以均苯四甲酸根为桥联配体的双核钴_II_配合物的合成与磁性_英文_
- 格式:pdf
- 大小:224.83 KB
- 文档页数:7
间苯二甲酸根桥联双核钴(Ⅱ)配合物的合成,表征和…
焉翠蔚;郑永军
【期刊名称】《曲阜师范大学学报:自然科学版》
【年(卷),期】1996(022)002
【摘要】合成了两个新型的双核钴(Ⅱ)配合物:[Co2(IPHTA)(bpy)4](ClO4)2(1)和Co2(IPHTA)(tmd)4](ClO4)2(2)(IPHT代表间苯二甲酸根阴离子;bpy和tmd分别为2,2'-联吡啶和1,3-丙二胺的缩写。
)基于元素分析、红外光谱、电子光谱、电导及磁性测量等方法已推定配合物具有间苯二甲酸根桥联结构,每个钴(Ⅱ)离子处于畸变的八面体环境。
测定了配合物的变温磁化率,
【总页数】4页(P101-104)
【作者】焉翠蔚;郑永军
【作者单位】不详;不详
【正文语种】中文
【中图分类】O614.812
【相关文献】
1.四溴代对苯二甲酸根桥联的双核钴(II)配合物的合成和表征 [J], 缪明明;孙献茹
2.二氰氨根[N(CN)2-]/三氰甲根[C(CN)3-]桥联双核钌RuⅡRuⅢ混合价配合物的设计合成、表征和电子传递行为 [J], 张礼仪;诸月梅;施林熙;陈忠宁
3.铁磁偶合的间苯二甲酸根桥联Cu(Ⅱ)-Cu(Ⅱ)双核配合物的合成与表征 [J], 李延
团;焉翠蔚;廖代正;姜宗慧;王耕霖
4.草酰胺桥联大环二羰四胺铜(Ⅱ)-钴(Ⅱ)异双核配合物的合成、结构、表征和电化学性质 [J], 陶偌偈;臧双全;赵阁;娄本勇;牛景扬;周绪亚
5.二环己酮草酰二腙桥联的双核钴(Ⅱ)配合物的合成、表征及电化学行为 [J], 景志红;郭道军;郁章玉
因版权原因,仅展示原文概要,查看原文内容请购买。
Experiment: the preparation of a cobalt (III) complexesFirst, the purpose of the experimentMaster the most common method of preparation of metal complexes - substitution reaction and the oxidation-reduction reaction in the aqueous solution;Second, the experimental principleThe use of the aqueous solution of the substitution reaction of preparation of metal complexes, is the reaction between a metal and a ligand in an aqueous solution. Actually is a suitable ligand to replace the water molecules in the hydrated complex ions. The oxidation-reduction reaction, the different oxidation states of the metal complex, it appropriate oxidation or reduction of the metal complexes in the presence of ligand.Co (II) complexes can be quickly substituted reaction (activity), and Co (III) complexes of a substitution reaction is very slow (which is inert). Co (III) complex preparation process is generally by Co (II) (actually it is hydrated with a rapid response generated Co (II) complexes thereof), and between the ligand, then it oxidized to the corresponding Co (III) complexes (the coordination number is six).The Common Co (III) complexes: [Co (NH3) 6] 3 + (yellow), [Co (NH3) 5H2O] 3 + (pink), [Co (NH3) 5Cl] 2 + (purple) , [Co (NH3) 4CO3] + (mauve), [Co (NH3) 3 (NO2) 3] (yellow), [Co (CN) 6] - (purple), [Co (NO2) 6] 3 + (yellow) and the like.Third, laboratory suppliesInstruments and materials: electronic scales, beakers, Erlenmeyer flasks, graduated cylinders, mortar, funnel, iron sets, kerosene lamp, and a test tube (15 mL), dropper, medicine spoon, test tube holder, funnel stand, asbestos net, thermometer, filter paper, etc. .Solid drugs: ammonium chloride, cobalt chloride,Liquid medicines: concentrated ammonia, hydrochloric acid (6 mol / L, concentration) and H2O2 (30%).Experimental1 Preparation of Co (III) complexesConical flask, 1.0g of ammonium chloride was dissolved in 6 mL of concentrated aqueous ammonia, holding tapered bottleneck continuous oscillation to be completely dissolved, the solution was homogeneous. Fractional added 2.0g cobalt chloride powder plus side shake, plus after continue to shake the solution brown slurry. Further wherein the dropwise addition of hydrogen peroxide (30%) 2-3ml, plus side edge shaking, and then the addition was complete shaking When the solution stopped bubbling, 6 mL of concentrated hydrochloric acid was slowly added, plus side shaking, and alcohol lamp micro heat, can not be heated to boiling (the temperature should not exceed 85 ° C) by heating for 10-15 minutes while shaking side, then at room temperature the mixture was cooled and shaken until completely cooled, the precipitate filtered off. Precipitation scores washes with 5 mL of cold water, followed by cold 5 mL of 6 mol / L hydrochloric acid washing, product drying and weighing around 105 ℃.Preview content1, to make the high yield of the product prepared in this experiment, What steps do you think is more critical? Why?2 Summary prepared Co (Ⅲ) complex chemical principles and the preparation of several steps.实验:一种钴(III)配合物的制备一、实验目的掌握制备金属配合物的最常用的方法――水溶液中的取代反应和氧化还原反应;二、实验原理运用水溶液的取代反应来制取金属配合物,是在水溶液中的一种金属盐和一种配体之间的反应。
混合桥联的双核镍(Ⅱ)配合物的合成、结构与磁性研究郑利娜;胡斌;陈文倩;陈砚美;雷涛;李亚红【摘要】通过溶剂热法合成了一种基于吡啶-2-甲醛肟(Hpyco)配体和吡啶-2-甲酸(Hpa)配体的配合物[Ni2(Hpyco)2(pa)(EtOH)Cl3] (1),并用元素分析、红外光谱、X-射线单晶衍射对化合物的结构进行了表征.晶体属单斜晶系,P21/c空间群.晶体结构中2个Ni(Ⅱ)离子通过1个以μ1,1方式配位的氯原子和1个以μ1,1连接的羧酸氧原子桥联.配合物1的低温磁化率测定结果表明,Ni(Ⅱ)…Ni(Ⅱ)之间存在铁磁相互作用.%A complex of the composition [Ni2(Hpyco)2(pa)(EtOH)Cl3] (1) (Hpyco=pyridine-2-carbaldehyde oxime;Hpa=2-picolinic acid) has been synthesized via solvothermal synthetic method, and fully characterized by X-ray single crystal diffraction, IR and elemental analysis. Crystal structure analysis revealed that 1 contains carboxylic oxygen atom bridged and chloro bridged dinuclear core with each Ni (II) ion displaying pseudo-octahedron geometry. Low-temperature magnetic susceptibility measurement for the solid sample of 1 revealed the ferromagneticNi(Ⅱ)…Ni(Ⅱ) interactions. CCDC: 806916.【期刊名称】《无机化学学报》【年(卷),期】2011(027)011【总页数】5页(P2162-2166)【关键词】混合桥联;镍双核配合物;晶体结构;磁性;吡啶-2-甲醛肟;吡啶-2-甲酸【作者】郑利娜;胡斌;陈文倩;陈砚美;雷涛;李亚红【作者单位】江苏省有机合成重点实验室,苏州大学材料与化学化工学部,苏州215123;中国科学院青海盐湖研究所,西宁810008;江苏省有机合成重点实验室,苏州大学材料与化学化工学部,苏州 215123;中国科学院青海盐湖研究所,西宁810008;中国科学院青海盐湖研究所,西宁810008;江苏省有机合成重点实验室,苏州大学材料与化学化工学部,苏州 215123;中国科学院青海盐湖研究所,西宁810008【正文语种】中文【中图分类】O614.81+3由于过渡金属多核配合物在催化、磁性材料、光学材料和酶模拟等方面具有潜在的应用而受到众多化学研究者的广泛关注[1-10]。
氯桥联双核Mn(Ⅱ)配合物的合成、结构与磁性张丽芳;倪中海;魏贤勇;崔爱莉;寇会忠【期刊名称】《南开大学学报(自然科学版)》【年(卷),期】2009(042)002【摘要】合成了一个氯离子桥联的双核锰(I)配合物[Mn2(phen)4(μ-Cl)2][Fe(bpdmb)(CN)2]2·3H2O(1)(bpdmb2-=1,2-bis(pyridine-2-carboxamido)-4,5-dimethylbenzenate),表征了其结构和磁性.晶体结构解析结果表明该配合物包含双CI--桥联的双核锰(Ⅱ)阳离子和两个一价[Fe(bpdmb)(CN)2]-电荷平衡阴离子.配合物呈反铁磁性,说明通过Cl-桥锰-锰离子间存在反铁磁相互作用.基于哈密顿算符(H)=-2J(S)Mn1(S)Mn2推导出的磁化率公式与实验数据进行拟和得到磁耦合参数J=-0.593(9)cm-1.【总页数】6页(P23-28)【作者】张丽芳;倪中海;魏贤勇;崔爱莉;寇会忠【作者单位】清华大学化学系,北京,100084;中国矿业大学化工学院,江苏,徐州,221008;中国矿业大学化工学院,江苏,徐州,221008;清华大学化学系,北京,100084;清华大学化学系,北京,100084;清华大学化学系,北京,100084【正文语种】中文【中图分类】O614【相关文献】1.双核Ni(Ⅱ)氯醌酸阴离子桥联配合物的合成和磁性 [J], 郝松琪2.氯冉酸根桥联双核铬(Ⅲ)配合物的合成与磁性 [J], 胡春霞;李延团3.氯冉酸根桥联的双核铬(III)配合物的合成与磁性研究 [J], 李延团;张玉华;汪海东;曾宪诚4.氯冉酸阴离子桥联双核铜(Ⅱ)配合物的合成和磁性 [J], 郝松琪;姜宗慧5.氯冉酸阴离子桥联的Nd(Ⅲ)-Nd(Ⅲ),Dy(Ⅲ)-Dy(Ⅲ)和Ho(Ⅲ)-Ho(Ⅲ)双核配合物的合成与磁性 [J], 姜宗慧;刘宗明;廖代正;王耕霖因版权原因,仅展示原文概要,查看原文内容请购买。
多羧酸类配体(tp,btec,H2IDA,debp)构筑的配位聚合物的设计、合成、结构及性质摘要配位聚合物由于结构上的多样性以及在吸附、催化、磁性等新材料领域潜在的应用价值,近年来这一领域的研究成为集基础研究和应用研究于一体的前沿课题。
按照晶体工程的原理,通过选择特定几何构型的中心金属离子和特殊的有机配体可以在一定程度上实现晶态材料的的定向设计和合成,其中,具有螺旋结构的的材料的设计与和合成是目前研究的挑战与热点。
螺旋结构在自然界普遍存在,但是在合成材料中还是比较少见的。
最近,通过配体和金属离子的自组装设计合成具有螺旋结构的的配位聚合物已经取得了很多进展,但是大多数还都是使用含有磷酸,亚磷酸以及氧化物的无机螺旋结构。
本研究采用溶液法、水热法以二元或多元羧酸(对苯二甲酸,均苯四酸,亚氨基二乙酸,4,4’一二羧酸一2,2'-联吡啶,3,3’.二羧酸.2,2’.联吡啶等)为主要的桥联配体与过渡金属Zn2+,cd2+,Cu2+,主族金属Pb2+及稀土金属离子构筑多种配位聚合物,并对它们的晶体结构和性质进行了表征。
本文共分为五部分。
首先概述了配位聚合物的基本概念、研究进展、羧酸类配体构筑的配位聚合物总览以及常用合成方法。
以剐性芳香族多羧酸化合物对苯二甲酸,均苯四酸为配体与具有d10结构的过渡金属在不同条件下形成不同的配合物,并研究了它们的荧光性质,提出许多d旧电子组态的金属,如zrl2+,Cd2+,Cu+,Ar等与对苯二甲酸构成的配位聚合物都表现出明显的荧光性质。
以均苯四酸为桥联配体与Cd”形成三维配位聚合物,该聚合物中有直径为9.3×4.7A的孔道,水分子填充在孔道之中,同时该化合物也有好的荧光性质。
氨基酸类配体是被广泛研究使用的配体,此类配体具有较多的配位点,因其在生物等领域的应用而备受重视。
以柔性的二羧酸一亚氨基二乙酸为配体,邻菲罗啉为第二配体与cu2*形成独立的配合物分子,并且从实验和理论上对该化合物的光谱进行了研究。
一种Tb(Ⅲ)配合物的合成、结构及发光性能研究迟玉贤;房立钧;杨艳红【摘要】One new Tb(Ⅲ) coordination complex with the ligand p-nitrobenzoic acid, [Tb2 (C7H4NO4)6 (H2O)4·H2O]n, has been synthesized by the hydrothermal method. Its structure was determined by single-crystal X-ray diffraction. The structure analysis indicates that the complex crystallizes in the triclinic is space group P-1. Each asymmetric unit contains two crystallographically independent Tb(Ⅲ) ions, I. E. , Tbl is eight-coordinated and Tb2 is nine-coordinated. In the crystal, Tb(Ⅲ) ions are connected through p-nitrobenzoates into a 1D chain along a direction. The p-nitrobenzoates adopt three kinds of coordination modes, chelating bidentate, bridging bidentate and bridging tridentate. Moreover, these 1D chains are further connected by three types of hydrogen bonds to form 2D hydrogen bonding network. At room temperature in the solid state, the IR, UV-Vis-NIR, excitation and emission spectra of the complex were measured and analyzed. The study of photophysical properties reveals that the complex exhibits intense characteristic emissions of Tb(Ⅲ) ion with the excitation of visible light at room temperature (λex=488 nm) , which should be attributed to the sensitization from the organic ligand.%采用水热合成方法,以对硝基苯甲酸为配体,合成了1种具有1D链状结构的Tb(Ⅲ)配合物[Tb2(C7H4NO4)6(H2O)4·H2O]n,通过X-射线单晶衍射确定了该配合物的晶体结构.结构分析表明,该配合物属三斜晶系,P-1空间群,配合物的不对称单元中包含2个不等效的Tb(Ⅲ)离子,Tb1为8配位,Tb2为9配位.在晶体中,Tb(Ⅲ)离子被对硝基苯甲酸根连成1D链状结构,其中,对硝基苯甲酸根采取3种配位模式,即螯合双齿,桥联双齿,桥联三齿.而1D链之间又通过3种类型的O-H…O氢键被连成2D氢键网络结构.在室温下,测定了该配合物晶体粉末的IR(红外)、UV-Vis-NIR(紫外-可见-近红外)吸收光谱以及荧光激发和发射光谱.光物理研究表明,该配合物在可见光的激发下(λEx=488nm),表现出较强的Tb(Ⅲ)的特征发射,这主要归功于配体的敏化作用.【期刊名称】《辽宁师范大学学报(自然科学版)》【年(卷),期】2012(035)001【总页数】5页(P88-92)【关键词】Tb(Ⅲ)配合物;晶体结构;发光性质【作者】迟玉贤;房立钧;杨艳红【作者单位】辽宁师范大学化学化工学院,辽宁大连 116029;辽宁师范大学化学化工学院,辽宁大连 116029;辽宁师范大学化学化工学院,辽宁大连 116029【正文语种】中文【中图分类】O614.3近些年来,关于稀土配合物的研究一直备受重视,因为它们不但具有丰富多彩的晶体结构,并且在光、电、磁等方面具有潜在的应用价值,尤其是它们独特的发光性能在发光材料研究方面具有重要的研究意义[1-2].但是,Ln(Ⅲ)离子的f-f跃迁是部分禁阻的,吸收系数小,发光强度弱.所以,将在紫外或可见区具有强吸收的平面共轭结构的有机配体引入体系,利用有机配体来增强Ln(Ⅲ)离子发光,即“天线效应”[3-4].在可见区具有发光的Sm(Ⅲ)、Eu(Ⅲ)、Tb(Ⅲ)等配合物的荧光单色性好、发光强度高,是一类具有独特性能的发光材料[5-6].例如,将Tb(Ⅲ)配合物复合于苯乙烯/甲基丙烯酸的共聚体系中,制备出具有发光性能的透明树脂,结果表明复合后的稀土配合物光学树脂具有较高的发光效率[7].又如以均苯四甲酸为配体的Tb(Ⅲ)配合物,稳定性好,荧光强度高,可用来标记蛋白质,对抗体或抗原进行微量分析,也可用来检测植物中生长激素的含量[8].然而,要合成具有良好发光性能的稀土配合物,配体的选择是至关重要的[9].笔者以对硝基苯甲酸为配体,合成了1种Tb(Ⅲ)配合物,对配合物的晶体结构进行了解析,并进行了光物理性能的研究.室温下,该配合物在488nm光的照射下可发出较强的绿光,表现出Tb(Ⅲ)的特征发射.1 实验部分1.1 试剂和仪器对硝基苯甲酸,丙二酸均为分析纯,Tb(NO3)3·6H2O是用Tb4O7(99.99%)与分析纯的硝酸自制.晶体结构测定采用Bruker Smart APEX-II X射线单晶衍射仪测定;IR光谱采用日本JASCO公司FT/IR—480型傅立叶变换红外光谱仪测定;紫外可见吸收光谱采用JASCO公司V—570型紫外/可见/近红外分光光度计测定;荧光光谱采用JASCO公司FP—6500型荧光光谱仪测定;配合物的元素含量由PE—240C元素分析仪测定.1.2 配合物[Tb2(C7H4NO4)6(H2O)4·H2O]n的合成称取0.10g(约0.6mmol)对硝基苯甲酸溶于5mL乙醇中,得无色溶液(I);称取0.30g(约0.6mmol)Tb(NO3)3·6H2O溶于5mL水中,得溶液(II);称取0.03g(约0.3mmol)丙二酸溶于5mL水中,得溶液(III).搅拌条件下,将溶液(I)加入到溶液(II)中,溶液变浑浊,再将溶液(III)滴加到上述混合液中,用1mol/L NaOH溶液调pH≈5,溶液仍为浑浊.将混合液转移到内衬聚四氟乙烯的不锈钢反应釜中,恒温100℃反应7d后,自然冷却至室温,过滤,滤液静置数十天后析出浅黄色块状晶体.该晶体在室温下可以稳定存在,不溶于水、乙醇和DMF.该配合物的分子式为Tb2C42H34N6O29,分子量为1404.59.元素分析实验值(%)C:35.25;H:2.73;N:5.63.理论计算值(%)C:35.76;H:2.42;N:5.98.1.3 配合物晶体结构测定在293K温度下,选取合适的浅黄色透明晶体样品,在Bruker Smart APEX-II X 射线单晶衍射仪上收集衍射数据,以 Mo-Kα射线(λ=0.071 073nm)作为辐射源,采用ω扫描方式.晶体结构用直接法解出,经全矩阵最小二乘程序修正.全部计算和绘图采用SHELXTL程序系统完成.配合物主要晶体学数据列于表1中.表1 配合物的主要晶体学数据Table 1 Crystallographic data and structure refinement parameters for the complex化学式,分子量Tb2C42H34N6O29,1404.59-1 a,b,c/nm 0.939 52(12),1.544 47(19),1.869 3(2)α,β,γ/° 75.310(2),80.536(2),77.648(2)晶胞体积/nm3,Z值2.545 69(5),2 Dc/g·cm-3,F(000) 1.833,1 380 θrange for data collection/(°) 2.27~29.10 Limiting indices -12≤h≤11,-20≤k≤20,-24≤l≤20衍射点/独立衍射点 15 948/11 760[R(int)=0.023 2]Goof值 1.009最终R 值[I>2σ(I)] R1=0.039 9,wR2=0.075 9 Δρmax,Δρmin(103 e· nm-3) 0.889,晶系,空间群 Triclinic,P-0.8492 结果与讨论2.1 晶体结构描述图1 配合物的不对称单元Fig.1 The asymmetric unit of the complex图2 配合物沿a方向的1D链Fig.2 1Dchain structure of the complex along a direction结构分析表明,该配合物属三斜晶系,P-1空间群,是1个具有1D无限结构的Tb(Ⅲ)配位聚合物,其不对称单元为[Tb2(C7H4NO4)6(H2O)4·H2O].每个单元中包含2个不等效的Tb(Ⅲ)离子,6个对硝基苯甲酸根,4个配位水和1个结晶水分子(图1).Tb1为8配位,其中5个O原子来自于5个不同的对硝基苯甲酸根,剩余3个O原子来自于配位水分子,Tb1-O键长在0.230 5(3)~0.247 4(3)nm之间.Tb2是9配位,8个O原子来自于6个不同的对硝基苯甲酸根,剩下1个O原子来自于配位水分子,Tb2-O键长在0.229 2(3)~0.290 8(4)nm范围.在晶体中,对硝基苯甲酸根采用了3种配位模式,即螯合双齿,桥联双齿,桥联三齿.不对称单元中的Tb1和Tb2是由3个对硝基苯甲酸根连接在一起的,其中2个对硝基苯甲酸根采取桥联双齿的配位模式,而剩余1个对硝基苯甲酸根采取桥联三齿的配位模式.相邻单元中的Tb(Ⅲ)离子则是通过2个对硝基苯甲酸根以桥联双齿的方式连接在一起,并沿a方向无限延伸,形成1D链状结构(图2).另外,晶体中存在O—H…O型氢键.即配位水分子(O3)与相邻链中的对硝基苯甲酸根的1个硝基氧原子(O26)形成氢键(O3—H…O26,0.288 4nm),从而将配合物连成1D双链结构(图3).同时结晶水分子(O27)规则的排布在1D 双链之间,与配位水分子(O4)和对硝基苯甲酸根的羧基氧原子(O11)形成氢键(O4—H…O27,0.267 5nm;O27—H…O11,0.290 1nm),最终将该配合物在ac面上形成2D氢键网络结构(图4).图3 配合物的1D双链结构Fig.3 1Ddouble-chain structure of the complex 图4 图4配合物的2D氢键网络结构Fig.4 2Dhydrogen bonding network of the complex2.2 配合物的光物理性能2.2.1 配合物红外光谱在室温下,以KBr压片测定了该配合物的IR光谱,并进行分析指认.在配合物的IR谱中(图5),出现了羧基的反对称伸缩振动νas-COO-(1 615cm-1)和对称伸缩振动νs-COO-(1 421cm-1)的吸收峰.其Δν=194cm-1,小于200cm-1,说明 COO-上的2个 O均参与配位[10].在1 522cm-1和1 349cm-1表现出硝基的反对称伸缩振动νas-NOO-和对称伸缩振动νs-NOO-吸收峰.而518cm-1和342cm-1的吸收带可指认为Tb—O振动峰,详细指认见表2.表2 配合物的红外光谱指认Table 2 Assignments for IR spectra of the complex图5 配合物的IR光谱Fig.5 The IR spectrum of the complex2.2.2 配合物UV-Vis吸收光谱室温下,测定了配合物固体粉末的UV-Vis-NIR 吸收光谱(图6),其在200~420nm表现出配体较强的π→π*跃迁吸收带.与配体对硝基苯甲酸的吸收光谱相比,其在468nm处出现1个吸收带,可指认为对硝基苯甲酸与Tb(Ⅲ)形成配合物后产生的LMCT(Ligand-to-Metal Charge Transfer,配体到金属的电荷转移)跃迁,说明有机配体的确可将能量传递给Tb (Ⅲ).另外在配合物的电子吸收光谱中没有Tb(Ⅲ)离子的特征吸收,这是因为Tb(Ⅲ)的f-f*跃迁是禁阻跃迁.2.2.3 配合物发光性质的研究在室温下,测定了配合物固体粉末的激发和发射光谱(图7).以λEm=545nm为监测波长,测定该配合物的激发光谱,得到其最佳激发波长位于488nm,并且从其激发光谱与配体对硝基苯甲酸的吸收光谱可以明显看出,配体与Tb(Ⅲ)的激发态能级匹配较好,表明对硝基苯甲酸应该能有效敏化Tb(Ⅲ)的离子的特征发光.在λEx=488nm激发下,配合物在518、545、585、621nm表现出Tb(Ⅲ)的4个特征发射带,可分别指认为Tb(Ⅲ)的5 D4→7FJ(J=6,5,4,3)跃迁.值得一提的是该配合物是用可见光(488nm)激发,得到了545nm处的绿光,这对于光学成像技术有重要的意义.图6 配合物(-),对硝基苯甲酸(…)的UV-VIS-NIR光谱Fig.6 The UV-Vis-NIR spectra of the complex(-)and p-nitrobenzoic acid(…)图7 配合物的荧光光谱(发射-,激发…)Fig.7 The fluorescence spectra of the complex(emission-,excitation…)参考文献:[1]YU Q Y,ZHOU X X,LIU M S,et al.Syntheses,characterization and luminescence of two lanthanide complexes[Ln2(acetate)6(H2O)4]·4H2O [Ln= Tb(1),Sm(2)][J].Rare Earths,2008,26(2):178-184.[2]MANSEKI K,HASEGAWA Y,WADA Y,et al.Visible and near-infrared luminescence from self-assembled lanthanide(Ⅲ)clusters with organic photosensitizers[J].Luminescence,2007,122-123:262-264. [3]牛淑云,李艳莹,金晶,等.系列 Ni-Ln(Ⅲ)配合物的合成、晶体结构及光物理性质[Ln(Ⅲ)= Tb,Eu,Nd][J].辽宁师范大学学报:自然科学版,2009,32(4):462-465.[4]XU H B,LI X,ZHANG L Y,et al.Structures and photophysical properties of homo-and heteronuclear lanthanide(Ⅲ)complexes with bridging 2-Methyl-8-hydroxylquinoline(HMq)in theμ-phenol mode [J].Crystal Growth and Design,2010,10(9):4101-4108.[5]ZHOU Y H,CHEN M D,GUO S L,et al.Photoluminescence properties of dinuclear lanthanide complexes in visible and near-infrared region[J].Rare Earths,2010,28(5):660-665.[6]GAWRYSZEWSKA P,CIUNIK Z.Structure and photophysical properties of new lanthanide(Ⅲ)complexes[Ln(C10H8O6)1.5(H2 O)3]·H2O[J].Photochemistry and Photobiology A:Chemistry,2009,202(1):1-9.[7]王冬梅,林权,符连社,等.含稀土铽(Ⅲ)配合物透明树脂的制备及性能研究[J].高等学校化学学报,2001,22(4):695-697.[8]任慧娟,洪广言,宋心远.均苯四甲酸铽发光配合物的合成与表征[J].稀土,2004,25(6):48-51.[9]HUANG Y,YAN B,SHAO M.Synthesis,crystal structure and photoluminescent properties of four lanthanide 5-nitroisophthalate coordination polymers[J].Solid State Chemistry,2009,182(4):657-668.[10]李维芬,郑倩,崔元靖,等.铽与5-氨基间苯二甲酸配合物的合成及发光性能[J].材料科学与工程学报,2009,27(1):40-42.。
1,2,4,5-苯四甲酸Zn(Ⅱ)配合物的合成、晶体结构及热稳定性石显璘;郑长征;薛凝;杨森;武耀博【摘要】以1,2,4,5-苯四甲酸(H4 BTA)为主要配体,加入辅配4,4 '联吡啶(bipy)和金属盐Zn(NO3)2·6H2O,通过水热法合成出一个Zn(Ⅱ)的配合物晶体[Zn(H2 BTA) (bipy)(H2 O)]n.通过元素分析、红外光谱、X-射线单晶洐射、热重分析和X-射线粉末衍射等手段对此配合物的特性进行表征.X-射线单晶衍射结果表明,此配合物属于单斜晶系,P21/n空间群,晶胞参数为a=0.948 9(3)nm,b=0.7274(2)nm,c=1.625 2(4)nm,α=90.00°,β=95.22(4)°,γ=90.00°,V=1.11711(50)nm3,Z=4;热重分析结果表明其具有较好的稳定性;X-射线粉末洐射分析结果表明其具有较高纯度.【期刊名称】《纺织高校基础科学学报》【年(卷),期】2015(028)003【总页数】5页(P348-352)【关键词】1,2,4,5-苯四甲酸;4,4 '-联吡啶;晶体结构;锌配合物;热稳定性【作者】石显璘;郑长征;薛凝;杨森;武耀博【作者单位】西安工程大学环境与化学工程学院,陕西西安710048;西安工程大学环境与化学工程学院,陕西西安710048;西安工程大学环境与化学工程学院,陕西西安710048;西安工程大学环境与化学工程学院,陕西西安710048;西安工程大学环境与化学工程学院,陕西西安710048【正文语种】中文【中图分类】O626羧酸配体在合成金属-有机配位聚合物的众多配体中具有重要地位.由于羧酸配体骨架较稳定,羧基的配位能力强,且羧基的配位模式灵活多变,因此其在金属-有机配位聚合物的合成中得到了广泛应用[1-7].以羧酸类配体为原料设计合成的配位聚合物结构新颖多样,在光学、气体储存、催化和磁性材料等领域具有广阔的发展前景和应用价值,深受广大学者的重视.1,2,4,5-苯四甲酸具有很好的对称性,在一定的条件下,苯环上的四个羧酸可以部分或者全部去质子化参与配位.另外,质子化的羧基还可以作为氢键的给体和受体[8-9],因此其是构筑金属有机骨架配合物的理想材料[10-11].辅助配体的添加对配合物的构筑也有很大的影响,最常见的如桥连的含氮配体[12],4,4′-联吡啶.4,4′-联吡啶是直线型分子,它可作为桥连配体通过两个吡啶环上的氮原子与中心金属离子配位.含氮配体类配位模式稳定,常以端基的形式起配位作用,与其他配体如羧酸类配体等形成混和配体配位,构筑出许多结构新颖的配位聚合物[13-15].因此,本文以1,2,4,5-苯四甲酸(H4BTA)为主要配体,加入辅配4,4′-联吡啶(bipy)和金属盐Zn(NO3)2·6H2O合成出一个Zn(Ⅱ)的配合物晶体[Zn(H2BTA)(bipy)(H2O)]n.1.1 仪器与试剂(1) 仪器 Bruker Smart-APEXIIXCCD射线单晶衍射仪(德国Bruker公司),Vario EL Ⅲ元素分析仪(德国Elementar 公司),FT IR-8400红外光谱仪(日本岛津公司),TGA/S DTA851e热重分析仪(瑞士METTLER公司),D/Max-3c全自动X射线衍射仪(日本Rigalcu公司),DGG-9070BD自动程控烘箱(杭州卓驰仪器有限公司),CP114电子天平(上海奥豪斯仪器有限公司),水热反应釜(济南恒化科技有限公司).(2 )试剂 1,2,4,5-苯四甲酸、4,4′-联吡啶(梯希爱上海化成工业发展有限公司)、N,N-二甲基甲酰胺、硝酸锌(天津市福晨化学试剂厂)、二次蒸馏水.1.2 配合物的合成及晶体的培养将0.1mmol 的Zn(NO3)2·6H2O(29.7mg)、0.1mmol H4BTA配体(25.4mg)、0.1mmol辅配bipy (15.6mg)、1mL DMF和9mL二次蒸馏水封入25mL带聚四氟乙烯内衬的不锈钢水热反应釜内,在100℃下晶化72h,然后以3℃·h-1 的控温速率降至室温,得到白色透明晶体,用DMF将晶体充分洗涤并低温烘干.元素分析结果(%)显示实测值(计算值)为C,39.73(39.80);H, 1.24(1.99);N,4.62(4.64).1.3 晶体结构的测定选取大小合适、几何形状规则、光滑而透明的配合物晶体置于Bruker Smart-APEX Ⅱ CCD单晶衍射仪上,在温度296(2) K下,用经石墨单色器单色化的MoKα射线(λ=0.071 073nm),以φ-ω 扫描方式收集晶体的衍射数据,对全部衍射数据进行经验吸收校正及Lp校正. 晶体结构通过SHELXL-97软件由直接法解出[16].采用理论加氢的方法确定氢原子,对氢原子和非氢原子分别采用各向同性和各向异性热参数,进行全矩阵最小二乘法修正[17].晶体结构解析和精修均由SHELXL-97完成.配合物的晶体学数据及结构精修参数均列于表1.2.1 红外光谱分析采用KBr压片法测定配体(H4BTA)及Zn(Ⅱ)配合物在波数为4 000~500cm-1范围内的红外光谱(图1)。
文章编号:0490-6756(2001)06-0856-07SYNTHESIS AND MAGNETIC PROPERTIES OF BINUCLEARC OBALT (Ⅱ)C OMPLEXES WITH TETRACARBOXYLATOGR OUPS AS BRIDGING LIGANDL I Y an -tuan 1,Y AN Cui -wei 2,CHEN Yong 1,ZENG X ian -cheng1,*(1.The Faculty of Chemistry ,Sichuan University ,Chengdu 610064,China ;2.Qufu Normal University ,Shan -dong Qufu 273165,China )Abstract :Three new (μ-tetracarboxylato binuclear cobalt (II )com plexes described by theoverall formula [Co 2(PM TA )(L )4],w here PM TA represents the tetraanio n of py romellitic acid ;and L deno tes o -benzenediamine (obda ),2-dimethylaminoethylamine (Me2en )o r 3-dimethy -laminopropylamine (Me 2pn ),respectively ,have been synthesized and characterized by elementalanalyses ,molar conductivity measurements ,I R and electronic spectra .It is proposed that thesecomplexes have PM TA -bridged structures and consist of two cobalt (II )ions ,each in a distortedoctahedral environment .The [Co 2(PM TA )(M e 2pn )4]complex w as further characterized byvariable temperature mag netic susceptibility measurements (4~300K )and the observed datawere successfully simulated by the equation based on the spin Hamiltonian operator , H =2J S 1·S 2,giving the exchange integ ral J =-0.28cm -1.The result revealed the operatio n of antifer -rom agnetic spin -ex change interaction betw een the tw o Co (II )ions within the molecule .Key words :μ-tetracarbo xylato ;binuclear cobalt (II )complex ,mag netic property ;sy nthesis ;characterizationCLC number :Q67 Document Code :A 1 IntroductionThe syntheses and long -range magnetic exchange interactions of binuclear transition -metal complexes ,in w hich spin coupling betw een paramagnetic metals is propagated by multiatom bridges ,have been an active field of research in recent years ,not only for gaining some insight into the pathw ays of electron transfers in biological systems ,but also for obtaining information about designing and synthesizing molecule -based magnets ,and for investigating the spin -exchange mech -anism betw een paramagnetic metal ions [1~10].In view of the bridging functaion the tetraanion of pyromellitic acid (abbreviated as PM TA ),Chaudhuri et al [6].first utilized the PM TA as a multiatom bridge to synthesize the binuclear cop -per (II )complex [LCu (μ-tetracarboxylato )CuL ]·4H 2O (L =1,4,7-trimethyl -1,4,7-triazacy -clononane ).It has been revealed by the single crystal X -ray and magnetic analyses [6]that the long -range antiferro -magnetic coupling could occur betw een the copper (II )ions bridged by the PM TA ligand although the Cu …Cu separation is 7.8 .In order to provide more examples of PM TAReceived :1999-12-29Foundation team :T he National N atural Science Foundation of China (29873031)*Corresponding autho r 2001年12月第38卷第6期四川大学学报(自然科学版)Journal of Sichuan University (Natural Science Edition )Dec .2001Vol .38 No .6-bridged binuclear complexes and to understand better the factors affecting the superexchange in -teractions propagated by PM TA ,it w as necessary to synthesize a series of binuclear complexes of essentially the same structure except for the metal ion .In this paper ,we describe the synthesis and magnetic property of three new cobalt (II )binuclear complexes using the PM TA as a bridging ligand :[Co 2(PM TA )(M e 2pn )4](1)and [Co 2(PM TA )(Me 2en )4](2)and [Co 2(PM TA )(obda )4](3),w here PM TA represents the tetraanion of py romellitic acid ,and ob -da ,M e 2en and M e 2pn denote o -benzenediamine ,2-dimethylaminoethylamine or 3-dimethy -laminopropylamine ,respectively .2 Experimental2.1 MaterialsThe hydrated cobalt (II )perchlorate w as prepared and purified by the literature method [9].Py romellitic acid (H 4PM TA )(Beiging Chem .Co .),LiOH (H 2O (Shanghai Chem .Co .)and the terminal ligands o -benzenediamine (obda )(Shanghai Chem .Co .),2-dimethylaminoethylamine (M e 2en )or 3-dimethyl -aminopropylamine (Me 2pn )(analytical grade ,Aldrich Co .)w ere used as commercially obtained .2.2 Synthesis of binuclear complexes2.2.1 Synthesis of [Co 2(PM TA )(Me 2pn )4](1) To a solution of 254.3mg (1mmol )of py -romellitic acid in methanol (15mL )was added dropw ise a methanol solution (20mL )of 167.8mg (4mmol )of LiOH ·H 2O under stirring at room temperature .The stirring w as continued until the mixture became clear .This solution w as then filtered .To the filtrate w as added a methanol solution (15mL )of 731.8mg (2mmol )of Co (ClO 4)2·6H 2O and 408.7mg (4mmol )of M e 2pn in 20mL methanol solution under N 2.The color of the solution changed immediately from orange to red and a small amount of precipitate formed .Stirring w as continued for 8h ,the precipitate formed w as filtered ,w ashed w ith methanol ,w ater and diethyl ether for several times and dried w ith P 2O 5under reduced pressure .Recrystallization w as carried out from acetonitrile /ethanol (4∶1)mixture .Yield ,582.5(80%);mp ,197.5℃.Found :C ,46.17;H ,7.42;N ,14.20;Co ,15.03%.Anal .calc .for C 30H 58N 8O 8Co 2(M .W .776.70):C ,46.39;H ,7.53;N ,14.43;Co ,15.18%.2.2.2 Synthesis of [Co 2(PM TA )(M e 2en )4](2) This complex w as obtained as orange -red mi -crocrystals by the same procedure using M e 2en instead of M e 2pn .Yield ,540.4mg (75%);mp ,213℃.Found :C ,43.18;H ,6.73;N ,15.21;Co ,16.04%.Anal .calc .for C 26H 50N 8O 8Co 2(M .W .720.60):C ,43.34;H ,6.99;N ,15.55;Co ,16.36%.2.2.3 Synthesis of [Co 2(PM TA )(obda )4](3) This complex w as obtained as reddish micro -crystals by the same procedure as above ,using obad instead of M e 2pn .It was recrystallized from a hot DM F solution .yield ,680.5mg (85%);mp ,257℃.Found :C ,50.89;H ,4.19;N ,13.81;Co ,14.50%.Anal .calc .for C 34H 34N 8O 8Co 2(M .W .800.56):C ,51.01;H ,4.28;N ,14.00;Co ,14.72%.857第6期李延团等:以均苯四甲酸根为桥联配体的双核钴(II )配合物的合成与磁性2.3 Physical measurementsC ,H and N analyses were performed w ith a M odel 240Perkin -Elmer elemental analyzer .The metal contents w ere determined by EDTA titration .The IR spectra w ere measured on a Shi -madzu infrared spectrometer Model 810in KBr pellets .Reflectance spect ra were measured on a Hitachi -340spect rophotometer .The melting points of the complexes were determined by a M odel XT 7-1micro -melting point meter .Molar conductances were measured (DM F solution )w ith a Shanghai DDS -11A conductometer .Variable temperature magnetic susceptibilities (4~300K )w ere measured using a M odel M PMS -5magnetometer .Diamagnetic corrections w ere made w ith Pascal 's constants [11]for all the constituent atoms and the effective magnetic moments w ere calcu -lated by the equation μeff =2.828(χM T )1/2,w here χM is the magnetic susceptibility per molecule corrected for diamagnetism of the constituting atoms .3 Results and Discussion3.1 Preparation and coordination environment of the binuclear complexesThe PM TA -bridged binuclear complexes w ere obtained by the reaction of H 2PM TA w ith Co (ClO 4)2·6H 2O and L (L =Me 2en ,M e 2pn ,obda )in methanol solution in the presence of a base .The use of LiOH ·H 2O as the base gave good results because it and its salt (LiClO 4)formed in the reaction are fairly soluble in methanol and the products are little contaminated with these in -organic materials .Indeed ,elemental analytic data for the new ly prepared complexes indicate that the reaction of PM TA w ith Co (ClO 4)2·6H 2O and L (L =M e 2en ,M e 2pn ,obda )yielded the bin -uclear complexes of the general formula [Co 2(PM TA )L 4].Based on the conductivity measure -ments ,spectroscopic characterization and magnetic studies (vide infra )these complexes are pre -sumed to have the coordination environment as show n in Fig 1.Fig 1. Suggested coo rdination environment of the complexes (N N =Me 2en ,M e 2pn ,obda )3.2 Solu bility and molar condu ctanceAll the binuclear complexes are sparingly soluble in w ater ,ethanol ,carbon tetrachloride ,chloroform and benzene ,but soluble in acetone ,acetonitrile ,DMF and DM SO to give stable solu -tion at room temperature .For the three complexes ,the molar conductance values in DMF solution (see Table 1)show that all the complexes are non -elect rolytes [12].This is consistent w ith the mea -sured IR data .858四川大学学报(自然科学版)第38卷3.3 Infrared spectraThe IR spectra taken in the region 4000~400cm -1provide some information regarding the mode of coordination in the complexes and w ere analysed in comparison with that of the free ligand (H 4PM TA ).The most relevant IR absorption bands due to the complexes together with their as -signments are show n in Table 1.The IR spectrum of pyromellitic acid shows a broad band at near1700cm -1w hich is attributed to ν(C =O )of the carboxylic g roup .However ,in the IR spectra of all complexes ,this band disappeared ,accompanied by the appearance of two characteristic strongand broad bands at ca .1600cm -1and 1370cm -1attributed to νas (CO -2)(1630~1610cm -1and νs (CO -2)(1380~1370cm -1)stretching vibrations of the coordinated carboxylate groups .The absence of any splitting of the νas (CO -2)and νs (CO -2)bands strongly suggests the end -to -end lik -ing of the PM TA ligand in an equivalent way at both sites [5].M oreover ,the coordination modes ofcarboxylate g roups have often been diagnosed by the separation betw een νas (CO -2)and νs (CO -2).That is ,bidentate carboxylate g roups show a separation smaller than 200cm -1w hereas unidentatecarboxylate groups show a separation larger than 200cm -1Thus ,for the present complexes ,thesetwo bands w ere separated by ca .240cm -1(see Table 1),suggesting an unidentate coordinationmode for the four carboxylato groups of the PM TA ligand [13].The unidentate coordination modes of the carboxylates in PM TA w ere supported by the crystal st ructure of the analogous complex[LCu (μ-tet racar -boxylato )CuL ]·4H 2O (L =1,4,7-trimethyl -1,4,7-triazacyclononane )[6].Theappearance of a new band at 540~545cm -1due to ν(Co -O )further confirms the coordinated na -ture of the PM TA groups in these complexes .In addition ,the -NH 2vibrations for the terminal ligands (M es 2en ,M es 2pn ,obda )are observed in corresponding binuclear complexes (see Table1),suggesting that the N atoms of the terminal ligands coordinated w ith the metal ion .This view is further supported by the appearance of the band corresponding to the metal -nitrogen stretching vibration at 480~485cm -1in the complexes .Furthermore ,the band centered at 1100cm -1typi -cal for the ν(Cl -O )stretching of the perchlorate group [14],w as not found for the complexes .This is consistent with the conductance measurements and elemental analyses of the complexes .Table 1 Physical data for the binuclear complexesComplexΛM (S ·cm 2·mo l -1)I R (cm -1)νas (CO -2)νs (CO -2)ν(NH 2)ν(Co -N )ν(Co -O )U V (cm -1)CT (1)4.81630138032454855453820041000(2)4.01625138032104805303800040100(3)5.716101370332048254039950415003.4 Electronic spectraIn order to obtain further information on the mode of bonding of the Co (II )ion to the free ligand ,the reflectance spectra of the three complexes are measured at room temperature .For all three binuclear complexes ,tw o strong absorptions in the UV range w ere observed (see Table 1),859第6期李延团等:以均苯四甲酸根为桥联配体的双核钴(II )配合物的合成与磁性w hich may be assigned to the charge-transfer absorption bands[15],and three w eaker bands(Table 2)appearing in the9020~9310,18980~19400and20240~21770cm-1regions w hich may rea-sonably correspond to the4T1g(F)※4T2g(F)(ν1),4T1g(F)※4A2g(F)(ν2)and 4T1g(F)※4T1g(P)(ν3)transitions,respectively,consistent with the presence of an octahedral coordination geometry[16]around the cobalt(II)ion.According to Lever's method[16],some coor-dination field parameters of the complexes can be obtained by using the tw o observed bands(ν1and ν3)and the calculated results are summarized in Table2.Thus,it can be seen that the observed ν2values are in agreement with the calculated ones(see Table2).This show s that the assign-ments are reasonable and are additional evidence for the octahedral structure.In addition,the val-ues ofβ<1show strongly covalent bonding for cobalt(II)in these complexes.Ta ble2 Electronic spectral data and some coordination field parameters of the complexesComplexAssignmentsν1ν2ν3D q(cm-1)B(cm-1)β(1)915019250(19500)*2090010378640.891(2)902018980(19290)2177010279340.963(3)931019400(19810)2024010508080.833 *T he val ues in parentheses are the calculated valuesAll our efforts to grow large crystals of these binuclear cobalt(II)complexes suitable for X-ray structure determination have so far been unsuccessful.How ever,based on the composition of these complexes,IR and electronic spectra as w ell as conductivity measurements,the results of variable-temperature susceptibilities,w hich we w ill discuss later,and crystal structure of the anal-ogous complex[6],it is reasonable to suppose that these complexes to have an extended PM TA-bridged st ructure,in w hich each carboxylic g roup is bound to cobalt(II)ion in a monodentate fashion through only one oxygen atom,yielding tw o seven-membered rings,each cobalt(II)ion is in a distorted octahedral environment(Fig1).3.5 Magnetic Property of complex[Co2(PMTA)(Me2pn)4]In order to obtain further information on the st ructure of the complexes,the magnetic data have been used to deduce the indicated binuclear structure.Thus,variable-temperature susceptibil-ity(4~300K)data were collected for the[Co2(PM TA)(Me2pn)4](1)complex,as an example,and were show n in Figure2in the form of theχM ,μeffversus T plot,χMbeing the molar mag-netic susceptibility,μeff the effective moment and T the absolute temperature.The cobalt(II)ion under O h-symmet ry possesses the4T1g ground state w hose magnetic moment is temperature-depen-dent.Therefore,the magnetic susceptibility for a binuclear cobalt(II)-cobalt(II)(S1=S2=3/ 2)complex w ith cobalt(II)under O h-symmetry is difficult to explain.However,the configuration around the cobalt(II)ion for the present case is somewhat distorted f rom O h-symmetry.There-fore,according to Sinn[17],the magnetic susceptibilities for the present cobalt(II)-cobalt(II)com-plexes can be interpreted by the Heisenberg model,because the symmetry around the metal is low-860四川大学学报(自然科学版)第38卷Fig 2 T emperature varia tio n of χM (lower curve )and μeff (upper curve )for the co mplex [Co 2(PM TA )(M e 2pn )4]The curves are based on equation (1)using the magnetic parameters given in the text ;(·)ex -perimental data ;(-),calculated curves as described in the texter than for a regular octahedron .From Figure 2it is evident that the effective magnetic moments (μeff )are virtually constant in the 30~300K region ,but sharply decrease below 30K .This be -havior is characteristic of weak antiferromagnetic spin -exchange interaction betw een cobalt (II )ions through the PM TA -bridge w ithin the molecule . In order to understand quantitatively the magnitudes of the spin -exchange interaction between cobalt (II )and cobalt (II )ions ,a magnetic analysis w as performed with the susceptibility equation derived from the Heisenberg spin opeator H =-2J S 1· S 2,where the exchange integral J is nega -tive for antiferromagnetic interaction and positive for ferromagnetic interaction .For the Co (II )-Co (II )(S 1=S 2=3/2)system ,the molar magnetic susceptibility is given by the expression [18]of e -quation (1):χM =2N β2g 2K T 14+5exp (-6J /K T )+exp (-10J /K T )7+5exp (-6J /K T )+exp (-10J /K T )+exp (-12J /K T )(1)w here χM denotes the susceptibility per dinuclear complex and the remaining symbols have their usual meanings .As show n in Figure 2,good least -squares fitting of the experimental data to equa -tion (1)gave J =-0.28cm -1,g =2.40.The agreement factor F ,defined here asF =[(χM )obs .-(χM )calc .]2/(χM)obs ,is then equal to 3.9×10-4.The results (negative and small J values )indicate that the complex exhibits weak antiferromagnetic spin -exchange interac -tion betw een binuclear cobalt (II )centre in the complex .The small J value of the complex may be brought out[15]mainly by the geometry st ructures of the complex and the property of the bridged -ligand .861第6期李延团等:以均苯四甲酸根为桥联配体的双核钴(II )配合物的合成与磁性862四川大学学报(自然科学版)第38卷References:[1]Willett R D,G atteschi D,K ahn O,Eds.M ag neto-Structural Correlations in Ex change Coupled Systems,D.Reidel,Dor-drecht,Holland,1985.523.[2]Gatteschi D,Kahn O,M iller J S,Eds.M olecular M agnetic M aterials,NA TO A WT Series,K luw er,Dordrecht,1991.[3]Kahn O.Struct.Bond,1986,68:89.[4]Baron V,Gillon B,Plantevin O,et al.J.Am.Chem.Soc,1996,118:11822.[5]Verdaguer M,G outeron J,Jeannins,et al.I norg.Chem,1984,23:4291.[6]Chaudhuri P,Oder K,Wieg hardt K,et al.J.Am.Chem.Soc,1988,110:3657.[7]Deng Z L,Shi J,Jiang Z H,et al.Polyhedron,1992,11:885.[8]Jiang Z H,M a S L,Liao D Z,et al.J.Chem.Soc,mun,1993.745.[9]Li Y T,Liao D Z,Jiang Z H,et al.Synth.React.Ino rg.M et.-O rg.Chem,1994:24,769.[10]Li Y T,Cheng P,Liao D Z,et al.Sy nth.React.Inorg.M et.-Org.Chem,1996,26:409.[11]Selwood P W.M ag netochemistry[M].I nterscience,New York,1956.78.[12]Geary W J.Coo rd.Chem.Rev,1971,7:81.[13]Deaco n G B,Philips R.Coord.Chem.Rev,1980,88:227.[14]Radecka-P ary zek W.Ino rg.Chim.Acta,1979,34:5.[15]K ahn O.A ngew.Chem.I nt.Ed.Eng l,1985,24:384.[16]Lever A B P.I norg anic Electronic Spectroscopy[M].Elsevier Science Publishers B.V,Amster-dam,O xford,New Yor k:T oky o,1984.[17]Sinn E.Coord.Chem.Rev,1970,5:384.[18]Ball P W,Blka A B.J.Chem.Soc.Dalton T rans,1974.852.以均苯四甲酸根为桥联配体的双核钴(II)配合物的合成与磁性李延团1,焉翠蔚2,陈勇1,曾宪诚1(1.四川大学化学学院,成都610064;2.曲阜师范大学,山东曲阜273165)摘要:作者合成和表征了3个通式为[Co2(PM T A)L4]的新双核钴(II)配合物,其中,PM T A代表均苯四甲酸根四价阴离子,L分别为邻苯二胺(obda)、2-二甲氨基乙胺(M e2en)和3-二甲氨基丙胺(M e2pn).根据元素分析、摩尔电导测定、红外和电子光谱等手段,已推定这些配合物具有均苯四甲酸根桥联的双核钴(I I)结构,其中,两个钴(II)离子均处于畸变的八面体配位环境.作者还测定并解析了配合物[Co2(PM TA)(Me2pn)4]的变温(4~300K)磁化率,求得交换积分J=-0.28cm-1.根据实验结果作者认为,在双核钴(II)配合物中的钴(II)离子间存在极弱的反铁磁自旋超交换作用.关键词:μ-均苯四甲酸根桥;双核钴(II)配合物;合成;磁性中图分类号:Q67 文献标识码:A。