAD CAE ∠=∠,再利用SAS 证ABD ACE ≌△△即可;②利用全等三角形的性质得到ABD ACE S S = ,再由ABC ACD ABD S S S =+△△△即可得到结论;(2)由已知条件可得证出,ABD ACE ≌△△,推出ABD ACE S S = ,再由ABD ABC ACD S S S =+△△△,即可得到ACE ABC ACD S S S =+△△△.【详解】(1)证明:①∵BAC DAE ∠=∠,∴BAC CAD DAE CAD ∠-∠=∠-∠,即BAD CAE ∠=∠.在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩。
全等三角形——手拉手模型-CAL-FENGHAI.-(YICAI)-Company One1手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180°(3)OA平分∠BOC变形:例1.如图在直线ABC的同一侧作两个等边三角形ABD∆,连结AE与∆与BCECD,证明(1)DBC∆≅ABE∆(2)DCAE=(3)AE与DC之间的夹角为︒60(4)DFB≅∆AGB∆(5)CFB≅∆EGB∆(6)BH平分AHC∠(7)ACGF//变式精练1:如图两个等边三角形ABD∆,连结AE与CD,∆与BCE证明(1)DBC∆≅ABE∆(2)DCAE=(3)AE与DC之间的夹角为︒60(4)AE与DC的交点设为H,BH平分AHC∠变式精练2:如图两个等边三角形ABD∆,∆与BCE连结AE与CD,证明(1)DBCABE∆∆≅(2)DCAE=(3)AE与DC之间的夹角为︒60(4)AE与DC的交点设为H,BH平分AHC∠例2:如图,两个正方形ABCD与DEFG,连结AG,,二者相交于点HCE问:(1)CDEADG∆∆是否成立≅(2)AG是否与CE相等(3)AG与CE之间的夹角为多少度(4)HD是否平分AHE∠例3:如图两个等腰直角三角形ADC与AG,,二者相交于点HEDG,连结CE问:(1)CDE∆是否成立ADG∆≅(2)AG是否与CE相等(3)AG与CE之间的夹角为多少度(4)HD是否平分AHE∠例4:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD , 问:(1)DBC ABE ∆≅∆是否成立(2)AE 是否与CD 相等(3)AE 与CD 之间的夹角为多少度(4)HB 是否平分AHC ∠。
重难点04全等三角形中“手拉手”模型【知识梳理】【基本模型】一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;【考点剖析】例1.某校八年级数学兴趣小组的同学在研究三角形时,把两个大小不同的等腰直角三角板按图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC与BE的位置关系.【变式1】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连结AE,BD交于点O,AE与DC 交于点0,AE与DC交于点M,BD与AC交于点N.【变式2】如图,在△AOB和△COD中,OA=OB,OC=OD,若∠AOB=∠COD=60°.(1)求证:AC=BD.(2)求∠APB的度数.【变式3】已知,在△ABC中,AB=AC,点P平面内一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,⑴若点P在△ABC内部,求证BQ=CP;⑵若点P在△ABC外部,以上结论还成立吗?【变式4】(2023•定西模拟)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM 为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.【变式5】阅读与理解:如图1,等边△BDE按如图所示方式设置.操作与证明:(1)操作:固定等边△ABC,将△BDE绕点B按逆时针方向旋转120°,连接AD,CE,如图2;在图2中,请直接写出线段CE与AD之间具有怎样的大小关系.(2)操作:若将图1中的△BDE,绕点B按逆时针方向旋转任意一个角度α(60°<α<180°),连接AD,CE,AD与CE相交于点M,连BM,如图3;在图3中线段CE与AD之间具有怎样的大小关系?∠EMD的度数是多少?证明你的结论.猜想与发现:(3)根据上面的操作过程,请你猜想在旋转过程中,∠DMB的度数大小是否会随着变化而变化?请证明你的结论.【过关检测】一.选择题(共1小题)1.(2021秋•普陀区期末)如图,AB=3,AC=,连结BC,分别以AC、BC为直角边作等腰Rt△ACD 和等腰Rt△BCE,连结AE、BD,当AE最长时,BC的长为()A.2B.3C.D.二.填空题(共3小题)2.(2022秋•椒江区校级月考)如图,△ADB≌△ECB,且点A的对应点是点E,点D的对应点是点C,若∠CBD=40°,BD⊥EC,则∠D的度数为.3.(2022秋•上城区校级期中)如图,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点O,连接CO并延长交AB于点F,延长AD至点G,若GE平分∠DGC,CE平分∠DCH,则下列结论:①∠ABE=∠ACF;②∠GEB=45°;③EO=EC;④AE﹣CE=BF;⑤AG﹣CG=BC,其中正确的结论有(写序号).4.(2020秋•金东区校级月考)等边三角形ABC和等边三角形ADE的位置如图所示,若∠1=25°,则∠2的度数为.三.解答题(共13小题)5.(2021秋•临海市月考)如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:AE=CD;(2)证明:∠1=∠3.6.如图1,△ABC、△DCE均为等边三角形,当B、C、E三点在同一条直线上时,连接BD、AE交于点F,易证:△ACE≌△BCD.聪明的小明将△DCE绕点C旋转的过程中发现了一些不变的结论,让我们一起开启小明的探索之旅!(探究一)如图2,当B、C、E三点不在同一条直线上时,小明发现∠BFE的大小没有发生变化,请你帮他求出∠BFE的度数.(探究二)阅读材料:在平时的练习中,我们曾探究得到这样一个正确的结论:两个全等三角形的对应边上的高相等.例如:如图3,如果△ABC≌△A′B′C′,AD、A′D′分别是△ABC、△A′B′C′的边BC、B′C′上的高,那么容易证明AD=A′D′.小明带着这样的思考又有了新的发现:如图4,若连接CF,则CF平分∠BFE,请你帮他说明理由.(探究三)在探究二的基础上,小明又进一步研究发现,线段AF、BF、CF之间还存在一定的数量关系,请你写出它们之间的关系,并说明理由.7.(2021秋•北仑区期末)如图,已知AB∥EF,∠A=∠E,BD=CF,试证明:AC∥DE.8.(2021秋•鹿城区校级期中)已知:如图,点B,E,F,C在同一条直线上,AB=DC,∠B=∠C,BE=CF.(1)求证:△ABF≌△DCE.(2)若∠AGE=70°,求∠AFE的度数.9.(2020秋•开化县期末)如图,△ABC和△ADE是正三角形,点D在BC边上,连结CE.(1)证明:△BAD≌△CAE;(2)当AB=4,BD:CD=3:1时,求CE的长.10.(2021秋•余杭区月考)在△ABC中,AB=AC,D是射线BC上一点,点E在AD的右侧,线段AE=AD,且∠DAE=∠BAC,连结CE.(1)如图1,点D在线段BC上,求证:∠BAC+∠DCE=180°.(2)如图2,点D在线段BC延长线上,判断∠BAC与∠DCE的数量关系并说明理由.11.如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数;(3)如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.12.(2020秋•萧山区期末)如图,在△AOB和△COD中,OA=OB,OC=OD,若∠AOB=∠COD=60°.(1)求证:AC=BD.(2)求∠APB的度数.13.(2021秋•东阳市期末)以△ABC的AB,AC为边作△ABD和△ACE,且AD=AB,AE=AC,∠DAB=∠CAE=α.CD与BE相交于O,连结AO,如图①所示.(1)求证:BE=CD;(2)判断∠AOD与∠AOE的大小,并说明理由.(3)在EB上取点F,使EF=OC,如图②,请直接写出∠AFO与α的数量关系.14.(2021秋•武义县期末)如图1,在△ABC中,AB=AC,点D为直线BC上一动点(不与点B,C重合),在AD的左侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接BE.(1)当点D在线段BC上时,求证:△ABE≌△ACD.(2)如图2,若BE∥AC,BC=2.①求△ABC的面积.②在点D在运动过程中,若△ABE的最小角为25°,求∠EAC的度数.15.(2021秋•定海区期末)(1)如图1,在Rt△ABC中,AB=AC,D是直线BC上的一点,将线段AD绕点A逆时针旋转90°至AE,连接CE,求证:△ABD≌△ACE;(2)如图2,A是△BDC内一点,∠ABC=∠ADB=45°,∠BAC=90°,BD=6,线段AD绕点A逆时针旋转90°至AE,点D、E、B恰好共线,求△BDC的面积;(3)如图3,在图1的条件下,延长DE,AC交于点G,BF⊥AB交DE于点F,求证:FG=AE.16.(2022秋•义乌市校级月考)在△ABC中,AB=AC,点,D是直线BC上一点(不与B、C重合),以AD 为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;(2)设∠BAC=α,∠BCE=β.①找出图2中的一对全等三角形:,并写出其全等的依据:;②如图2,当点D在线段BC上移动,请直接写出α,β之间的数量关系;②当点D在线段BC或CB的延长线上时,请直接写出α,β之间的数量关系.17.已知△ABC和△DEC都是等腰直角三角形,且∠ACB=∠DCE=90°.(1)如图1,点D在△ABC内,求证:AD⊥BE;(2)如图2,A,D,E三点在同一条直线上,若AB=13,DE=10,求△ACD的面积;(3)如图3,若AB=9,点D在边AB上运动,求△BDE周长的最小值.。
全等三角形之手拉手模型倍长中线截长补短法手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:△ ≌△ ∠α+∠=° OA平分∠ 变形:例1如图在直线的同一侧作两个等边三角形与,连结AE与CD,证明(2)AE DC(3)AE与DC之间的夹角为60 (4) (5) (6)BH平分 (7)GF//AC 1变式精练1:如图两个等边三角形与,连结AE与CD,证明 AE DCAE与DC之间的夹角为60AE与DC的交点设为HBH平分变式精练2:如图两个等边三角形与,连结AE与CD,证明 (2)AE DC(3)AE与DC之间的夹角为60(4)AE与DC的交点设为HBH平分例2:如图,两个正方形与连结AGCE二者相交于点H问:是否成立? AG是否与CE相等?AG与CE之间的夹角为多少度? HD是否平分?例3:如图两个等腰直角三角形与,连结AGCE二者相交于点H问:是否成立? AG是否与CE相等?AG与CE之间的夹角为多少度? HD是否平分?2例4:两个等腰三角形与,其中AB BDCB EB连结AE与CD,问:是否成立? AE是否与CD相等?AE与CD之间的夹角为多少度? HB是否平分?倍长与中点有关的线段倍长中线类☞考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的1已知:中,是中线.求证:(AB AC).2ABMC在△中,AB5,AC9,则BC边上的中线AD的长的取值范围是什么?如图所示,在的AB边上取两点E、F,使AE BF,连接CE、CF,求证:AC BC EC FC.如图,已知在中,AD是BC边上的中线,E是AD上一点,延长交AC于F,AF EF,求证:AC.3AFEBD如图,已知在中,AD是BC边上的中线,E是AD上一点,且AC,延长交AC于F,求证:AF EFCDEABCF如图,在中,AD交BC于点D,点E是BC中点,EF∥AD交CA的延长线于点F,交AB 于点G,若BG CF,求证:AD为的角平分线.CDAGBE如图所示,已知中,AD平分,E、F分别在BD、AD上.DE CD,EF AC.求证:EF∥ABAF已知为的中线,,的平分线分别交AB于E、交AC于F.求证:CF EF.CFMAEB在Rt中,F是斜边AB的中点,D、E分别在边CA、CB上,满足90.若AD3,4,则线段DE的长度为_________.4ADFCEB在中,点D为BC的中点,点M、N分别为AB、AC上的点,且MD ND.若A90,以线段BM、MN、CN为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?1如果BM2CN2DM2DN2,求证AD2AB2AC2.4AMBNDC如图所示,在中,AB AC,延长AB到D,使BD AB,E为AB的中点,连接CE、CD,求证CD2EC.AEBCD已知中,AB AC,BD为AB的延长线,且BD AB,CE为的AB边上的中线.求证:CD2CECAEBD★全等之截长补短:人教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用而“截长补短法”又是解决这一类问题的一种特殊方1 如图所示,中,C90B45,AD平分交BC于D求证:AB=AC+CD5ACDB如图所示,在中,B60,的角平分线AD、CE相交于点O求证:AE+CD=ACAEOBDC2 如图所示,已知12,P为BN上一点,且PD BC于D,AB+BC=2BD,求证:MAB12PNCDC3 如图所示,在Rt中,AB=AC,90,,CE垂直于BD的延长线于E求证:BD=2CE5如图所示,在中,90,AD为的平分线,C=30,AD于E点,求证:AC-AB=26AEDCBAEBD。
手拉手模型(一)l手拉手模型特点:两个等腰三角形;共顶点;顶角相等1、如图,等边△ACD和等边△BCE,链接AE,BD,相交于G,AE与CD相交于M,BD 与CE相交于N。
我结论1:∠DCE=60°(等边三角形性质)结论2:△ACE≅△DCB (证明AC=DC, ∠ACE=∠DCB;EC=BC; SAS)结论3:∠CAE=∠CDB (AE=DB)结论4:∠DGM=∠ACM=60°(8字模型);∠AGB=120°结论5:△ACM≅△DCM(∠CAE=∠DCB,AC=DC, ∠ACM=∠DCN—ASA)结论6:CM=CN(△CMN等边三角,内错角相等,MN平行与AB)结论7:△AME≅△CNB(ASA)结论8:CM=CN结论9:GC平分∠AGB(角平分线的判断)结论10:GA=GC+GD拓展1△ABE 和△ACF 均为等边三角形 结论1:△ABF ≅△AEC结论2:∠BOE=∠BAE=60°结论3:OA 平分∠EOF (四点共圆证明)拓展2△ABD 和△ACE 均为等腰直角三角形 结论1:BE=CD结论2:BE 垂直于CD拓展3四边形ABEF 和四边形ACHD 均为正方形 结论1:BD=CF结论2:BD 垂直于CF例题:已知:如图,点C 是线段AB 上的动点(C 点于A. B 不重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 于CD 相交于点M ,BD 与CE 相交于点N.①△≌△ACE DCB;②∥MN AB;③△CMN 是等边三角形;④若AB 的长为10cm,当点C 在线段AB 上移动时,则线段MN 的最大长度为2.5cm;⑤MN2=EN⋅DM ; 其中结论正确的为:例题:(1) 如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM 和△CBN,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由。
第九讲初识手拉手全等(一)知识体系:定义:所谓手拉手全等,即有公共顶角顶点的两个等腰三角形,顶角相等,顺次连接两底角顶点所形成的两个三角形全等.基本图形:如下图,△ABC和△ADE有公共顶点,AB=AC,AD=AE,∠BAC=∠DAE,连接BD、CE,则△ABD≌△ACE.图形变式:如图1、2,等腰直角△AB C和等腰直角△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,则△ABD≌△ACE.如图3、4,等边△AB C和等边△ADE,AB=AC,AD=AE,∠BAC=∠DAE=60°,则△ABD≌△ACE.进阶探究:如图,△ABC和△ADE有公共顶点,AB=AC,AD=AE,∠BAC=∠DAE,连接BD、CE交于点O,连接AO.则:①∠BOC=∠DOE=∠BAC;②AO平分∠BOE.思考:在上图1、2、3、4中,上述结论还成立吗?(二)典例精讲例1.在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=30°,CD、BE交于点O,连接OA (1)如图1,求证:△ABE≌△ACD;(2)如图1,求∠AOE的大小;(3)当绕点A旋转至如图2所示位置时,若∠BAC=∠DAE=α,∠AOE=_________.练:如图,A在DE上,F在AB上,且AC=CE,∠1=∠2=∠3=α求∠BAC.(用α表示)例2:如图,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,连接BD、CE交于点P.(1)求证:△ABD≌△ACE;(2)判断BD、CE的关系并证明;(3)连接PA,求∠APB的度数.练:在例2的条件下,将△ADE旋转至如图所示的位置时,BD与CE的关系还成立吗?请说明理由.例3:如图,分别以△ABC的边AB、AC向外作等边△ABD和等边△ACE,连接BE、CD交于点P,连接AP.(1)求证:BE=CD;(2)求∠BPD的度数;(3)求证:PA平分∠DPE.变式:在例3的条件下,若点F为CD上一点,且∠DBF=∠ADC,试判断△BFP的形状并证明.练:已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向三角形外作等边△ABD和等边△ACE.(1)如图1,连接线段BE、CD,求证:BE=CD;(2)如图2,连接DE交AB于点F,求证:F为DE中点.例4:如图,△ADC和△CBE均为等边三角形,连接AE、AB、BD,∠ABD=80°,求∠EAB的度数.练1.如图,△ABC 和△CDE 都是等边三角形,∠EBD =78°,则∠AEB =_________度.练2.已知AC=BC ,DC=EC ,∠ACB =∠ECD =90°,且∠EBD =42°,则∠AEB =.例5.如图,ΔAOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,B (a ,b )且a ,b 满足2(0b -=,D 为y 轴上一动点,以AD 为边作等边ΔADC ,直线CB 交y 轴于点E .(1)如图1,求A 点坐标;(2)如图2,D 在y 轴正半轴上,C 在第二象限,CE 的延长线交x 轴于点M ,当D 点在y 轴正半轴上运动时,M 点的坐标是否发生变化,若不变,求M 点的坐标,若变化,说明理由.练1.如图,已知直线AB 交x 轴于点A (a ,0),交y 轴于点B (0,b ),且a ,b 满足2(4)0a b a +++=,若点C 在第一象限,且BE ⊥AC 于点E ,延长BE 至点D ,使BD=AC ,连接OC 、OD 、CD ,试判断ΔCOD 的形状,并说明理由.练2.如图,ΔAOB和ΔACD是等边三角形,其中AB⊥x轴于E点.(1)如图,若OC=5,求BD的长;(2)设BD交x轴于点F,求证:∠OFA=∠DFA.例6.如图,已知△ABC是等边三角形,点E在线段AB上,点D在射线CB上,且DE=CE,以CE为边作等边三角形CEF,连接EF.(1)求证:BE=AF;(2)试猜想线段AB、DB、AF之间的数量关系,并证明你的猜想.练1.如图,ΔBAC为等腰直角三角形,其中AB=AC,∠BAC=90°,点A、D在BC的异侧且∠BDC=90°,连接AD,过点A作AE⊥AD交DB的延长线于点E,求∠E的度数.。
手拉手全等模型特点:由两个顶角相等的等腰三角形所组成,并且顶角顶点为公共顶点.(是左手拉左手,右手拉右手如果拉错了手,则为婆罗摩笈多模型。
)判断左右:将等腰三角形顶角顶点朝上,正对读者,读者左边为左手顶点,右边为右手顶点。
顶角相等的两任意等腰三角形:两个等边三角形:CDEAB图①CDEAB图②CDEAB图③两个等腰直角三角形:【例题】如图,已知△ABD 和△BCE 为等边三角形,连接AE 交BD 于点G ,连接CD 交BE 于点F ,AE 与CD 交点为M ,A 、B 、C 三点共线。
请求证以下内容: (1)△ABE ≌ △DBC (2)AE =DQ (3)∠DHA =60°(4)连接MB ,MB 平分∠AMC (5)△AGB ≌ △DFB (6)△EGB ≌ △CFB(7)连接GF ,△BGF 为等边三角形 【简证】(1)∵△ABD 和△BCE 为等边三角形∴∠ABD=∠CBE=60°∴∠ABD+∠DBE=∠CBE+∠DBE 即∠ABE=∠DBC 在△ABE 和△DBC 中 BA BD ABE DBC BE BC =⎧⎪∠=∠⎨⎪=⎩﹐﹐﹐∴△ABE ≌ △DBC(SAS)(经典全等) (2)∵△ABE ≌ △DBC∴AE =DC .(经典拉手线)PCABDECEF A BMCDE FG AB51234(3)∵△ABE ≌△DBC∴∠1=∠2∴∠DGM=∠AGB∴∠DMA=∠4=60°(拉手线夹角找8字)(4)过点B作BQ⊥DC于Q,过点B作BN⊥AE于点N ∵△ABE ≌△DBC∴S△ABE=S△DBC∴½×AE×BN=½×CD×BQ∵AE=CD∴BN=BQ∴点B在∠AMC的平分线上∴MB平分∠AMC(拉手线交点与顶点连线平分角)(5)∵∠5=180°-∠4-∠CBE=60°∴∠4=∠5∵△ABE≌△DBC∴∠1=∠2又∵AB=DB∴△AGB ≌△DFB(ASA)(6)同(5)可证△EGB ≌△CFB(ASA)(7)连接GF,由(5)得△AGB ≌△DFB∴BG=BF又∵∠5=60°∴△BGF是等边三角形(1)如图①中,C 点为线段AB 上一点,△ACM,△CBN 是等边三角形,AN 与BM 相等吗?说明理由;(2)如图②中,C 点为线段AB 上一点,等边三角形ACM 和等边三角形CBN 在AB 的异侧,此时AN 与BM 相等吗?说明理由;(3)如图③中,C 点为线段AB 外一点,△ACM,△CBN 是等边三角形,AN 与BM相等吗?说明理由.解析:题中三问均是对等边三角形性质的考查以及全等三角形的证明,由已知条件,利用等边三角形的性质可找出对应边及夹角相等,证明全等,即可得到线段相等.(1)如图①,点C 是线段AB 上一点,分别以AC,BC 为边在AB 的同侧作等边△ACM 和△CBN,连接AN,BM.分别取BM,AN 的中点E,F,连接CE,CF,EF.观察并猜想△CEF 的形状,并说明理由.(2)若将(1)中的“以AC、BC 为边作等边△ACM 和△CBN”改为“以AC,BC 为腰在AB 的同侧作等腰△ACM 和△CBN”,如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由.图②图①解析:此题综合考查等边三角形的性质与判定,三角形全等的判定与性质,等腰三角形的性质等知识点.(1)先求证△ACN≌△MCB,得出AN=BM ,∠ANC=∠MBA,再证△NFC≌△BEC,得出CE=CF,∠BCE=∠NCF,得出∠ECF=60°,证得结论成立;(2)证明过程如上(1)中的结论只有CE=CF,而∠ECF等于等腰三角形的顶角≠60°,得出结论不成立.(1)发现:如图①,点A为线段BC外一动点,且BC=a,AB=b.当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图②所示,分别以AB、AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.解析:本题主要考察等边三角形的性质以及SAS定理的应用。
专题12全等三角形中的手拉手模型【模型1】等腰三角形中的手拉手全等模型如图,△ABC 与△ADE 均为等腰三角形,且∠BAC =∠DAE ,连接BD 、CE ,则△ABD ≌△ACE。
【证明】∠BAC =∠DAECAEBAD ∠=∠∴又△ABC 与△ADE 均为等腰三角形∴在ABD ∆和ACE ∆中⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE【模型2】等边三角形中的手拉手全等模型如图,△ABC 与△CDE 均为等边三角形,点B 、C 、E 三点共线,连接AE 、BD ,则△BCD≌△ACE。
【模型3】一般三角形中的手拉手全等模型如图,在任意△ABC 中,以AB 为边作等边△ADB ,以AC 为边作等边△ACE ,连接DC 、BE ,则△ADC ≌△ACE .【模型4】正方形中的手拉手全等模型如图,在任意△ABC中,以AB为边作正方形ABDE,以AC为边作正方形ACFG,连接EC、BG,则△AEC≌△ABG.【例1】如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下结论错误的是()A.∠AOB=60°B.AP=BQC.PQ∥AE D.DE=DP【答案】D【分析】利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正确;根据△CQB≌△CPA (ASA),得出B正确;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,得出C正确;根据∠CDE=60°,∠DQE =∠ECQ +∠CEQ =60°+∠CEQ ,可知∠DQE ≠∠CDE ,得出D 错误.【解析】解:∵等边△ABC 和等边△CDE ,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,即∠ACD =∠BCE ,在△ACD 与△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠DAC ,又∵∠ACB =∠DCE =60°,∴∠BCD =60°,即∠ACP =∠BCQ ,又∵AC =BC ,在△CQB 与△CPA 中,ACP BCQ AC BC PAC CBQ ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CQB ≌△CPA (ASA ),∴CP =CQ ,又∵∠PCQ =60°可知△PCQ 为等边三角形,∴∠PQC =∠DCE =60°,∴PQ ∥AE ,故C 正确,∵△CQB ≌△CPA ,∴AP =BQ ,故B 正确,∵AD =BE ,AP =BQ ,∴AD -AP =BE -BQ ,即DP =QE ,∵∠DQE =∠ECQ +∠CEQ =60°+∠CEQ ,∠CDE =60°,∴∠DQE ≠∠CDE ,故D 错误;∵∠ACB =∠DCE =60°,∴∠BCD =60°,∵等边△DCE ,∠EDC =60°=∠BCD ,∴BC ∥DE ,∴∠CBE =∠DEO ,∴∠AOB =∠DAC +∠BEC =∠BEC +∠DEO =∠DEC =60°,故A 正确.故选:D .【例2】如图,ABC 是边长为5的等边三角形,BD CD =,120BDC ∠=︒.E 、F 分别在AB 、AC 上,且60EDF ∠=︒,则三角形AEF 的周长为______.【答案】10【分析】延长AB 到N ,使BN =CF ,连接DN ,求出∠FCD =∠EBD =∠NBD =90°,根据SAS 证△NBD ≌△FCD ,推出DN =DF ,∠NDB =∠FDC ,求出∠EDF =∠EDN ,根据SAS 证△EDF ≌△EDN ,推出EF =EN ,易得△AEF 的周长等于AB +AC .【解析】解:延长AB 到N ,使BN =CF ,连接DN,∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∵BD =CD ,∠BDC =120°,∴∠DBC =∠DCB =30°,∴∠ACD =∠ABD =30°+60°=90°=∠NBD ,∵在△NBD 和△FCD 中,BD DC NBD FCD BN CF =⎧⎪∠=∠⎨⎪=⎩,∴△NBD ≌△FCD (SAS ),∴DN =DF ,∠NDB =∠FDC ,∵∠BDC =120°,∠EDF =60°,∴∠EDB +∠FDC =60°,∴∠EDB +∠BDN =60°,即∠EDF =∠EDN ,在△EDN 和△EDF 中,DE DE EDF EDN DN DF =⎧⎪∠=∠⎨⎪=⎩,∴△EDN ≌△EDF (SAS ),∴EF =EN =BE +BN =BE +CF ,即BE +CF =EF .∵△ABC 是边长为5的等边三角形,∴AB =AC =5,∵BE +CF =EF ,∴△AEF 的周长为:AE +EF +AF =AE +EB +FC +AF =AB +AC =10,故答案为:10.【例3】如图1,B 、C 、D 三点在一条直线上,AD 与BE 交于点O ,△ABC 和△ECD 是等边三角形.(1)求证:△ACD ≌△BCE ;(2)求∠BOD 的度数;(3)如图2,若B 、C 、D 三点不在一条直线上,∠BOD 的度数是否发生改变?(填“改变”或“不改变”)【答案】(1)证明见解析(2)∠BOD =120°(3)不改变,理由见解析【分析】(1)根据“SAS ”证明△ACD ≌△BCE 即可;(2)由全等三角形的性质得∠ADC =∠BEC ,再由三角形的外角性质得∠AOB =60°,即可求解;(3)同(1)得:△ACD ≌△BCE ,得出∠DAC =∠EBC ,根据三角形外角求出∠AOE =120°,即可得出答案.【解析】(1)证明:∵△ABC 和△ECD 是等边三角形,∴∠ACB =∠ECD =60°,BC =AC ,EC =CD ,∴∠ACB +∠ACE =∠ECD +∠ACE ,∴∠BCE =∠ACD ,在△BCE 和△ACD 中∵BC AC BCE ACD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△ACD (SAS ).(2)解:∵△BCE ≌△ACD ,∴∠ADC =∠BEC ,∵∠AOB =∠EBC +∠ADC ,∴∠AOB =∠EBC +∠BEC =∠DCE =60°,∵∠AOB +∠BOD =180°,∴∠BOD =120°.(3)解:不改变,理由如下:同(1)得:△ACD ≌△BCE (SAS ),∴∠DAC =∠EBC ,∵∠AOE =∠ABO +∠OAB=∠ABO +∠DAC +∠BAC=∠ABO +∠EBC +∠BAC=∠ABC +∠BAC=120°∴∠BOD =∠AOE =120°,即∠BOD 的度数不改变.故答案为:不改变.一、单选题1.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中,正确的结论有()①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四边形BCDE =12BD•CE;⑤BC2+DE2=BE2+CD2.A.1个B.2个C.3个D.4个【答案】C【分析】根据等腰直角三角形的性质可得AB=AC,AD=AE,然后求出∠BAD=∠CAE,再利用“边角边”证明△ABD和△ACE全等,根据全等三角形对应边相等可得CE=BD,判断①正确;根据全等三角形对应角相等可得∠ABD=∠ACE,从而求出∠BCG+∠CBG=∠ACB+∠ABC=90°,再求出∠BGC=90°,从而得到BD⊥CE,根据四边形的面积等于两个三角形的面积之和可判断出④正确;根据勾股定理表示出BC2+DE2,BE2+CD2,得到⑤正确;再求出AE CD∥时,∠ADC=90°,判断出②错误;∠AEC与∠BAE 不一定相等判断出③错误.【解析】解:∵,△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAE=∠DAE+∠CAD=90°+∠CAD,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴CE=BD,∠ABD=∠ACE,故①正确;∴∠BCG+∠CBG=∠ACB+∠ABC=90°,在△BCG中,∠BGC=180°-(∠BCG+∠CBG)=180°-90°=90°,∴BD⊥CE,∴S四边形BCDE =11··22BCE DCES S CE BG CE DG+=+=12BD•CE,故④正确;由勾股定理,在Rt△BCG中,BC2=BG2+CG2,在Rt△DEG中,DE2=DG2+EG2,∴BC2+DE2=BG2+CG2+DG2+EG2,在Rt△BGE中,BE2=BG2+EG2,在Rt△CDG中,CD2=CG2+DG2,∴BE 2+CD 2=BG 2+CG 2+DG 2+EG 2,∴BC 2+DE 2=BE 2+CD 2,故⑤正确;从题干信息没有给出,AC AD =所以只有AE CD ∥时,DAE ADC ∠=∠=90°,无法说明AE CD ∥,更不能说明,CD AD =故②错误;∵△ABD ≌△ACE ,∴∠ADB =∠AEC ,条件不足以证明,CAE BAE ≌∴∠AEC 与∠AEB 相等无法证明,∴∠ADB =∠AEB 不一定成立,故③错误;综上所述,正确的结论有①④⑤共3个.故选:C .2.如图,正ABC 和正CDE △中,B 、C 、D 共线,且3BC CD =,连接AD 和BE 相交于点F ,以下结论中正确的有()个①60AFB ∠=︒②连接FC ,则CF 平分BFD ∠③3BF DF =④BF AF FC=+A .4B .3C .2D .1【答案】A【分析】根据“手拉手”模型证明BCE ACD ≌,从而得到CBE CAD ∠=∠,再结合三角形的外角性质即可求解60AFB ACB ∠=∠=︒,即可证明①;作CM BE ⊥于M 点,CN AD ⊥于N 点,证明CEM CDN ≌,结合角平分线的判定定理即可证明②;利用面积法表示BCF △和DCF 的面积,然后利用比值即可证明③;利用“截长补短”的思想,在AD 上取点Q ,使得FC FQ =,首先判断出FCQ 为等边三角形,再结合“手拉手”模型推出BCF ACQ ≌即可证明④.【解析】解:①∵ABC 和CDE △均为等边三角形,∴60ACB ECD ∠=∠=︒,AC BC =,EC DC =,∴ACB ACE ECD ACE ∠+∠=∠+∠,∴BCE ACD ∠=∠,在BCE 和ACD △中,BC AC BCE ACD EC DC =⎧⎪∠=∠⎨⎪=⎩∴()BCE ACD SAS ≌,∴CBE CAD ∠=∠,∵AFB CBE CDA ∠=∠+∠,ACB CDA CAD ∠=∠+∠,∴60AFB ACB ∠=∠=︒,故①正确;②如图所示,作CM BE ⊥于M 点,CN AD ⊥于N 点,则90CME CND ∠=∠=︒,∵BCE ACD ≌,∴CEM CDN ∠=∠,在CEM 和CDN △中,CME CND CEM CDN CE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CEM CDN AAS ≌,∴CM CN =,∴CF 平分BFD ∠,故②正确;③如图所示,作FP BD ⊥于P 点,∵1122BCF SBF CM BC FP ==,1122DCF S DF CN CD FP ==,∴11221122BCFDCF BF CM BC FP SS DF CN CD FP ==,∵CM CN =,∴整理得:BF BC DF CD =,∵3BC CD =,∴33BF CD DF CD==,∴3BF DF =,故③正确;④如图所示,在AD 上取点Q ,使得FC FQ =,∵60AFB ACB ∠=∠=︒,CF 平分BFD ∠,∴120BFD ∠=︒,1602CFD BFD ∠=∠=︒,∴FCQ 为等边三角形,∴60FCQ ∠=︒,CF CQ =,∵60ACB ∠=︒,∴ACB ACF FCQ ACF ∠+∠=∠+∠,∴BCF ACQ ∠=∠,在BCF △和ACQ 中,BC AC BCF ACQ CF CQ =⎧⎪∠=∠⎨⎪=⎩∴()BCF ACQ SAS ≌,∴BF AQ =,∵AQ AF FQ =+,FQ FC =,∴BF AF FC =+,故④正确;综上,①②③④均正确;故选:A.3.如图,在直线AC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD 交于点H ,AE 与DB 交于点G ,BE 与CD 交于点F ,下列结论:①AE =CD ;②∠AHD =60°;③△AGB ≌△DFB ;④BH 平分∠GBF ;⑤GF ∥AC ;⑥点H 是线段DC 的中点.正确的有()A .6个B .5个C .4个D .3个【答案】C 【分析】连接GF ,过点B 作BM ⊥AE 于M ,BN ⊥CD 于N ;结合题意,利用等边三角形、全等三角形的性质,推导得AE =CD ,∠AHD =∠ABG =60°;再根据等边三角形、角平分线的性质分析,即可得到答案.【解析】连接GF ,过点B 作BM ⊥AE 于M ,BN ⊥CD 于N∵△ABD ,△BCE 都是等边三角形,∴∠ABD =∠EBC =60°,BA =BE ,BE =BC ,∴∠ABE =∠DBC ,在△ABE 和△DBC 中,BA BD ABE DBC BE BC =⎧⎪∠∠⎨⎪=⎩=∴△ABE ≌△DBC (SAS ),∴AE =CD ,故①正确;∵△ABE ≌△DBC ,∴∠BAE =∠BDC ,∵∠AGB =∠DGH ,∴∠AHD =∠ABG =60°,故②正确;在△AGB 和△DFB 中,60BAG BDF AB DB ABG DBF ∠=∠⎧⎪=⎨⎪∠∠︒⎩==∴△AGB ≌△DFB (ASA ),故③正确;∵△AGB ≌△DFB ,∴BG =BF ,∵∠GBF =60°,∴△BGF 是等边三角形,∴∠FGB =∠ABD =60°,∴FG ∥AC ,故⑤正确;∵△ABE ≌△DBC ,BM ⊥AE ,BN ⊥CD ,∴BM=BN,∴BH平分∠AHC,但不一定平分∠GBF,故④错误;根据题意,无法判断DH=CH,故⑥错误.故选:C.4.如图,点C是线段AE上一动点(不与A,E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,有以下5个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中一定成立的结论有()个A.1B.2C.3D.4【答案】D【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正确;②根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【解析】①∵等边△ABC和等边△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60∘,∴∠ACD=∠BCE,在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,DC=CE,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;③∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°-60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,∠CAD=∠CBE,AC=BC,∠ACB=∠BCQ=60°,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正确;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60∘,∴∠ACB=∠CPQ,∴PQ∥AE;故②正确;④∵AD=BE,AP=BQ,∴AD−AP=BE−BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠QE,则DP≠DE,故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正确;综上所述,正确的结论有:①②③⑤,错误的结论只有④,故选D.5.如图,在ABC 中,AB AC =,点D 、F 是射线BC 上两点,且AD AF ⊥,若AE AD =,15BAD CAF ∠=∠=︒;则下列结论中正确的有()①CE BF ⊥;②ABD ACE △≌△;③ABC ADCE S S =四边形△;④122BC EF AD CF -=-A .1个B .2个C .3个D .4个【答案】D 【分析】由AD ⊥AF ,∠BAD=∠CAF ,得出∠BAC=90°,由等腰直角三角形的性质得出∠B=∠ACB=45°,由SAS 证得△ABD ≌△ACE (SAS ),得出BD=CE ,∠B=∠ACE=45°,S △ABC =S 四边形ADCE ,则∠ECB=90°,即EC ⊥BF ,易证∠ADF=60°,∠F=30°,由含30°直角三角形的性质得出EF=2CE=2BD ,DF=2AD ,则BD=12EF ,由BC-BD=DF-CF ,得出BC-12EF=2AD-CF ,即可得出结果.【解析】∵AD ⊥AF ,∠BAD=∠CAF ,∴∠BAC=90°,∵AB=AC ,∴∠B=∠ACB=45°,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠B=∠ACE=45°,S △ABC =S 四边形ADCE ,∴∠ECB=90°,∴EC ⊥BF ,∵∠B=45°,∠BAD=15°,∴∠ADF=60°,∴∠F=30°,∴EF=2CE=2BD ,DF=2AD ,∴BD=12EF ,∵BC-BD=DF-CF ,∴BC-12EF=2AD-CF,∴①、②、③、④正确.故选:D.6.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM,下列结论:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正确的个数为()A.4B.3C.2D.1【答案】A【分析】由题意易得∠AOC=∠BOD,然后根据三角形全等的性质及角平分线的判定定理可进行求解.【解析】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正确;过点O作OE⊥AC于点E,OF⊥BD于点F,BD与OA相交于点H,如图所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正确;所以正确的个数有4个;故选A .二、填空题7.如图,在正方形ABCD 中,E 是对角线BD 上一点()BE DE <,将线段CE 绕点C 按顺时针方向旋转90︒得到线段CE ',连接AE ,DE ',EE '.下列结论:①若20BAE ∠=︒,则70DE E ∠='︒;②2222BE DE AE +=;③若30BAE ∠=︒,则DE;④若BC =,10EC =,则9sin 10DEC ∠=.其中正确的结论有___________(填正确的序号)【答案】①②④【分析】证明△BCE ≌△E CD ',可得AE CE =,BE DE '=,==45CDE EBC '∠∠,根据三角形内角和定理可判断①正确;在Rt △E CE '中,2222=2E E CE CE CE ''+=,即2222BE DE AE +=,从而判断②正确;③证明DE ',故可判断③错误;连接AC 与BD 交于点O ,计算可得CO =9,根据正弦定理可判断④正确.【解析】解:∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°,∵线段CE 绕点C 按顺时针方向旋转90︒得到线段CE ',∴CE CE '=,=90ECE '∠,∴△ECE '是等腰直角三角形,∴==45EE C E EC ''∠∠,∴=BCD ECD ECE ECD '--∠∠∠∠,即=BCE E CD '∠∠,在△BCE 和△E CD '中,=BC CD BCE E CD CE CE =⎧'∠'⎪∠⎨⎪=⎩∴△BCE ≌△DCE '(SAS ),∴==45CDE EBC '∠∠,=BE E D ',∴=454590EDE '+=∠,即△EDE '是直角三角形,∵四边形ABCD 是正方形,E 在对角线BD 上,∴=BCE BAE ∠∠,∴=DEC DEE E EC EBC BCE ''+=+∠∠∠∠∠,==45E EC EBC '∠∠,∴DEE BCE BAE '==∠∠∠,∵=20BAE ∠,∴9070DE E DEE ''==∠-∠,故①正确;在Rt △E CE '中,2222=2E E CE CE CE ''+=,在Rt △E DE '中,22222=E E DE DE BE DE ''+=+,∴2222BE DE AE +=,故②正确;若=30BAE ∠,则=30DEE BCE BAE '==∠∠∠,在在Rt △E DE '中,DE ',∵BE DE '=,DE ,故③错误;连接AC 与BD 交于点O ,如图,∵四边形ABCD 是正方形,∴∠EOC =90°,且BOC 是等腰直角三角形,∵BC =∴CO =22922BC ⨯==,∵10EC =,∴sin ∠DEC =9=10CO BC ,故④正确.故答案为:①②④.8.如图,O 是正ABC 内一点,3,4,5OA OB OC ===,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论:①点O 与O '的距离为4;②150AOB ∠=︒;③6ABC AOC S S -=;④64AOC AOB S S +=+△△其中正确的结论是____________.(只填序号)【答案】①②④【分析】由题意可得△BOC ≌△BAO ',△BOO '是等边三角形,可得AO '=CO =5,OO '=4,可判断△AOO '是直角三角形.可判断①②③,由S 四边形AOBO ′=S △AOO '+S △OO 'B =S △BOC +S △AOC ,可判定③④.【解析】解;连接OO ',如图1,BO BO '=,60OBO '∠=︒,BOO '∴∆是等边三角形,4OO BO '∴==,故①正确;60OBO ABC '∠=∠=︒,ABO ABC '∴∠=∠且OB OB '=,AB AC =,()ABO BOC SAS '∴∆≅∆,5AO CO '∴==,225O A '=,2225AO O O '+=,222O A AO O O ''∴=+,90AOO '∴∠=︒,150AOB ∴∠=︒,故②正确;△OO B '是等边三角形,3AO =,4OO '=,3BOO S '∆∴=,6AOO S '∆=,=+=643ABC AOC ABC ABO AOBO S S S S S '∴-=+四边形如图2,AOC ∆绕A 点顺时针旋转60︒到ABO '∆位置,同理可得9364AOC AOB S S ∆∆+=+,故④正确;故答案为:①②④.9.在ABC 中,90ACB ∠=︒,60B ∠=︒,4AB =,点D 是直线BC 上一动点,连接AD ,在直线AD 的右恻作等边ADE ,连接CE ,当线段CE 的长度最小时,则线段CD 的长度为__________.【答案】3【分析】以AC 为边向左作等边三角形ACF ,连接DF ,先根据直角三角形中30°所对的直角边是斜边的一半求出BC 的长,再由勾股定理求出AC 的长,根据作的辅助线证明()ACE AFD SAS ≅,则CE DF =,当DF BC ⊥时,DF 的长是最小的,即CE 的长最小,求出此时CD '的长即可.【解析】解:如图,以AC 为边向左作等边三角形ACF ,连接DF ,∵90ACB ∠=︒,60B ∠=︒,∴30BAC ∠=︒,∵4AB =,∴122BC AB ==,∴2223AC AB BC =-=∵ACF 是等边三角形,∴CF AC AF ===60FAC ∠=︒,∵ADE 是等边三角形,∴AD AE =,60DAE ∠=︒,∵FAC DAC DAE DAC ∠-∠=∠-∠,∴CAE FAD ∠=∠,在ACE 和AFD V 中,AC AF CAE FAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE AFD SAS ≅,∴CE DF =,当DF BC ⊥时,DF 的长是最小的,即CE 的长最小,∵906030FCD '∠=︒-︒=︒,Rt CFD ',∴12D F CF '==3CD '==,∴当线段CE 的长度最小时,则线段CD 的长度为3.故答案是:3.10.如图,在ABC 中,45ABC ︒∠=,3AB =,AD BC ⊥于点D ,BE AC ⊥于点F .1AE =,连接DE ,将AED 沿直线AE 翻折至ABC 所在的平面,得AEF ,连接DF .过点D 作DG DE ⊥交BE 于点G ,则四边形DFEG 的周长为________.【答案】2+【分析】先证BDG DE ∆≅∆,得出1AE BG ==,再证DGE ∆与EDF ∆是等腰直角三角形,在直角AEB ∆中利用勾股定理求出BE 的长,进一步求出GE 的长,可通过解直角三角形分别求出GD ,DE ,EF ,DF 的长,即可求出四边形DFEG 的周长.【解析】∵45ABC ︒∠=,AD BC ⊥于点D ,∴9045BAD ABC ︒︒∠=-∠=,∴ABD ∆是等腰直角三角形,∴AD BD =,∵BE AC ⊥,∴90GBD C ︒∠+∠=,∵90EAD C ︒∠+∠=,∴GBD EAD ∠=∠,∵90ADB EDG ︒∠=∠=,∴ADB ADG EDG ADG ∠-∠=∠-∠,即BDG ADE ∠=∠,∴()BDG ADE ASA ∆≅∆,∴1BG AE ==,DG DE =,∵90EDG ︒∠=,∴EDG ∆为等腰直角三角形,∴9045135AED AEB DEG ︒︒︒∠=∠+∠=+=,∵AED ∆沿直线AE 翻折得AEF ∆,∴AED AEF ∆≅∆,∴135AED AEF ︒∠=∠=,ED EF =,∴36090DEF AED AEF ︒︒∠=-∠-∠=,∴DEF ∆为等腰直角三角形,∴EF DE DG ==,在Rt AEB ∆中,BE ===∴1GE BE BG =-=,在Rt DGE ∆中,22222DG GE ==,∴222EF DE ==-,在Rt DEF ∆中,1DF ==-,∴四边形DFEG 的周长为:GD EF GE DF+++221)2⎛=-+ ⎝⎭2=+,故答案为:2+.11.如图ABD △和ACE 是ABC 外两个等腰直角三角形,90BAD CAE ∠∠==,下列说法正确的是:________.①CD BE =,且DC BE ⊥;②22222DE BC BD EC +=+;③FA 平分DFE ∠;④取BC 的中点M ,连MA ,则MA DE ⊥.【答案】①③④【分析】①由ABD △与ACE 是等腰直角三角形,AD AB =,AC AE =,DAB EAC ∠=∠可证(SAS)ADC ABE △≌△,CD BE =,AEB ACD ∠=∠且ARE FRC ∠∠=,90EAR ∠=︒AER ARE FCR FRC ∠∠∠∠+=+,即可退出;②由DC BE ⊥,由勾股定理222DF EF DE +=,222+=BF CF BC ,()()22222222=DE BC DF BF CF EF BD EC ++++=+,即可;③过点A 作AS DC ⊥,AG BE ⊥,可证(AAS)ADS ABG ≌,由性质得AS AG =,结合AS DC ⊥,AG BE ⊥,即可;④取BC 中点M ,使得AM MN =,易证(SAS)BMN CMA ≌,推出BN AC =,再证(SAS)DAE ABN ≌,推出BAN ADH ∠∠=,由90DAH BAN ∠∠+=︒,推出90DAH ADH ∠+∠=︒即可.【解析】ABD 与ACE 是等腰直角三角形,AD AB ∴=,AC AE =,DAB EAC ∠=∠,DAC EAB ∴∠=∠,∴在ADC 与ABE △中,AD AB DAC EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ADC ABE ∴≌,CD BE ∴=,设BE 交AC 于点R ,由①可知AEB ACD ∠=∠且ARE FRC ∠∠=,AER ARE FCR FRC ∠∠∠∠∴+=+,90EFC EAR ∠∠∴==︒,即DC BE ⊥,故①符合题意.②DC BE ⊥,222DF EF DE ∴+=,222+=BF CF BC ,222222DF EF BF CF DE BC ∴+++=+,且222DF BF BD +=,222CF EF CE +=,2222DE BC BD CE ∴+=+.故②不符合题意.③证明,过点A 作AS DC ⊥,AG BE ⊥,由①可知ADS ABG ∠∠=,且AD AB =,ASD AGB ∠∠=,∴在ADS △与ABG 中,ADS ABG ASD AGB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ADS ABG ∴≌,AS AG ∴=,且AS DC ⊥,AG BE ⊥,FA ∴平分DFE ∠,故③符合题意.④作BC 中点M ,倍长AM ,使得AM MN =,∴在BMN △与CMA 中,BM MC BMN CMA MN AM =⎧⎪∠=∠⎨⎪=⎩,(SAS)BMN CMA ∴≌,则BN AC =,AC AE =,BN AE ∴=,180BAC DAE ∠∠︒+=,180BAC ABN ∠∠+=︒,DAE ABN ∠∠∴=,∴在DAE △与ABN 中,AD AB DAE ABN AE BN =⎧⎪∠=∠⎨⎪=⎩,(SAS)DAE ABN ∴≌,BAN ADH ∠∠∴=,90DAH BAN ∠∠︒+=,90DAH ADH ∠∠∴+=︒,∠90AHD ∴=︒,即AM DE ⊥,故④符合题意.故答案为:①③④.12.(1)如图(1),在四边形ABCD 中,AB AD =,180B D ︒∠+∠=,E ,F 分别是,BC CD 上的动点,且12EAF BAD ∠=∠,求证:EF BE DF =+.(2)如图(2),在(1)的条件下,当点E ,F 分别运动到,BC CD 的延长线上时,,,EF BE DF 之间的数量关系是______.【答案】(1)详见解析;(2)EF BE DF=-【分析】(1)延长FD 到点G ,使DG BE =,连接AG ,先证明()ABE ADG SAS ∆∆≌,得到AE AG BAE DAG =∠=∠,,然后证明AEF AGF ∆∆≌,得到EF FG =,根据FG DG DF BE DF =+=+,可得EF BE DF =+;(2)在BC 上截取BG DF =,连接AG ,先证明△ABG ≌△ADF (SAS ),得到AG=AF ,∠BAG=∠DAF ,再证明△EAG ≌△EAF (SAS ),得到EG=EF ,根据BG=DF ,即可得EF=BE-BG=BE-DF .【解析】(1)如图,延长FD 到点G ,使DG BE =,连接AG.180B ADF ADG ADF ︒∠+∠=∠+∠=,B ADG ∴∠=∠,又AB AD =,BE DG =,∴()ABE ADG SAS ∆∆≌,,AE AG BAE DAG ∴=∠=∠,12EAF BAD ∠=∠,GAF DAG DAF BAE DAF BAD EAF EAF ∴∠=∠+∠=∠+∠=∠-∠=∠.,,AE AG EAF GAF AF AF =∠=∠=,∴AEF AGF ∆∆≌,EF FG ∴=.FG DG DF BE DF =+=+,EF BE DF ∴=+;(2)EF BE DF =-.如图,在BC 上截取BG DF =,连接AG,180B ADC ADC ADF ︒∠+∠=∠+∠=,B ADF ∴∠=∠,在△ABG 和△ADF 中AB AD B ADF BG DF ⎧⎩=⎪==⎪⎨∠∠,∴△ABG ≌△ADF (SAS ),∴AG=AF ,∠BAG=∠DAF ,∠BAD=2∠EAF ,∴∠BAG+∠GAE+∠EAD=∠EAD+∠DAF+∠EAD+∠DAF ,∴∠GAE=∠EAF ,在△EAG 和△EAF 中AG AF EAG EAF AE AE ===⎧⎪⎨⎪⎩∠∠,∴△EAG ≌△EAF (SAS ),∴EG=EF ,∵BG=DF ,∴EF=BE-BG=BE-DF .三、解答题13.如图,若ABD △和ACE 都是等边三角形,求BOC ∠的度数.【答案】120°.【分析】利用等边三角形的性质可得AD =AB ,AC =AE ,∠DAB =∠CAE =60°,利用SAS 即可证明△DAC ≌△BAE ,从而得出∠ABE =∠ADC ,设AB 与CD 交于点F ,根据三角形内角和定理和等量代换即可求出∠BOF ,利用平角的定义即可求出结论.【解析】证明:∵△ABD 、△AEC 都是等边三角形,∴AD =AB ,AC =AE ,∠DAB =∠CAE =60°,∵∠DAC =∠BAC +60°,∠BAE =∠BAC +60°,∴∠DAC =∠BAE ,在△DAC 和△BAE 中,AD AB DAC BAE AC AE ⎧⎪∠∠⎨⎪⎩===,∴△DAC ≌△BAE (SAS ),∴∠ABE =∠ADC设AB 与CD 交于点F ,∵∠BFO=∠DFA∴∠BOF=180°-∠ABE -∠BFO=180°-∠ADC -∠DFA=∠DAB=60°∴∠BOC=180°-∠BOF=120°.14.如图,ACB △和ECD 都是等腰直角三角形,,,CA CB CD CE ACB ==△的顶点A 在ECD 的斜边DE 上,连接BD.(1)求证:BD AE =.(2)若3cm,6cm AE AD ==,求AC 的长.【答案】(1)证明见解析;(2)310cm 2AC =.【分析】(1)根据同角的余角相等得出∠BCD=∠ACE ,然后根据SAS 定理证明△BCD ≌△ACE ,从而得出结论;(2)根据全等三角形的性质得出∠BDC=∠AEC ,然后结合等腰直角三角形的性质求得∠BDA 是直角三角形,从而利用勾股定理求解.【解析】(1)∵ACB △和ECD 都是等腰直角三角形,∴90ACB ECD ∠=∠=︒,∴90,90ACD BCD ACD ACE ∠+∠=︒∠+∠=︒,∴BCD ACE ∠=∠,在BCD △和ACB △中,CB CA BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩∴()BCD ACE SAS V V ≌,∴BD AE =.(2)∵BCD ACE ≌,∴BDC AEC ∠=∠,又∵ECD 是等腰直角三角形,∴45CDE CED ∠=∠=︒,∴45BDC ∠=︒,∴90BDC CDE ∠+∠=︒,∴BDA ∠是直角三角形,∴22222223645AB BD AD AE AD =+=+=+=,在等腰直角三角形ACB 中,22222AB AC BC AC =+=,∴2AC =.15.如图,△ACB 和△DCE 均为等腰三角形,∠ACB=∠DCE=90°,点A ,D ,E 在同一条直线上,连接BE .(1)求证:AD=BE ;(2)若∠CAE=15°,AD=4,求AB的长.【答案】(1)见解析;(2)8【分析】(1)直接证明≌ACD BCE V V ,即可得出结论;(2)由(1)可进一步推出AEB △为直角三角形,且30EAB ∠=︒,从而由2AB BE =求解即可.【解析】(1)△ACB 和△DCE 均为等腰三角形,∠ACB=∠DCE=90°,ADC BCE ∴∠=∠,在ACD △与BCE 中,AC BC ACD BCE DC EC =⎧⎪∠=∠⎨⎪=⎩()ACD BCE SAS ∴≌,AD BE ∴=;(2)ABC 是等腰直角三角形,45ABC ∴∠=︒,由(1)可知,15CAE CBE ∠=∠=︒,4BE AD ==,451560ABE ABC CBE ∴∠=∠+∠=︒+︒=︒,90ABE ACB ∴∠=∠=︒,则在Rt AEB 中,30EAB ∠=︒,28AB BE ∴==.16.如图,在△ABC 中,AB =BC ,∠ABC =120°,点D 在边AC 上,且线段BD 绕着点B 按逆时针方向旋转120°能与BE 重合,点F 是ED 与AB 的交点.(1)求证:AE =CD ;(2)若∠DBC =45°,求∠BFE 的度数.【答案】(1)证明见解析;(2)∠BFE =105°.【分析】(1)根据旋转的性质证明△ABE ≌△CBD (SAS ),进而得证;(2)由(1)得出∠DBC=∠ABE=45°,BD=BE ,∠EBD=120°,最后根据三角形内角和定理进行求解即可.【解析】(1)证明:∵线段BD 绕着点B 按逆时针方向旋转120°能与BE 重合,∴BD =BE ,∠EBD =120°,∵AB =BC ,∠ABC =120°,∴∠ABD+∠DBC =∠ABD+∠ABE =120°,∴∠DBC =∠ABE ,∴△ABE ≌△CBD (SAS ),∴AE =CD ;(2)解:由(1)知∠DBC =∠ABE =45°,BD =BE ,∠EBD =120°,∴∠BED =∠BDE =12(180°﹣120°)=30°,∴∠BFE =180°﹣∠BED ﹣∠ABE=180°﹣30°﹣45°=105°.17.ABC 和ADE 如图所示,其中,,ABC ACB ADE AED BAC DAE ∠=∠∠=∠∠=∠.(1)如图①,连接BE CD 、,求证:BE CD =;(2)如图②,连接BE CD BD 、、,若60BAC DAE ∠=∠=︒,CD AE ⊥,3AD =,5CD =,求BD 的长.【答案】(1)见解析;34【分析】(1)只需证ABE ACD ∆∆≌,即可得到结论;(2)先证明BED ∆是直角三角形,再用勾股定理求BD .【解析】(1)证明:ABC ACB ∠=∠,ADE AED ∠=∠,AB AC ∴=,AE AD =,,BAC DAE ∠=∠,BAE CAD ∴∠=∠,()ABE ACD SAS ∴∆∆≌,BE CD ∴=.(2)解:ADE AED ∠=∠,AE AD ∴=,60DAE ∠=︒,DAE ∴∆是等边三角形,3AD ED ∴==,60AED ADE ∠=∠=︒,CD AE ⊥,160302ADC ∴∠=⨯︒=︒,由(1)知:ABE ACD ∆∆≌,5BE CD ∴==,30AEB ADC ∠=∠=︒,90BED ∴∠=︒,2234BD BE ED ∴+18.问题:如图1,在等边三角形ABC 内,点P 到顶点A 、B 、C 的距离分别是3,4,5,求∠APB 的度数?探究:由于PA 、PB 、PC 不在同一个三角形中,为了解决本题,我们可以将△ABP 绕点A 逆时针旋转60°到△ACP ′处,连结P P ′,这样就将三条线段转化到一个三角形中,从而利用全等的知识,求出∠APB 的度数.请你写出解答过程:应用:请你利用上面的方法解答:如图2,△ABC 中,∠CAB =90°,AB =AC ,E 、F 为BC 上的点,且∠EAF =45°,求证:222BE FC EF +=【答案】探究:∠APB =150°,应用:见解析【分析】探究:运用旋转的性质,以及全等三角形的性质得对应角相等,对应边相等,得出∠PAP ′=60°,再利用等边三角形的判定得出△APP ′为等边三角形,即可得出∠APP ′的度数,即可得出答案;应用:利用已知首先得出△AEG ≌△AFE ,即可把EF ,BE ,FC 放到一个直角三角形中,从而根据勾股定理即可证明.【解析】探究:解:将△ABP 绕顶点A 旋转到△ACP ′处,∴△BAP ≌△CAP ′,∴AB =AC ,AP =AP ′,∠BAP =∠CAP ′,∴∠BAC =∠PAP ′=60°,∴△APP ′是等边三角形,∴∠APP ′=60°,因为BPP ′不一定在一条直线上,∴P ′C =PB =4,PP ′=PA =3,P ′C =PC =5,∴∠PP ′C =90°,∴△PP ′C 是直角三角形,∴∠APB =∠AP ′C =∠APP ′+∠P ′PC =60°+90°=150°,∴∠BPA =150°;应用:证明:把△ACF 绕点A 顺时针旋转90°,得到△ABG .连接EG .则△ACF ≌△ABG .∴AG =AF ,BG =CF ,∠ABG =∠ACF =45°.∵∠BAC =90°,∠GAF =90°.∴∠GAE =∠EAF =45°,在△AEG 和△AFE 中,AG AF GAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△AEG ≌△AFE (SAS ).∴EF =EG ,又∵∠GBE =90°,∴BE 2+BG 2=EG 2,即BE 2+CF 2=EF 2.19.【探究发现】(1)如图1,在四边形ABCD 中,对角线AC BD ⊥,垂足是O ,求证:2222AB CD AD BC +=+.【拓展迁移】(2)如图2.以三角形ABC 的边AB 、AC 为边向外作正方形ABDE 和正方形ACFG ,求证:CE BG ⊥.(3)如图3,在(2)小题条件不变的情况下,连接GE ,若90EGA ∠=︒,6GE =,8AG =,则BC 的长_____________.(直接填写答案)【答案】(1)见解析;(2)见解析;(3)【分析】(1)根据AC BD ⊥,利用勾股定理分别求出22AB CD +和22AD BC +即可证明结论;(2)利用正方形的性质证明△CAE ≌△GAB (SAS ),可得∠CEA =∠GBA ,根据∠GBA +∠ANB =90°等量代换求出∠EMN =90°即可;(3)利用勾股定理分别求出AE 、CG 和BE ,然后利用(1)中结论求出BC 即可.【解析】解:(1)∵AC BD ⊥,∴∠AOD =∠AOB =∠COD =∠BOC =90°,由勾股定理得:222222AB CD OA OB OD OC +=+++,222222AD BC OA OD OB OC +=+++,∴2222AB CD AD BC +=+;(2)∵在正方形ABDE 和正方形ACFG 中,AC =AG ,AE =AB ,∠CAG =∠EAB =90°,∴∠CAG +∠GAE =∠EAB +∠GAE ,即∠CAE =∠GAB ,∴△CAE ≌△GAB (SAS ),∴∠CEA =∠GBA ,∵∠GBA +∠ANB =90°,∠ANB =∠MNE ,∴∠CEA +∠MNE =90°,∴∠EMN =90°,∴CE BG ⊥;(3)如图3,连接CG ,BE ,∵90EGA ∠=︒,6GE =,8AG =,∴AC =8,AE 10=,∴AB =10,∴CG =BE =,∵CE BG ⊥,∴由(1)可知:2222GE BC CG BE +=+,即236128200BC +=+,∵BC >0,∴BC =故答案为:20.△ACB 和△DCE 是共顶点C 的两个大小不一样的等边三角形.(1)问题发现:如图1,若点A,D,E在同一直线上,连接AE,BE.①求证:△ACD≌△BCE;②求∠AEB的度数.(2)类比探究:如图2,点B、D、E在同一直线上,连接AE,AD,BE,CM为△DCE中DE 边上的高,请求∠ADB的度数及线段DB,AD,DM之间的数量关系,并说明理由.(3)拓展延伸:如图3,若设AD(或其延长线)与BE的所夹锐角为α,则你认为α为多少度,并证明.【答案】(1)①见解析;②∠AEB=60°;(2)∠ADB=60°,2DM+BD=AD,理由见解析;(3)α=60°,证明见解析【分析】(1)①由△ACB和△DCE是等边三角形知AC=BC,CD=CE,∠ACD=60°-∠DCB=∠BCE,据此即可得证;②由△ACD≌△BCE知∠ADC=∠BEC=120°,结合∠CED=60°可得∠AEB=60°;(2)证△ACD≌△BCE得∠CDA=∠CED=60°,由∠ADB+∠CDA=∠DCE+∠CED知∠ADB=60°,根据CM⊥BE,且△CDE为等边三角形可得DE=2DM,DE+BD=BE=AD;(3)同理知△ACD≌△BCE,据此得∠BEC=∠ADC,继而知∠CDF+∠CEF=180°,即∠ECD+∠DFE=180°,从而得出答案.【解析】(1)①证明:∵△ACB和△DCE是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°-∠DCB=∠BCE,∴△ACD≌△BCE(SAS);②∵△ACD≌△BCE,∴∠ADC=∠BEC=180°-∠CDE=120°,又∵∠CED=60°,∴∠AEB=60°;(2)解:∠ADB=60°,2DM+BD=AD,理由如下;∵AC =BC ,CD =CE ,∠ACD =60°+∠DCB =∠BCE ,∴△ACD ≌△BCE (SAS ),∴∠CDA =∠CED =60°;∵∠ADB +∠CDA =∠DCE +∠CED ,∴∠ADB =60°;又∵CM ⊥BE ,且△CDE 为等边三角形,∴DE =2DM ,∴2DM +BD =BE =AD ;(3)解:α=60°,理由如下:同理可证△ACD ≌△BCE ,∴∠BEC =∠ADC ,∴∠CDF +∠CEF =180°,∴∠ECD +∠DFE =180°,而α+∠DFE =180°,∴α=∠ECD =60°.21.定义:我们把两条对角线互相垂直的四边形称为“垂美四边形”.(1)特例感知:如图1,四边形ABCD 是“垂美四边形”,如果13OA OD OB ==,2OB =,60OBC ∠=︒,则22AD BC +=______,22AB CD +=______.(2)猜想论证:如图1,如果四边形ABCD 是“垂美四边形”,猜想它的两组对边AB ,CD 与BC ,AD 之间的数量关系并给予证明.(3)拓展应用:如图2,分别以Rt ACB △的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连接CE ,BG ,GE ,已知4AC =,60BAC ∠=︒,求GE 长.【答案】(1)1529,1529(2)2222AB CD AD BC +=+,证明见解析(3)EG =【分析】(1)利用含30°角的直角三角形的性质得4BC =,OC =可得出答案;(2)由“垂美四边形”得90AOD BOC ∠=∠=︒,再根据勾股定理得22222222AB CD OA OB OD OC AD BC +=+++=+;(3)连接CG ,BE ,首先利用SAS 证明GAB CAE ∆≅∆,得GAB ACE ∠=∠,说明BG CE ⊥,从而得出2222BC GE CG BE +=+,进而解决问题.【解析】(1)解:13OA OD OB ==,2OB =,23OA OD ∴==,四边形ABCD 是“垂美四边形”,90AOD BOC ∴∠=∠=︒,60OBC ∠=︒,30BCO ∴∠=︒,4BC ∴=,OC =22222222152(2439AD BC OA OD BC ∴+=++=⨯+=,222222221529AB CD OA OB OD OC AD BC +=+++=+=,故答案为:1529,1529;(2)结论:2222AB CD AD BC +=+,证明:∵AC BD ⊥于点O ,∴90AOD ∠=︒,∴222AD OA OD =+.同理可得222AB OA OB =+,222BC OB OC =+,222CD OC OD =+∴2222AB CD AD BC +=+(3)解:如图:连接CG 、BE ,∵90GAC BAE ∠=∠=°,∴GAC CAB BAE CAB ∠+∠=∠+∠,∴GAB CAE ∠=∠,在GAB △和CAE V 中,AG AC GAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴GAB CAE V V ≌,∴AGB ACE ∠=∠,∵90AGB AMG ∠+∠=°,AMG BMC ∠=∠,∴90ACE CMB ∠+∠=°,∴BG CE ⊥,∴四边形GCBE 为垂美四边形,由(2)中结论可知2222EG BC CG BE +=+,∵4AC =,60BAC ∠=︒,∴30ABC ∠=︒,∴8AB =,B C =,∴22232CG AC ==,222128BE AB ==,∴24832128EG +=+,∴2112EG =,根据线段为正数可知EG =22.在ABC 中,90BAC ∠=︒,AB AC =,点D 是射线CB 上的动点(点D 不与点B 、C 重合),连接AD ,AE AD ⊥,且AE AD =,连接DE ,过点D 作DF BC ⊥,且DF BD =,连接CF.(1)如图1,当点D 是BC 中点时,DE 与CF 的数量关系是,位置关系是;(2)如图2,当点D 是线段BC 上任意一点时,(1)中的两个结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由;(3)若722AB =,3BD =时,请直接写出线段DE 的长.【答案】(1)DE CF =;DE CF∥(2)成立,证明见解析(3)5【分析】(1)由等腰直角三角形的性质得出AD =BD =CD ,证出CF ,DE ,∠ADE =45°,则可得出结论;(2)证明△ABD ≌△ACE (SAS ),由全等三角形的性质得出BD =CE ,∠ABD =∠ACE ,由直角三角形的性质及平行线的判定可证出结论;(3)分类讨论,当D 在线段BC 上时,当D 在CB 的延长线上时,由勾股定理可求出答案.【解析】(1)解:数量关系:DE CF =;位置关系:DE CF ∥;∵∠BAC =90°,AB =AC ,D 为BC 的中点,∴AD =BD =CD ,∵DF ⊥BD ,DF =BD ,∴∠FDC =90°,DF =CD ,∴CF CD ,∵EA ⊥AD ,AE =AD ,∴DE AD ,∠ADE =45°,∴CF =DE ,∵CD =DF ,∠CDF =90°,∴∠F =45°,∴∠ADE =∠F ,∴DE ∥CF .故答案为:DE =CF ,DE ∥CF ;(2)成立证明:如图2,连接CE .∵90BAC ∠=︒,AE AD ⊥,∴90BAD DAC CAE DAC ∠+∠=∠+∠=︒,∴BAD CAE ∠=∠,又∵AB AC =,AE AD =,∴()SAS ABD ACE △≌△,∴BD CE =,ABD ACE ∠=∠,∵90BAC ∠=︒,AB AC =,∴45ABC ACB ∠=∠=︒,∴45ACE ∠=︒,∴454590BCE ACB ACE ∠=∠+∠=︒+︒=︒,∴BC CE ⊥,∵DF BC ⊥,DF BD =,∴DF CE =,DE CF ∥,∴四边形DECF 是平行四边形,∴DE CF =,DE CF ∥;(3)∵AB =AC =22,∠BAC =90°,∴BC 27222=7,如图2,当D 在线段BC 上时,∵BD =DF =3,DF ⊥BC ,∴DC =BC ﹣BD =7﹣3=4,∴CF 5,由(2)可知,DE =CF =5.如图3,当D 在CB 的延长线上时,同理BC =7,DB =DF =3,∴DC =BC +DB =10,∴CF 连接CE ,同理可证四边形DCEF 为平行四边形,∵∠FDC =90°,∴四边形DCEF 为矩形,∴DE =CF综上所述,DE 5.23.如图1,90ACD ∠=︒,AC DC =,MN 是过点A 的直线,过点D 作DB MN ⊥于点B ,连接CB ;过点C 作CE CB ⊥,与MN 交于点E .(1)连接AD ,AD 是AC 的______倍;(2)直线MN 在图1所示位置时,可以得到线段BD 和AE 的数量关系是______,BD BA -与BC 之间的数量关系是______,请证明你的结论;(3)直线MN 绕点A 旋转到图2的位置,若2BD =,BCAB 的长为______(直接写结果);(4)直线MN 绕点A 旋转到图3的位置时,直接写出线段BA ,BC ,BD 之间的数量关系______.【答案】(2)AE =BD ,BD ﹣ABBC ;(3)4;(4)BA +BD BC【分析】(1)由90ACD ∠=︒,AC DC =,根据勾股定理可直接得出答案;(2)先证明△ACE ≌△DCB ,确定△ECB 为等腰直角三角形,即可得出答案;(3)先证明△ACE ≌△DCB ,CE =BC ,得到△BCE 为等腰直角三角形,得到AB =BD ,即可得出答案;(4)先证明△ACE ≌△DCB ,确定△ECB 为等腰直角三角形即可得出答案.【解析】(1)解:连接AD ,设AC =a ,则DC =a ,∴AD ===,即AD 是AC .(2)如图1,设AC 与BD 交于O ,由题可知,∠BCE =90°=∠ACD ,∴∠ACE =∠BCD ,∵BD ⊥MN ,∴∠ABD =90°=∠ACD ,∵∠AOB =∠DOC ,∴∠BAC =∠CDB ,∵AC =DC ,∴△ACE ≌△DCB (ASA ),∴CE =BC ,AE =BD ,∵∠BCE =90°,∴△ECB 为等腰直角三角形,∴BE BC ,∵BE =AE ﹣AB =BD ﹣AB ,∴BD ﹣AB BC ;故答案为:AE =BD ;BD ﹣AB ;(3)解:如图2,设CD 与MN 交于O ,由题可知,∠BCE =90°=∠ACD ,∴∠ACE =∠BCD ,∵BD ⊥MN ,∴∠ABD =90°=∠ACD ,∵∠AOC =∠DOB ,∴∠BAC =∠CDB ,∵AC =DC ,∴△ACE ≌△DCB (ASA ),∴CE =BC ,AE =BD ,∵∠BCE=90°,∴BE BC ,∵BE =AB ﹣AE =AB ﹣BD ,∴AB =BD ,∵BD =2,BC ,∴AB =BD=4,故答案为:4.(4)∴∠BCE =90°=∠ACD ,∴∠ACE =∠DCB ,∠CEB +∠CBE =90°,∵BD ⊥MN ,∴∠ABD =90°,∴∠CBE +∠CBD =90°,∴∠CEB =∠CBD ,∵AC =DC ,∴△ACE ≌△DCB (AAS ),∴CE =BC ,AE =BD ,∵∠BCE =90°,∴BEBC ,∵BE =AE +BA =BD +BA ,∴BA +BD,故答案为:BA +BDBC .24.两个顶角相等的等腰三角形,如果具有公共的顶角顶点,并将它们的底角顶点分别对应连接起来得到两个全等三角形,我们把这样的图形称为“手拉手”图形.如图1,在“手拉手”图形中,AB =AC ,AD =AE ,∠BAC =∠DAE ,连接BD ,CE ,则△ABD ≌△ACE.(1)请证明图1的结论成立;(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,求∠BOC 的度数;(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.【答案】(1)见解析(2)60°(3)∠A +∠BCD =180°,理由见解析【分析】(1)利用等式的性质得出∠BAD =∠CAE ,即可得出结论;(2)同(1)的方法判断出△ABD ≌△ACE ,得出∠ADB =∠AEC ,再利用对顶角和三角形的内角和定理判断出∠BOC =60°,即可得出答案;(3)先判断出△BDP 是等边三角形,得出BD =BP ,∠DBP =60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.【解析】(1)解:证明:∵∠BAC =∠DAE ,∴∠BAC +∠CAD =∠DAE +∠CAD ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );。
全等三角形-----------手拉手模型一、手拉手模型基本含义定义:所谓手拉手模型,是指有公共顶点的两个等腰三角形,顶角相等。
因为顶点相连的四条边,形象的可以看作两双手,所以通常称为手拉手模型。
二、基本图形:△ABC和△ADE均是等腰三角形,其中AC=AB,AD=AE,且∠BAC=∠DAE手拉手左手拉左手、右手拉右手基本特征:① ;② ;③ ;基本三、典例精析:➢类型一:共顶点的等边三角形中手拉手例1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,(1)证明:△ABE≌△DBC;(2)证明:AE=DC;(3)求线段AE和线段DC所夹∠AFD的度数.变式练习1:在例1的基础上,将△BEC绕点B逆时针旋转一定角度,连接AE,CD,如图.(1)证明:AE=DC;(2)求线段AE所在直线和线段DC所在直线之间的夹角.➢共顶点的等腰直角三角形的手拉手例2:如图,ACB∆均为等腰直角三角形,且90∆和DCEACB DCE∠=∠=︒,连接AD,BE.判断线段AD与线段BE之间的关系,请说明理由变式练习2:如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE、GC.(1)试猜想AE与GC有怎样的数量位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC. 你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.总结归纳:如下图△ABC和△ADE均是等腰三角形,其中AC=AB,AD=AE,且∠BAC=∠DAE=α,则∠BEC 的大小是多少?GEFDABCOE DA BCA B CD E 321AB DE全等三角形-----------手拉手模型课后练习1.如图,AB=AC ,AD=AE ,∠BAC=∠DAE ,∠1=25°,∠2=30°,则∠3=__________.2.如图,△ABD ,△AEC 都是等边三角形,BE 交CD 于点O ,求△DOE 的度数.3.如图,四边形ABCD ,BEFG 均为正方形,连接AG ,CE.(1)求证:AG=CE ;(2)求证:AG△CE.4.如图,AC=BC ,DC=EC ,∠ACB=∠ECD=90°,且∠EBD=42°,求∠AEB 的度数.。
手拉手模型
例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) ) (3) AE=DC
(4) AE 与DC 的夹角为60。
(5) △AGB ≌△DFB (6) △EGB ≌△CFB (7) BH 平分∠AHC (8) ` (9) GF ∥AC
,
%
》
H F
G
E D
|
变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) \ (
2) △ABE ≌△DBC (3) AE=DC
(4) AE 与DC 的夹角为60。
(5) AE 与DC 的交点设为H,BH 平分∠AHC
!
#
@
变式练习2:如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC
(2) AE=DC
(3) AE 与DC 的夹角为60。
、
(4)AE 与DC 的交点设为H,BH 平分∠AHC
*
!
例题2:如图,两个正方形ABCD 和DEFG ,连接AG 与CE ,二者相交于H 问:(1)△ADG ≌△CDE 是否成立
(2)AG 是否与CE 相等 %
(3)AG 与CE 之间的夹角为多少度 (4)HD 是否平分∠AHE
:
~。
例题3:如图两个等腰直角三角形ADC 与EDG ,连接AG,CE,二者相交于H.
问 (1)△ADG ≌△CDE 是否成立
(2)AG 是否与CE 相等 —
(3)AG 与CE 之间的夹角为多少度 (4)HD 是否平分∠AHE
]
{
'
例题4:两个等腰三角形ABD 与BCE ,其中AB=BD,CB=EB,∠ABD=∠CBE=a 连接AE 与CD.
问(1)△ABE ≌△DBC 是否成立
(2)AE 是否与CD 相等
(3)AE 与CD 之间的夹角为多少度 (4)HB 是否平分∠AHC
课程顾问签字: 教学主管签字:。