生物化学蛋白质生物合成
- 格式:ppt
- 大小:7.87 MB
- 文档页数:1
第十一章蛋白质的生物合成11-1 遗传密码(下册 P504,37章)蛋白质是生物主要的功能分子,它参与所有的生命活动过程,并起着主导作用。
蛋白质的合成由核酸所控制,决定蛋白质结构的遗传信息编码在核酸分子中。
遗传密码:编码氨基酸的核苷酸序列,通常指核苷酸三联体决定氨基酸的对应关系。
一一一三联密码:核酸分子中只有四种碱基,要为蛋白质分子20种氨基酸编码。
三个碱基编码64个,又称三联密码。
密码子:mRNA上有三个相邻核苷酸组成一个密码子,代表某种氨基酸、肽链合成的起始或终止信号。
蛋白质翻译:在RNA控制下根据核酸链上每3个核苷酸决定一种氨基酸的规则,合成出具有特定氨基酸顺序的蛋白质过程。
全部64个密码子破译后,编写出的遗传密码字典。
见P511 表37-5。
一一一遗传密码的基本特性一1一密码的基本单位遗传密码按5‘→3‘方向编码,为不重叠、无标点的三联体密码子。
起始密码子兼Met:AUG。
终止密码子:UAA、UAG和UGA。
其余61个密码子对应20种氨基酸。
一2一密码的简并性同一种氨基酸有两个或更多密码子的现象称为密码的简并性。
同一种氨基酸不同密码子称为同义密码子,氨基酸密码子的简并见P512表37-6。
简并可以减少有害突变,对物种稳定有一定作用。
一3一密码的变偶性(摆动性)编码同一个氨基酸的密码子前两位碱基都相同,第三位碱基不同,为变偶性。
即密码简并性往往表现在密码子第三位碱基上,如Gly的密码子为GGU、GGC、和GGA。
一4一密码的通用性和变异性通用性:各种低等和高等生物,包括病毒、细菌及真核生物基本上共用一套遗传密码。
变异性:已知线粒体DNA(mtDNA),还有原核生物支原体等少数生物基因密码有一定变异。
一5一密码的防错系统密码的编排方式使得密码子中一个碱基被置换,其结果常常是编码相同的氨基酸或是为物理化学性质接近的氨基酸取代。
11-2 蛋白质合成及转运下册 P5171、氨基酸是怎样被选择及掺入到多肽链当中去的。
第五节蛋白质生物合成的干扰与抑制2015-07-15 70941 0蛋白质生物合成是许多药物和毒素的作用靶点。
这些药物或毒素可以通过阻断真核或原核生物蛋白质合成体系中某组分的功能、从而干扰和抑制蛋白质生物合成过程。
真核生物与原核生物的翻译过程既相似又有差别,这些差别在临床医学中有重要应用价值。
如抗生素能杀灭细菌但对真核细胞无明显影响,可以蛋白质生物合成所必需的关键组分作为研究新的抗菌药物的靶点。
某些毒素也作用于基因信息传递过程,对毒素作用原理的了解,不仅能研究其致病机制,还可从中发现寻找新药的途径。
一、许多抗生素通过抑制肽链生物合成发挥作用某些抗生素( antibiotics)可抑制细胞的蛋白质合成,仅仅作用于原核细胞蛋白质合成的抗生素可作为抗菌药,抑制细菌生长和繁殖,预防和治疗感染性疾病。
作用于真核细胞的蛋白质合成的抗生素可以作为抗肿瘤药(表17-6)。
表17-6 常用抗生素抑制肽链生物合成的原理与应用(一)抑制肽链合成起始的抗生素伊短菌素( edeine)和密旋霉素(pactamycin)引起mRNA在核糖体上错位而阻碍翻译起始复合物的形成,对所有生物的蛋白质合成均有抑制作用。
伊短菌素还可以影响起始氨基酰-tRNA 的就位和IF-3的功能。
晚霉素(eveninomycin)结合于23S rRNA,阻止fMet-tRNAfMet的结合。
(二)抑制肽链延长的抗生素1.干扰进位的抗生素四环素( tetracycline)特异性结合30S亚基的A 位,抑制氨基酰-tRNA 的进位。
粉霉素(pulvomycin)可降低EF-Tu的GTP酶活性,从而抑制EF-Tu与氨基酰-tRNA结合;黄色霉素(kirromycin)阻止EF-Tu 从核糖体释出。
2.引起读码错误的抗生素氨基糖苷(aminoglycoside)类抗生素能与30S 亚基结合,影响翻译的准确性。
例如,链霉素( streptomycin)与30S亚基结合,改变A位上氨基酰-tRNA与其对应的密码子配对的精确性和效率,使氨基酰-tRNA与mRNA错配;潮霉素B(hygromycin B)和新霉素( neomycin)能与16S rRNA及rpS12结合,干扰30S亚基的解码部位,引起读码错误。
生物化学习题集:第十二章蛋白质的生物合成生物化学习题集:第十二章蛋白质的生物合成第十二章蛋白质的生物合成一、科学知识要点(一)蛋白质生物合成体系的重要组分蛋白质生物合成体系的关键组分主要包含mrna、trna、rrna、有关的酶以及几十种蛋白质因子。
其中,mrna就是蛋白质生物合成的轻易模板。
trna的促进作用彰显在三个方面:3@cca拒绝接受氨基酸;反密码子辨识mrna链上的密码子;相连接多肽链和核糖体。
rrna和几十种蛋白质共同组成制备蛋白质的场所――核糖体。
遗传密码的特点:无标点性、无重叠性;通用性和例外;简并性;变偶性。
(二)蛋白质白质生物合成的过程蛋白质生物合成的过程分四个步骤:氨基酸活化、肽链合成的起始、延伸、终止和释放。
其中,氨基酸活化即为氨酰trna的制备,反应由如上所述的氨酰trna合成酶催化剂,在胞液中展开。
氨酰trna合成酶既能够辨识如上所述的氨基酸,又能够若二随身携带该氨酰基的一组同功受体trna分子。
肽链合成的起始对于大肠杆菌等原核细胞来说,是70s起始复合物的形成。
它需要核糖体30s和50s亚基、带有起始密码子aug的mrna、fmet-trnaf、起始因子if1、if2、if3(分子量分别为10000、80000和21000的蛋白质)以及gtp和mg2+的参加。
肽链制备的延展须要70s初始复合物、氨酰-trna、三种延展因子:一种就是冷不稳定的ef-tu,另一种就是冷平衡的ef-ts,第三种就是倚赖gtp的ef-g以及gtp和mg2+。
肽链合成的终止和释放需要三个终止因子rf1、rf2、rf3蛋白的参与。
比较真核细胞蛋白质生物合成与原核细胞的不同。
(三)蛋白质合成后的修饰蛋白质制备后的几种润色方式:氨基末端的甲酰甲硫氨酸的切除术、肽链的卷曲、氨基酸残基的润色、乌回去一段肽链。
二、习题(一)(一)名词解释1.密码子(codon)2.反义密码子(synonymouscodon)3.反密码子(anticodon)4.变偶假说(wobblehypothesis)5.移码突变(frameshiftmutant)6.氨基酸同功受体(isoacceptor)7.反义rna(antisenserna)8.信号肽(signalpeptide)9.简并密码(degeneratecode)10.核糖体(ribosome)11.多核糖体(polysome)12.氨酰基部位(aminoacylsite)13.肽酰基部位(peptidysite)14.肽基转移酶(peptidyltransferase)15.氨酰-trna合成酶(aminoacy-trnasynthetase)16.蛋白质卷曲(proteinfolding)17.核蛋白体循环(polyribosome)18.锌指(zinefinger)19.亮氨酸拉链(leucinezipper)20.双键促进作用元件(cis-actingelement)21.反式促进作用因子(trans-actingfactor)22.螺旋-环路-螺旋(helix-loop-helix)(二)英文缩写符号1.if(initiationfactor):2.ef(elongationfactor):3.rf(releasefactor):4.hnrna(heterogeneousnuclearrna):5.fmet-trnaf:6.met-trnai:(三)填空题1.蛋白质的生物合成就是以______做为模板,______做为运输氨基酸的工具,_____做为制备的场所。
一、判断题一、判断题 1. 细胞中三种主要的多聚核苷酸tRNA 、mRNA 和rRNA 都参与蛋白质生物合成。
都参与蛋白质生物合成。
2. 蛋白质分子中的氨基酸顺序是由氨基酸与mRNA 携带的密码子之间互补作用决定的。
携带的密码子之间互补作用决定的。
3. fMet -tRNA fMet 是由对fMet 专一的氨酰tRNA 合成酶催化形成的。
合成酶催化形成的。
4. 一条新链合成开始时,fMet -tRNA fMet 与核糖体的A 位结合。
位结合。
5. 每一个相应的氨酰tRNA 与A 位点结合。
都需要一个延伸因子参加并需要消耗一个GTP 。
6. 蛋白质合成时从mRNA 的5′→3′端阅读密码子,肽链的合成从氨基端开始。
′端阅读密码子,肽链的合成从氨基端开始。
7. tRNA fMet 反密码子既可以是反密码子既可以是pUpApC 也可以是也可以是 pCpApU 。
8. 人工合成一段多聚尿苷酸作模板进行多肽合成时,只有一种氨基酸参入。
人工合成一段多聚尿苷酸作模板进行多肽合成时,只有一种氨基酸参入。
9. 氨酰tRNA 上的反密码子与mRNA 的密码子相互识别,以便把它所携带的氨基酸连接在正确位置上。
正确位置上。
10. 每个氨基酸都能直接与mRNA 密码子相结合。
密码子相结合。
11. 每个tRNA 上的反密码子只能识别一个密码子。
上的反密码子只能识别一个密码子。
12. 多肽或蛋白质分子中一个氨基酸被另一个氨基酸取代是由于基因突变的结果。
13. 蛋白质正确的生物合成取决于携带氨基酸的tRNA 与mRNA 上的密码子正确识别。
二、填空题二、填空题1. 原核细胞中新生肽链N 端的第一个氨基酸是端的第一个氨基酸是 ,必须由相应的酶切除。
,必须由相应的酶切除。
2. 当每个肽键形成终了时,增长的肽链以肽酰tRNA 的形式留在核糖体的的形式留在核糖体的 位 3. 在 过程中水解ATP 的两个高能磷酸酯键释放出的能量足以驱动肽键的合成。
第十二章蛋白质的生物合成一、蛋白质生物合成体系:生物体内的各种蛋白质都是生物体利用约20种氨基酸为原料自行合成的。
蛋白质的生物合成过程,就是将DNA传递给mRNA的遗传信息,再具体的解译为蛋白质中氨基酸排列顺序的过程,这一过程被称为翻译(translation)。
参与蛋白质生物合成的各种因素构成了蛋白质合成体系,该体系包括:1.mRNA:作为指导蛋白质生物合成的模板。
mRNA中每三个相邻的核苷酸组成三联体,代表一个氨基酸的信息,此三联体就称为密码。
共有64种不同的密码。
遗传密码具有以下特点:①连续性;②简并性;③通用性;④方向性;⑤摆动性;⑥起始密码:AUG;终止密码:UAA、UAG、UGA。
2.tRNA:在氨基酸tRNA合成酶催化下,特定的tRNA可与相应的氨基酸结合,生成氨基酰tRNA,从而携带氨基酸参与蛋白质的生物合成。
tRNA反密码环中部的三个核苷酸构成三联体,可以识别mRNA上相应的密码,此三联体就称为反密码。
反密码对密码的识别,通常也是根据碱基互补原则,即A—U,G—C配对。
但反密码的第一个核苷酸与第三核苷酸之间的配对,并不严格遵循碱基互补原则,这种配对称为不稳定配对。
能够识别mRNA中5′端起动密码AUG的tRNA称为起动tRNA。
在原核生物中,起动tRNA是tRNAfmet;而在真核生物中,起动tRNA是tRNAmet。
3.rRNA和核蛋白体:原核生物中的核蛋白体大小为70S,可分为30S小亚基和50S大亚基。
真核生物中的核蛋白体大小为80S,也分为40S小亚基和60S大亚基。
核蛋白体的大、小亚基分别有不同的功能:⑴小亚基:可与mRNA、GTP和起动tRNA结合。
⑵大亚基:①具有两个不同的tRNA结合点。
A位——受位或氨酰基位,可与新进入的氨基酰tRNA 结合;P位——给位或肽酰基位,可与延伸中的肽酰基tRNA结合。
②具有转肽酶活性。
在蛋白质生物合成过程中,常常由若干核蛋白体结合在同一mRNA分子上,同时进行翻译。