管式静态混合器流量怎么计算
- 格式:docx
- 大小:23.41 KB
- 文档页数:9
管式静态混合器流量怎么计算根据静态混合器连续操作的特点,定义描述其混合效果的混合度表达式,并利用不相溶的两相流体混合后的体积等于它们各自体积之和的原理,建立动态求取各组分体积分数和流量分数的计算方法和实验装置.结果表明:利用该方法测定静态混合器的混合效果避免了多点取样,提高了测量的准确性并减少了实验时间,可以用于混合产品质量的在线检测,并为静态混合器的结构设计和工艺设计提供参考依据.2管式混合器混合设备的基本要求是,药剂与水的混合必须均匀,混合设备种类较多,常用的有水泵混合,管式混合,机械混合。
水泵混合效果较好,不需要另外建设混合设施,节省动力,大中小型水厂均可以使用,但是采用三氯化铁作为混凝剂时,若投药量较大,药剂对水泵叶轮有轻微的腐蚀作用。
当水泵距离反应池较远时,不宜采用水泵混合。
机械混合是在池子内安装搅拌设备,以电动机驱动搅拌器使水与药剂混合,机械搅拌的优点是混合效果好,且不受水量变化的影响,适用于各种规模的水厂,缺点是增加机械设备并且相应增加维修费用,目前广泛采用的是管式混合器。
方式优缺点适用条件管式混合优点:1.设备简单2.不占地缺点: 1.当流量减小时可能在中反应混凝2.一般管道混合效果较差,但采用静态管式混合器效果好,但水头损失大. 适用于流量变化不大的水厂混合池混合优点:1.混合效果好2.某些池型能调节水头高低,适应流量变化缺点:1.占地面积大2.某些进水方式要带入大量气体适用于大中型水厂水泵混合优点:1.设备简单2.混合充分,混合效果好3.不消耗动能缺点:吸水管较多时投药设备要增加,安装管理复杂适用于一级泵房距离处理构筑物120米以内的各种规模的水厂浆板式机械混合优点:1.混合效果好2.水头损失小缺点:1.需要动能设备2.管理维护比较复杂适用于各种规模的水厂杭州西区水厂设计采用静态管式混合器,静态管式混合器混合效果好,主要由混合组件构成,将它放入絮凝池进水管道中即可,混合组件可以用钢板剪切成椭圆形,在轴线处上下弯折成26.5度的夹角,各个组件相互垂直交叉,在端点处焊接既为一节组件。
管道混合器的计算和选型应用范围a液液混合b液气混合c液固混合d气气混合e强化传热静态混合器的技术参数与压力降计算(1)各种静态混合器的使用范围流体特性流状流速m/s中、高粘度层流0.1~0.3低、中粘度过渡流或湍流0.3~0.8(2)静态混合器的长度与混合效果(3)静态混合器的压力降计算物流一工作温度T140℃物流一体积流量V180m3/h物流二工作温度T240℃物流二体积流量V22m3/h物流一密度ρ1710kg/m3物流一粘度μ10.0289Pa.s物流二密度ρ21000kg/m3物流二粘度μ20.02Pa.s物流一输送压力P1 1.6Mpa(G)静态混合器允许压P0.3Mpa (G)物流二输送压力P2 1.6Mpa(G)静态混合器直径D0.2m初选L/D10静态混合器型号SK(根据流体的粘度判断)物流体积流量V82.0m3/h工作条件下连续相流体密度ρc710kg/m3工作条件下连续相粘度μ0.0289Pa.s流体流速u0.73m/s混合器长度L2ma SV、SX、SL型计算空隙率ε1(查表)水力直径dh15mm(查表)雷诺数Re267.2摩擦系数f 3.18压力降△P79110Pa结论选型正确b SH、SK型计算雷诺数Re D3562.47627摩擦系数f 3.18压力降△P5933.2Pa结论选型正确c气-气混合压力降计算公式气-气混合一般均采用SV型静态混合器水力直径dh15mm(查表)压力降△P0.62838168Pa结论选型正确注: 1.蓝色为需要输入的数据2.红色为得到的结果。
计算说明书水厂的设计水量Q 设计水厂自用水量的大小取决于给水处理方法、构筑物型式以及原水水质等因素,一般采用最高日用水量的5%~10%,这里取5%。
根据城市用水量状况,为10万吨/日的供水量,所以Q 供水=1000003m /d=4166.73m /h=1157.4L/S而水厂的处理水量则要加上自用水量Q 设计=Q 供水*〔1+0.05〕=1050003m /d=43753m /h=1215.3L/S=1.2153m /S 混合工艺设计计算考虑设絮凝池2座,混合采用管式混合。
设水厂进水管投药口至絮凝池的距离为50米。
进水管采用两条, 设计流量为Q=96300/24/2=0.557 3/m s 。
进水管采用钢管,直径为DN800,查设计手册1册,设计流速为1.11m/s ,1000i=1.8m ,混合管段的水头损失50 1.80.091000h iL m ⨯==≈。
小于管式混合水头损失要求为。
这说明仅靠进水管内流速不能到达充分混合的要求。
故需在进水管内装设管道混合器,本设计推荐采用管式静态混合器,管式静态混合器示意图见图4.3。
1. 设计参数:采用玻璃钢管式静态混合器〔如图4.3〕,近期采用2个。
每组混合器处理水量为0.608m 3/s ,水厂进水管投药口至絮凝池的距离为10m ,,进水管采用两条DN800钢管。
2. 设计计算:管式静态混合器的水头损失一般小于0.5米,根据水头损失计算公式式中,h ——水头损失〔m 〕Q ——处理水量〔m 3/s 〕d ——管道直径〔m 〕n ——混合单元〔个〕本次设计中,采用两条铸铁输水管道由水源地向给水厂输水,其中原水流速不小于0.6m/s ,在技术上最高流速限定在2.5~3.0m/s 的范围内。
此外还需要根据当地的经济条件,考虑管网造价和经营管理费用等因素,来选出适宜的经济流速。
本次设计中经济流速取1.25[1]m/s ,每条输水管的输水流量为0.608m3/s 。
一、管式静态混合器 1设计参数设计总进水量为Q=200000m 3/d ,水厂进水管投药口靠近水流方向的第一个混合单元,投药管插入管径的1/3处,且投药管上多处开孔,使药液均匀分布,进水管采用两条,流速v=1.5m/s 。
计算草图如图4-2。
图4.2 管式静态混合器计算草图2 设计计算2.1设计管径静态混合器设在絮凝池进水管中,设计流量s md m n Q q 3315.11000002200000====; 则静态混合器管径为:mv q D 45.05.114.315.14π4=××==,本设计采用D=500mm ; 2.2混合单元数按下式计算27.245.05.136.236.23.05.03.05.0=××==Dv N ,本设计取N=3;则混合器的混合长度为:m DN L 65.135.01.11.1=××== 2.3混合时间T=s v L 1.15.165.1== 2.4水头损失m n d q h 143.035.015.11184.01184.04.424.42=××==<0.5m,符合设计要求。
2.5校核GT 值1306.69564.2101.1143.09800=×××=••=s T v h g G ,在500-10001s 之间,符合设计要求。
95.183464.206.695=×=GT二、机械搅拌器已知Q=20万m^3/d,设k=1.05,n=7,t=20min则W=QT/60n=(200000*1.05*20)/(24*60*7)=417m^3三、 沉淀澄清设备的设计斜管沉淀池是浅池理论在实际中的具体应用,按照斜管中的水流方向,分为异向流、同向流、和侧向流三种形式。
斜管沉淀池具有停留时间短、沉淀效率高、节省占地等优点。
本设计沉淀池采用斜管沉淀池,设计7组。
静态混合器计算1.1 选类型选型依据:HG/T 20570.20-95 静态混合器设计已知:在工作温度为35℃,系统压力为1.8MPa 下,静态混合器各股物流的物料 质量流率 kg/h 密度 kg/m³ 体积流率 m³/h 粘度 mPa·s 直馏柴油 27777.8 810.4 34.28 2.03 液氨 116.0 587.4 0.20 10.5 乙二醇 3472.2 1102.0 3.15 0.0136 Σ31366.037.63根据表1.1,三股物料粘度均小于100mP·s ,选择SV 型静态混合器较合适。
1.2 流速总体积流量:h /m 63.374.5870.116110210472.34.8101078.27333321=+⨯+⨯=++=V V V V 根据表1.2,选择静态混合器管径为:mm 150=D流体流速:m/s 589.0360015.04468.373600422=⨯⨯=⨯=ππD V u对于低、中粘度流体的混合、萃取、中和、传热、中速反应,适宜于过渡流或湍流条件下工作,流体流速控制在m/s 8.0~3.0,m/s 589.0=u 符合情况。
1.3 具体型号选长径比为10=D L ,则 mm 150015010=⨯=L ,且设计压力为P=2.0MPa ,查表1.2,水力直径h d 取6mm ,所以该静态混合器型号规格为:SV-6/150-4.0-1500。
1.4 反应时间[]⎰-=Af X 0A AA0)(X R dX c t由于环烷酸与液氨的反应为1.5级反应,所以:()5.1Af 5.1A01X kc r -= []()⎰⎰-=-=Af Af05.1Af 5.1A0AA00A A A01)(X X X kc dX c X R dX c t 积分得:()5.0A05.0 Af 5.011kc X t ⋅--=-式中:k —为反应速率常数,-0.5-11.5kmol s m 89.49⋅⋅=k ;Af X —环烷酸转化率,由设计要求可得%3.99Af =X ; A0c —环烷酸浓度。
管道流量计算公式是这样的管道流量计算公式1:1/4∏×管径的平方(毫米单位换算成米单位)×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s 管道流量计算公式2:一般取水的流速1--3米/秒,按1.5米/秒算时: DN=SQRT(4000q/u/3.14)流量q,流速u,管径DN。
开平方SQRT。
其实两个公式是一样的,只是表述不同而已。
另外,水流量跟水压也有很大的关系,但是现在我们至少可以计算出大体的水流量来了备注:1.DN为Nomial Diameter 公称直径(nominal diameter),又称平均外径(mean outside diameter)。
这是缘自金属管的管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。
因为单位有公制(mm)及英制(inch)的区分,所以有下列的称呼方法。
1. 以公制(mm)为基准,称 DN (metric unit)2. 以英制(inch)为基准,称NB(inch unit)3. DN (nominal diameter)NB (nominal bore)OD (outside diameter)4. 【例】镀锌钢管DN50,sch 20镀锌钢管NB2”,sch 205. 管道流量计算公式外径与DN,NB的关系如下:------DN(mm)--------NB(inch)-------OD(mm) 15-------------- 1/2--------------21.3 20--------------3/4 --------------26.7 25-------------- 1 ----------------33.4 32-------------- 1 1/4 -----------42.2 40-------------- 1 1/2 -----------48.3 50-------------- 2 -----------60.3 65-------------- 2 1/2 -----------73.0 80-------------- 3 -----------88.9 100-------------- 4 ------------114.3 125-------------- 5 ------------139.8。
by Neil
流体在一定时间内通过某一横断面的容积或重量称为流量。
用容积表示流量单位是L/s或
(`m^3`/h);用重量表示流量单位是kg/s或t/h。
米/分钟)等于流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位为
m/s。
流量与管道断面及流速成正比,三者之间关系:
`Q = ∏/4* D^2) · v · 3600 `(`m^3` / h )
或: ∏ r^2*v
式中 Q — 流量(`m ^3` / h 或 t / h );
D — 管道内径(m);
V — 流体平均速度(m / s)。
根据上式,当流速一定时,其流量与管径的平方成正比,在施工中遇到管径替代时,应进行计算后方
可代用。
例如用二根DN50的管代替一根DN100的管是不允许的,从公式得知DN100的管道流量是DN50管
道流量的4倍,因此必须用4根DN50的管才能代用DN100的管。
量单位是L/s或
体的平均流速,单位为
径替代时,应进行计算后方DN100的管道流量是DN50管。
管道流量计算公式资料讲解蒸汽管道设计表ssccsy蒸汽管道设计表。
流量(kg/hour)管道口径Pipe Size(mm)DN_蒸汽压力(bar)蒸汽流速(m/s)饱和蒸汽管道流量选型表(流速30米/秒)(流量:公斤/小时)压力BAR.管道口径(mm)备注:1Pa=100bar.油管的选取小样~油管的选取油管的选取。
问题:液压系统中液压泵的额定压力位6.3mpa,输出流量为40l/min,怎么确定油管规格。
压力管路为15通径,管子外径22,管子接头M27X2。
3.回油管路.1~3m/s同样根据公式计算,回油管路在17~29mm,往标准上靠的话,可以选20通径或者25通径,如果安装空间允许当然选大的好,25通径的管子外径为34,接头螺纹M42X2如果选20通径的话,管子外径28,螺纹M33X2以上说的都是国标,你也可以往美标等上靠,基本上差不多。
压缩空气管径、流量及相关晴天多云如:标准状态下流量为5430Nm3/h,换算成0.85MPa下流量为5430/8.5=639m3/h, 取流速为15m/s, 可以求得管径为123,取整为DN125的管径。
自吸泵的扬程、距离和功率的关系_百度知道李12子自吸泵的扬程、距离和功率的关系_百度知道自吸泵的扬程、距离和功率的关系悬赏分:10 - 提问时间2010-6-16 22: 58.我需要一台汽油机水泵,自吸式,要求水平运输水150米左右,垂直运输2米,请问一台扬程为32米,功率为2.8马力,流量为25吨/h的水泵能满足要求吗?管道气体流量的计算公式。
浅墨微澜管道气体流量的计算公式。
1、管道气体流量的计算是指气体的标准状态流量或是指指定工况下的气体流量。
未经温度压力工况修正的气体流量的公式为:流速*截面面积经过温度压力工况修正的气体流量的公式为:流速*截面面积*(压力*10+1)*(T+20)/(T+t)压力:气体在载流截面处的压力,MPa; T:绝对温度,273.15 t:气体在载流截面处的实际温度2、Q=Dn*Dn*V*(P1+1bar)/353Q 为标况流量;关于消防设计几点问题辉煌华宇"并注明消火栓给水管道设计流速不宜超过2.5m/s,而厦门消防部门规定室外消防给水管道流速不能大于1.2m/s,笔者对此规定有不同的看法。
流量与管径、压力、流速的一般关系一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。
流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。
其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。
水头损失计算Chezy 公式这里:Q ——断面水流量(m3/s)C ——Chezy糙率系数(m1/2/s)A ——断面面积(m2)R ——水力半径(m)S ——水力坡度(m/m)根据需要也可以变换为其它表示方法:Darcy-Weisbach公式由于这里:h f——沿程水头损失(mm3/s)f ——Darcy-Weisbach水头损失系数(无量纲)l ——管道长度(m)d ——管道内径(mm)v ——管道流速(m/s)g ——重力加速度(m/s2)水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。
输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。
1.1 管道常用沿程水头损失计算公式及适用条件管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。
输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。
紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。
管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。
水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。
沿程水头损失水力计算公式和摩阻系数表1 >10雷诺数>500达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。
管式静态混合器流量怎么计算根据静态混合器连续操作的特点,定义描述其混合效果的混合度表达式,并利用不相溶的两相流体混合后的体积等于它们各自体积之和的原理,建立动态求取各组分体积分数和流量分数的计算方法和实验装置.结果表明:利用该方法测定静态混合器的混合效果避免了多点取样,提高了测量的准确性并减少了实验时间,可以用于混合产品质量的在线检测,并为静态混合器的结构设计和工艺设计提供参考依据.2管式混合器混合设备的基本要求是,药剂与水的混合必须均匀,混合设备种类较多,常用的有水泵混合,管式混合,机械混合。
水泵混合效果较好,不需要另外建设混合设施,节省动力,大中小型水厂均可以使用,但是采用三氯化铁作为混凝剂时,若投药量较大,药剂对水泵叶轮有轻微的腐蚀作用。
当水泵距离反应池较远时,不宜采用水泵混合。
机械混合是在池子内安装搅拌设备,以电动机驱动搅拌器使水与药剂混合,机械搅拌的优点是混合效果好,且不受水量变化的影响,适用于各种规模的水厂,缺点是增加机械设备并且相应增加维修费用,目前广泛采用的是管式混合器。
方式优缺点适用条件管式混合优点:1.设备简单2.不占地缺点: 1.当流量减小时可能在中反应混凝2.一般管道混合效果较差,但采用静态管式混合器效果好,但水头损失大. 适用于流量变化不大的水厂混合池混合优点:1.混合效果好2.某些池型能调节水头高低,适应流量变化缺点:1.占地面积大2.某些进水方式要带入大量气体适用于大中型水厂水泵混合优点:1.设备简单2.混合充分,混合效果好3.不消耗动能缺点:吸水管较多时投药设备要增加,安装管理复杂适用于一级泵房距离处理构筑物120米以内的各种规模的水厂浆板式机械混合优点:1.混合效果好2.水头损失小缺点:1.需要动能设备2.管理维护比较复杂适用于各种规模的水厂杭州西区水厂设计采用静态管式混合器,静态管式混合器混合效果好,主要由混合组件构成,将它放入絮凝池进水管道中即可,混合组件可以用钢板剪切成椭圆形,在轴线处上下弯折成26.5度的夹角,各个组件相互垂直交叉,在端点处焊接既为一节组件。
应用范围a液液混合b液气混合c液固混合d气气混合e强化传热静态混合器的技术参数与压力降计算(1)各种静态混合器的使用范围流体特性流状流速m/s中、高粘度层流0.1~0.3低、中粘度过渡流或湍流0.3~0.8(2)静态混合器的长度与混合效果(3)静态混合器的压力降计算物流一工作温度T130℃物流一体积流量V1 1.8m3/h物流二工作温度T230℃物流二体积流量V20.36m3/h物流一密度ρ11100kg/m3物流一粘度μ10.18616Pa.s物流二密度ρ2920kg/m3物流二粘度μ20.18464Pa.s物流一输送压力P10.1Mpa(G)静态混合器允许压P0.02Mpa(G)物流二输送压力P20.4Mpa(G)静态混合器直径D0.1m初选L/D15静态混合器型号SL(根据流体的粘度判断)物流体积流量V 2.2m3/h工作条件下连续相流体密度ρc1100kg/m3工作条件下连续相粘度μ0.1862Pa.s流体流速u0.08m/s混合器长度L 1.5ma SV、SX、SL型计算空隙率ε1(查表)水力直径dh50mm(查表)雷诺数Re22.6摩擦系数f9.83压力降△P946Pa结论选型正确b SH、SK型计算雷诺数Re D45.1406371摩擦系数f13.43压力降△P646.7Pa结论选型正确c气-气混合压力降计算公式气-气混合一般均采用SV型静态混合器水力直径dh20mm(查表)压力降△P0.01567072Pa结论选型正确注: 1.蓝色为需要输入的数据2.红色为得到的结果。
一、管式静态混合器 1设计参数设计总进水量为Q=200000m 3/d ,水厂进水管投药口靠近水流方向的第一个混合单元,投药管插入管径的1/3处,且投药管上多处开孔,使药液均匀分布,进水管采用两条,流速v=1.5m/s 。
计算草图如图4-2。
图4.2 管式静态混合器计算草图2 设计计算2.1设计管径静态混合器设在絮凝池进水管中,设计流量s md m n Q q 3315.11000002200000====; 那么静态混合器管径为:mv q D 45.05.114.315.14π4=××==,本设计采用D=500mm ; 2.2混合单元数按下式计算27.245.05.136.236.23.05.03.05.0=××==Dv N ,本设计取N=3;那么混合器的混合长度为:m DN L 65.135.01.11.1=××== 2.3混合时间T=s v L 1.15.165.1== 2.4水头损失m n d q h 143.035.015.11184.01184.04.424.42=××==<0.5m,符合设计要求。
2.5校核GT 值1306.69564.2101.1143.09800=×××=••=s T v h g G ,在500-10001s 之间,符合设计要求。
95.183464.206.695=×=GT二、机械搅拌器Q=20万m^3/d,设k=1.05,n=7,t=20min那么W=QT/60n=(200000*1.05*20)/(24*60*7)=417m^3三、 沉淀澄清设备的设计斜管沉淀池是浅池理论在实际中的具体应用,按照斜管中的水流方向,分为异向流、同向流、和侧向流三种形式。
斜管沉淀池具有停留时间短、沉淀效率高、节省占地等优点。
本设计沉淀池采用斜管沉淀池,设计7组。
管道流量计算方式DN15、DN25、DN50管径的截面积分别为:DN15:15²*3.14/4=176.625平方毫米,合0.0177平方分米。
DN25:25²*3.14/4=490.625平方毫米,合0.0491平方分米。
DN50:50²*3.14/4=1962.5平方毫米,合0.1963平方分米。
设管道流速为V=4米/秒,即V=40分米/秒,且1升=1立方分米,则管道的流量分别为(截面积乘以流速):DN15管道:流量Q=0.0177*40=0.708升/秒,合2.55立方米/小时。
DN25管道:流量Q=0.0491*40=1.964升/秒,合7.07立方米/小时。
DN50管道:流量Q=0.1963*40=7.852升/秒,合28.27立方米/小时。
注:必须给定流速才能计算流量,上述是按照4米/秒计算的。
电缆载流量电缆载流量:电缆载流量是指一条电缆线路在输送电能时所通过的电流量,在热稳定条件下,当电缆导体达到长期允许工作温度时的电缆载流量称为电缆长期允许载流量。
电缆载流量口决估算口诀二点五下乘以九,往上减一顺号走。
三十五乘三点五,双双成组减点五。
条件有变加折算,高温九折铜升级。
穿管根数二三四,八七六折满载流。
说明(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是”截面乘上一定的倍数”来表示,通过心算而得。
由表5 3可以看出:倍数随截面的增大而减小。
“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。
如2.5mm’导线,载流量为 2.5×9=22.5(A)。
从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。
“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。