6.专题六 三角比与解斜三角形【学生版】(正式版)(含答案)
- 格式:doc
- 大小:919.50 KB
- 文档页数:11
挑战2023年中考数学选择、填空压轴真题汇编专题06三角形综合的压轴真题训练一.全等三角形的判定与性质1.(2022•淄博)如图,在△ABC中,AB=AC,点D在AC边上,过△ABD的内心I作IE⊥BD于点E.若BD=10,CD=4,则BE的长为()A.6B.7C.8D.9【答案】B【解答】解:如图,连接AI,BI,CI,DI,过点I作IT⊥AC于点T.∵I是△ABD的内心,∴∠BAI=∠CAI,∵AB=AC,AI=AI,∴△BAI≌△CAI(SAS),∴IB=IC,∵∠ITD=∠IED=90°,∠IDT=∠IDE,DI=DI,∴△IDT≌△IDE(AAS),∴DE=DT,IT=IE,∵∠BEI=∠CTI=90°,∴Rt△BEI≌Rt△CTI(HL),∴BE=CT,设BE=CT=x,∵DE=DT,∴10﹣x=x﹣4,∴x=7,∴BE=7.故选:B.2.(2022•湘西州)如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG∥AB,交HM的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是()A.24B.22C.20D.18【答案】B【解答】解:∵CG∥AB,∴∠B=∠MCG,∵M是BC的中点,∴BM=CM,在△BMH和△CMG中,,∴△BMH≌△CMG(ASA),∴HM=GM,BH=CG,∵AB=6,AC=8,∴四边形ACGH的周长=AC+CG+AH+GH=AB+AC+GH=14+GH,∴当GH最小时,即MH⊥AB时四边形ACGH的周长有最小值,∵∠A=90°,MH⊥AB,∴GH∥AC,∴四边形ACGH为矩形,∴GH=8,∴四边形ACGH的周长最小值为14+8=22,故选:B.3.(2022•南充)如图,正方形ABCD边长为1,点E在边AB上(不与A,B 重合),将△ADE沿直线DE折叠,点A落在点A1处,连接A1B,将A1B绕点B顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是.(填写序号)【答案】①②③【解答】解:∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∵∠A1BA2=∠ABC=90°,∴∠ABA1=∠CBA2,∵BA1=BA2,∴△ABA1≌△CBA2(SAS),故①正确,过点D作DT⊥CA1于点T,∵CD=DA1,∴∠CDT=∠A1DT,∵∠ADE=∠A1DE,∠ADC=90°,∴∠ADE+∠CDT=45°,∵∠CDT+∠DCT=90°,∠DCT+∠BCA1=90°,∴∠CDT=∠BCA1,∴∠ADE+∠BCA1=45°,故②正确.连接P A,AC.∵A,A1关于DE对称,∴P A=PA1,∴P A1+PC=PA+PC≥AC=,∴P A1+PC的最小值为,故③正确,过点A1作A1H⊥AB于点H,∵∠ADE=30°,∴AE=A1E=AD•tan30°=,∴EB=AB﹣AE=1﹣,∵∠A1EB=60°,∴A1H=A1E•sin60°=×=,∴=×(1﹣)×=,故④错误.故答案为:①②③.4.(2022•朝阳)等边三角形ABC中,D是边BC上的一点,BD=2CD,以AD 为边作等边三角形ADE,连接CE.若CE=2,则等边三角形ABC的边长为.【答案】3或.【解答】解:如图,E点在AD的右边,∵△ADE与△ABC都是等边三角形,∴AC=AB,AE=AD,∠DAE=∠BAC=60°,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即∠CAE=∠BAD.在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD=2,∵BD=2CD,∴CD=1,∴BC=BD+CD=2+1=3,∴等边三角形ABC的边长为3,如图,E点在AD的左边,同上,△BAE≌△CAD(SAS),∴BE=CD,∠ABE=∠ACD=60°,∴∠EBD=120°,过点E作EF⊥BC交CB的延长线于点F,则∠EBF=60°,∴EF=BE=CD,BF=BE=CD,∴CF=BF+BD+CD=CD,在Rt△EFC中,CE=2,∴EF2+CF2=CE2=4,∴+=4,∴CD=或CD=﹣(舍去),∴BC=,∴等边三角形ABC的边长为,故答案为:3或.5.(2022•日照)如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P 是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是.【答案】2【解答】解:方法一:∵将线段P A绕点P顺时针旋转60°得到线段PF,∴∠APF=60°,PF=PA,∴△APF是等边三角形,∴AP=AF,如图,当点F1在x轴上时,△P1AF1为等边三角形,则P1A=P1F1=AF1,∠AP1F1=60°,∵AO⊥P1F1,∴P1O=F1O,∠AOP1=90°,∴∠P1AO=30°,且AO=4,由勾股定理得:P1O=F1O=,∴P1A=P1F1=AF1=,∴点F1的坐标为(,0),如图,当点F2在y轴上时,∵△P2AF2为等边三角形,AO⊥P2O,∴AO=F2O=4,∴点F2的坐标为(0,﹣4),∵tan∠OF1F2===,∴∠OF1F2=60°,∴点F运动所形成的图象是一条直线,∴当OF⊥F1F2时,线段OF最短,设直线F1F2的解析式为y=kx+b,则,解得,∴直线F1F2的解析式为y=x﹣4,∵AO=F2O=4,AO⊥P1F1,∴F1F2=AF1=,在Rt△OF1F2中,设点O到F1F2的距离为h,则×OF1×OF2=×F1F2×h,∴××4=××h,解得h=2,即线段OF的最小值为2;方法二:如图,在第二象限作等边三角形AOB,连接BP、AF,过点B作BP′⊥x轴于点P′,∵将线段P A绕点P顺时针旋转60°得到线段PF,∴∠APF=60°,PF=PA,∴△APF是等边三角形,∴AP=AF,∠PAF=60°,∵△AOB是等边三角形,∴AB=AO=OB=4,∠BAO=60°,∴∠BAP=60°+∠OAP=∠OAF,在△BAP和△OAF中,,∴△BAP≌△OAF(SAS),∴BP=OF,∵P是x轴上一动点,∴当BP⊥x轴时,BP最小,即点P与点P′重合时BP=BP′最小,∵∠BOP′=30°,∠BP′O=90°,∴BP′=OB=×4=2,∴OF的最小值为2,故答案为2.二.勾股定理6.(2022•内江)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNXT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=.【答案】48【解答】解:设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,∴S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.故答案为:48.7.(2022•常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt △DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A 重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.【答案】21【解答】解:如图,连接CF交AB于点M,连接CF′交AB于点N,过点F 作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵•DF•EF=•DE•GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.8.(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是.【答案】80【解答】解:过点D作DM⊥CI,交CI的延长线于点M,过点F作FN⊥CI 于点N,∵△ABC为直角三角形,四边形ACDE,BCFG为正方形,过点C作AB的垂线CJ,CJ=4,∴AC=CD,∠ACD=90°,∠AJC=∠CMD=90°,∠CAJ+∠ACJ=90°,BC=CF,∠BCF=90°,∠CNF=∠BJC=90°,∠FCN+∠CFN=90°,∴∠ACJ+∠DCM=90°,∠FCN+∠BCJ=90°,∴∠CAJ=∠DCM,∠BCJ=∠CFN,∴△ACJ≌△CDM(AAS),△BCJ≌△CFN(AAS),∴AJ=CM,DM=CJ=4,BJ=CN,NF=CJ=4,∴DM=NF,∴△DMI≌△FNI(AAS),∴DI=FI,MI=NI,∵∠DCF=90°,∴DI=FI=CI=5,在Rt△DMI中,由勾股定理可得:MI===3,∴NI=MI=3,∴AJ=CM=CI+MI=5+3=8,BJ=CN=CI﹣NI=5﹣3=2,∴AB=AJ+BJ=8+2=10,∵四边形ABHL为正方形,∴AL=AB=10,∵四边形AJKL为矩形,∴四边形AJKL的面积为:AL•AJ=10×8=80,故答案为:80.三.等腰直角三角形(共2小题)9.(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE =90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D 在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④【答案】B【解答】解:如图1中,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ADB=∠AEC,故①正确,∵∠ADB+∠ADC=180°,∴∠AEC+∠ADC=180°,∴∠DAE+∠DCE=180°,∴∠DAE=∠DCE=90°,取DE的中点O,连接OA,OA,OC,则OA=OD=OE=OC,∴A,D,C,E四点共圆,∴∠DAC=∠CED,故②正确,设CD=m,则BD=CE=2m.DE=m,OA=m,过点C作CJ⊥DF于点J,∵tan∠CDF===2,∴CJ=m,∵AO⊥DE,CJ⊥DE,∴AO∥CJ,∴===,故③正确.如图2中,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴P A+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时∠APB=∠APC =∠BPC=120°,PB=PC,AD⊥BC,∴∠BPD=∠CPD=60°,设PD=t,则BD=AD=t,∴2+t=t,∴t=+1,∴CE=BD=t=3+,故④错误.故选:B.10.(2022•绵阳)如图,四边形ABCD中,∠ADC=90°,AC⊥BC,∠ABC =45°,AC与BD交于点E,若AB=2,CD=2,则△ABE的面积为.【答案】【解答】解:过点D作DF⊥AC于点F,∵AC⊥BC,∠ABC=45°,∴AC=BC=AB=2,∵∠ADC=90°,CD=2,∴AD=,∵,∴DF=,∴AF=,∴CF=,∵DF∥BC,∴△DEF∽△BEC,∴,即,∴EF=,∴AE=,∴.故答案为:.11.(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC 外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.【答案】B【解答】解:如图,不妨假设点P在AB的左侧,+S△ABC=S△PBC+S△P AC,∵S△P AB∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△P AB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,当点P在②区域时,同法可得OP的最小值为,如图,当点P在①③⑤区域时,OP的最小值为,当点P在②④⑥区域时,最小值为,∵<,故选:B.12.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为()A.B.C.2D.【答案】C【解答】解:设CF交AB于点P,过C作CN⊥AB于点N,如图:设正方形JKLM边长为m,∴正方形JKLM面积为m2,∵正方形ABGF与正方形JKLM的面积之比为5,∴正方形ABGF的面积为5m2,∴AF=AB=m,由已知可得:∠AFL=90°﹣∠MFG=∠MGF,∠ALF=90°=∠FMG,AF =GF,∴△AFL≌△FGM(AAS),∴AL=FM,设AL=FM=x,则FL=FM+ML=x+m,在Rt△AFL中,AL2+FL2=AF2,∴x2+(x+m)2=(m)2,解得x=m或x=﹣2m(舍去),∴AL=FM=m,FL=2m,∵tan∠AFL====,∴=,∴AP=,∴FP===m,BP=AB﹣AP=m﹣=,∴AP=BP,即P为AB中点,∵∠ACB=90°,∴CP=AP=BP=,∵∠CPN=∠APF,∠CNP=90°=∠FAP,∴△CPN∽△FPA,∴==,即==,∴CN=m,PN=m,∴AN=AP+PN=m,∴tan∠BAC====,∵△AEC和△BCH是等腰直角三角形,∴△AEC∽△BCH,∴=,∵CE=+,∴=,∴CH=2,故选:C.13.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4B.6C.2D.3【答案】C【解答】解:如图所示:∵BM=NC=4,BN=CP=2,且∠B=∠C=90°,∴△BMN≌△CNP(SAS),∴MN=NP,∠BMN=∠CNP,∵∠BMN+∠BNM=90°,∴∠BNM+∠CNP=90°,∴∠MNP=90°,∴△NMP为等腰直角三角形,根据题意得到点P的轨迹为圆弧,当MP为直径时最长,在Rt△BMN和Rt△NCP中,根据勾股定理得:MN=NP==2,则PM==2.故选:C.14.(2022•苏州)如图,点A的坐标为(0,2),点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(m,3),则m的值为()A.B.C.D.【答案】C【解答】解:过C作CD⊥x轴于点D,CE⊥y轴于点E,如图:∵CD⊥x轴,CE⊥y轴,∠DOE=90°,∴四边形EODC是矩形,∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC=BC,∵A(0,2),C(m,3),∴CE=m=OD,CD=3,OA=2,∴AE=OE﹣OA=CD﹣OA=1,∴AC===BC=AB,在Rt△BCD中,BD===,在Rt△AOB中,OB===,∵OB+BD=OD=m,∴+=m,化简变形得:3m4﹣22m2﹣25=0,解得m=或m=﹣(舍去),∴m=,故选:C.三.等腰直角三角形(共1小题)15.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C 为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN 交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为.【答案】7【解答】解:设MN交BC于D,连接EC,如图:由作图可知:MN是线段BC的垂直平分线,∴BE=CE=4,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°,在Rt△ACE中,AE===3,∴AB=AE+BE=3+4=7,故答案为:7.四.等边三角形的性质(共2小题)16.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB与△BOC的面积之和为()A.B.C.D.【答案】C【解答】解:将△AOB绕点B顺时针旋转60°得△CDB,连接OD,∴OB=BD,∠OBD=60°,CD=OA=2,∴△BOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+()2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,+S△BCD=S△BOD+S△COD=×∴△AOB与△BOC的面积之和为S△BOC12+=,故选:C.17.(2022•鄂州)如图,在边长为6的等边△ABC中,D、E分别为边BC、AC 上的点,AD与BE相交于点P,若BD=CE=2,则△ABP的周长为.【答案】【解答】解:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∴∠APE=∠ABP+∠BAD=∠ABP+∠CBE=∠ABD=60°,∴∠APB=120°,在CB上取一点F使CF=CE=2,则BF=BC﹣CF=4,∴∠C=60°,∴△CEF是等边三角形,∴∠BFE=120°,即∠APB=∠BFE,∴△APB∽△BFE,∴==2,设BP=x,则AP=2x,作BH⊥AD延长线于H,∵∠BPD=∠APE=60°,∴∠PBH=30°,∴PH=,BH=,∴AH=AP+PH=2x+=x,在Rt△ABH中,AH2+BH2=AB2,即(x)2+(x)2=62,解得x=或﹣(舍去),∴AP=,BP=,∴△ABP的周长为AB+AP+BP=6++=6+=,故答案为:.五.含30度角的直角三角形(共1小题)18.(2022•十堰)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(﹣1)m,若在M,N之间修一条直路,则路线M→N的长比路线M→A→N的长少m (结果取整数,参考数据:≈1.7).【答案】370【解答】解:解法一:如图,延长DC,AB交于点G,过点N作NH⊥AD于H,∵∠D=60°,∠ABC=120°,∠BCD=150°,∴∠A=360°﹣60°﹣120°﹣150°=30°,∴∠G=90°,∴AD=2DG,Rt△CGB中,∠BCG=180°﹣150°=30°,∴BG=BC=50,CG=50,∴DG=CD+CG=100+50,∴AD=2DG=200+100,AG=DG=150+100,∵DM=100,∴AM=AD﹣DM=200+100﹣100=100+100,∵BG=50,BN=50(﹣1),∴AN=AG﹣BG﹣BN=150+100﹣50﹣50(﹣1)=150+50,Rt△ANH中,∵∠A=30°,∴NH=AN=75+25,AH=NH=75+75,由勾股定理得:MN===50(+1),∴AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G=90°,∵CD=DM,∠D=60°,∴△DCM是等边三角形,∴∠DCM=60°,由解法一可知:CG=50,GN=BG+BN=50+50(﹣1)=50,∴△CGN是等腰直角三角形,∴∠GCN=45°,∴∠BCN=45°﹣30°=15°,∴∠MCN=150°﹣60°﹣15°=75°=∠BCD,由【阅读材料】的结论得:MN=DM+BN=100+50(﹣1)=50+50,∵AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.故答案为:370.六.等腰直角三角形(共2小题)19.(2022•长沙)如图,在△ABC中,按以下步骤作图:①分别以点A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若AB=2,则AM的长为()A.4B.2C.D.【答案】B【解答】解:由作图可知,PQ是AB的垂直平分线,∴AM=BM,∵以点D为圆心,AD长为半径画弧交PQ于点M,∴DA=DM=DB,∴∠DAM=∠DMA,∠DBM=∠DMB,∵∠DAM+∠DMA+∠DBM+∠DMB=180°,∴2∠DMA+2∠DMB=180°,∴∠DMA+∠DMB=90°,即∠AMB=90°,∴△AMB是等腰直角三角形,∴AM=AB=×2=2,故选:B.20.(2022•河南)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D 为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P 的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为.【答案】或【解答】解:如图:∵∠ACB=90°,AC=BC=2,∴AB=AC=4,∵点D为AB的中点,∴CD=AD=AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ===,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′===,综上所述:当∠ADQ=90°时,AQ的长为或,故答案为:或.。
三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
高一数学解斜三角形试题答案及解析1.在△ABC中,若==,则△ABC是( ).A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形【答案】B【解析】由正弦定理得,由得,即,由于为三角形的内角,故,即,因此三角形为等边三角形.【考点】判定三角形的形状.2.海事救护船在基地的北偏东,与基地相距海里,渔船被困海面,已知距离基地海里,而且在救护船正西方,则渔船与救护船的距离是().A.海里B.海里C.海里或海里D.海里【答案】C【解析】在中,,,,,当;当;渔船B与救护船A的距离是100海里或200海里.【考点】解三角形的应用.3.在中,角所对的边分别为,且是方程的两个根,且,求:(1)的度数;(2)边的长度.【答案】(1),(2)【解析】解题思路:(1)利用三角形三角和定理求角C;(2)根据方程的根与系数的关系求两根之和与积;利用余弦定理求边c.规律总结:解三角形问题,要分析题意,寻找边角关系,选择合适的定理.注意点:在利用余弦定理求解时,要注意利用“整体思想”,减少计算量.试题解析:(1),;故.是方程的两根,,由余弦定理,得,.【考点】1.三角形三角和定理;2.方程的根与系数的关系;3.余弦定理.4.在中,边上的中线长为3,且,,则边长为(). A.B.C.D.【答案】A.【解析】如图,因为与互补,所以当时,,则,又,则,所以,在三角形BAD中,由正弦定理有:,从而,所以,在三角形ADC中,由余弦定理有:,所以,故选A.【考点】三角函数的基本关系:平方关系,正弦定理与余弦定理,两角和的正弦公式,化归思想.5.边长为2的等边三角形,求它水平放置时的直观图的面积 .【答案】【解析】等边三角形ABC的边长为2,故面积为,而原图和直观图面积之间的关系故直观图△A/B/C/的面积为.【考点】斜二测画法,直观图6.中,若,则的面积为A.B.C.1D.【答案】A【解析】解:△ABC的面积=AB•BC•sin60°=×2×1×=.故选C..【考点】三角形的面积公式..7.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.【答案】B【解析】将代入可得,所以或,当时有有.【考点】解三角形.8.已知为的内角,且,则 .【答案】或【解析】依题意可知,且在单调递增,所以当时,,当时,,所以,即,综上可知或.【考点】1.三角形内角的取值范围;2.正弦函数的单调性.9.已知的周长为,且,(Ⅰ)求边AB的长;(Ⅱ)若的面积为,求角C的度数。
正弦定理、余弦定理和解斜三角形【注】实战练对应本讲全部内容,(A )和(B )同学们可根据自己的学习情况选定一组(或由老师指定),其中(B )组题对解题能力要求高于(A )组一、填空题(3⨯10=30分)1.在ABC Δ中,已知613πB ,b ,a ===,则=c ___________ 2.已知等腰三角形的底边上的高与底边长之比为34:,则它的顶角的正切值是__________3.在ABC Δ中,若2=++++B cos A cos B sin A cos B sin A cos B cos A sin B sin A sin ,那么三角形的形状为_______________4.在ABC Δ中,()()211=++B cot A cot ,则=C sin log 2_______________5.在ABC Δ中,313===S ,b ,πA ,则=++++Csin B sin A sin c b a 6.在锐角ABC Δ中,若11-=+=t B tan ,t A tan ,则t 的取值范围是__________7.在ABC Δ中,若1222=-+Csin B sin A sin C sin B sin ,则=A ________________ 8.在ABC Δ中,已知42πA ,a ==,若此三角形有两解,则b 的取值范围是__________________ 9.(A)在ABC Δ中,ac b ,B C A ==+22,则三角形的形状为________________(B) 已知A B C π++=,且sin cos cos A B C =⋅,则在cot cot tan tan B C B C ++、、s i nB+s i nC 及cos cos B C +中必为常数的有_________10.(A)在ABC Δ中,21==a ,c ,则C 的取值范围是__________________(B)已知三角形的三边长分别是()2223,33,20a a a a a a ++++>,则三角形的最大角等于______________二、 选择题 (3⨯4=12分)11.在ABC Δ中,B cos A cos B sin A sin +=+是2πC = ( ) A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件12.在ABC Δ中,若543::C sin :B sin :A sin =则此三角形是 ( )A. 等腰三角形B.直角三角形C.锐角三角形D.钝角三角形13.在ABC Δ中,若232222b A cos c C cos a =+,那么其三边关系式为 ( ) A.c b a 2=+ B. b c a 2=+ C.a c b 2=+ D. b c a 322=+14.(A)在ABC Δ中,c ,b ,a 为三角形三条边,且方程02222=++-b a cx x 有两个相等的实数根,则该三角形是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形(B)已知关于x 的方程2cos cos 1cos 0x x A B C +⋅-+=的两根之和等于两根之积的一半,则ABC Δ是 ( )A.等腰三角形B.直角三角形C.等腰或直角三角形D.等腰直角三角形三、解答题 (10+10+12+12+14=58分)15.在ABC Δ中,若22A cos C sin B sin =,试判断三角形的形状16.在ABC Δ中,若()()ac c b a c b a =+-++,求B 。
高一数学解斜三角形试题答案及解析1.在△ABC中,角A、B、C所对的对边长分别为、、,、、成等比数列,且,则的值为()A. B. C. D.【答案】B.【解析】由于、、成等比数列,,由正弦定理得. 由于,,由余弦定理推论得.【考点】余弦定理的应用.2.在△ABC中,a=4,b=4,角A=30°,则角B等于 ().A.30°B.30°或150°C.60°D.60°或120°【解析】D由正弦定理得,由于,,符合大边对大角.【考点】正弦定理的应用.3.已知中,的对边分别为且.(1)判断△的形状,并求的取值范围;(2)如图,三角形的顶点分别在上运动,,若直线直线,且相交于点,求间距离的取值范围.【答案】(1)为直角三角形,;(2).【解析】(1)法一,根据数量积的运算法则及平面向量的线性运算化简得到,从而可确定,为直角三角形;法二:用数量积的定义,将数量积的问题转化为三角形的边角关系,进而由余弦定理化简得到,从而可确定为直角,为直角三角形;(2)先引入,并设,根据三角函数的定义得到,进而得到,利用三角函数的图像与性质即可得到的取值范围,从而可确定两点间的距离的取值范围.试题解析:(1)法一:因为所以即所以,所以所以是以为直角的直角三角形法二:因为所以是以为直角的直角三角形即(2)不仿设,所以所以.【考点】1.平面向量的数量积;2.余弦定理;3.三角函数的应用.4.边长为2的等边三角形,求它水平放置时的直观图的面积 .【答案】【解析】等边三角形ABC的边长为2,故面积为,而原图和直观图面积之间的关系故直观图△A/B/C/的面积为.【考点】斜二测画法,直观图5.座落于我市红梅公园边的天宁宝塔堪称中华之最,也堪称佛塔世界之最.如图,已知天宁宝塔AB高度为150米,某大楼CD高度为90米,从大楼CD顶部C看天宁宝塔AB的张角,求天宁宝塔AB与大楼CD底部之间的距离BD.【答案】180米.【解析】本题难点在于选择函数解析式模型,是用余弦定理解三角形,还是取直角三角形表示边.如用余弦定理解三角形,则得,解此方程成为难点;如构造直角三角形就会减少运算量,即作CE AB于E,构造直角三角形CBE和直角三角形CAE,利用两角和的正切公式得到关于BD的方程,解此方程的运算量要少得多.将一个已知角分为两个角的和,这种思维不常见,须多加注意,深刻体会.试题解析:解:如图作CE AB于E.因为AB∥CD,AB=150,CD=90,所以BE=90,AE=60.设CE=,,则. 2分在和中,, 4分因为,所以. 8分化简得,解得或(舍去). 10分答:天宁宝塔AB与大楼CD底部之间的距离为180米. 12分【考点】两角和的正切公式,函数与方程.6.已知为的内角,且,则 .【答案】或【解析】依题意可知,且在单调递增,所以当时,,当时,,所以,即,综上可知或.【考点】1.三角形内角的取值范围;2.正弦函数的单调性.7.已知的周长为,且,(Ⅰ)求边AB的长;(Ⅱ)若的面积为,求角C的度数。
第一章解三角形一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为().A.90°B.120°C.135°D.150°2.在△ABC中,下列等式正确的是().A.a∶b=∠A∶∠B B.a∶b=sin A∶sin BC.a∶b=sin B∶sin A D.a sin A=b sin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ).A.1∶2∶3 B.1∶3∶2C.1∶4∶9 D.1∶2∶34.在△ABC中,a=5,b=15,∠A=30°,则c等于( ).A.25B.5C.25或5D.10或55.已知△ABC中,∠A=60°,a=6,b=4,那么满足条件的△ABC的形状大小 ( ).A.有一种情形B.有两种情形C.不可求出D.有三种以上情形6.在△ABC中,若a2+b2-c2<0,则△ABC是( ).A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定7.在△ABC中,若b=3,c=3,∠B=30°,则a=( ).A.3B.23C.3或23D.28.在△ABC中,a,b,c分别为∠A,∠B,∠C的对边.如果a,b,c成等差数列,∠B=30°,△ABC的面积为23,那么b=().A.231+B.1+3C.232+D.2+39.某人朝正东方向走了x km后,向左转150°,然后朝此方向走了3 km,结果他离出发点恰好3km,那么x的值是( ).A.3B.23C.3或23D.310.有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB=120米,则电视塔的高度为( ).A .603米B .60米C .603米或60米D .30米 二、填空题11.在△ABC 中,∠A =45°,∠B =60°,a =10,b = .12.在△ABC 中,∠A =105°,∠B =45°,c =2,则b = .13.在△ABC 中,∠A =60°,a =3,则C B A c b a sin sin sin ++++= . 14.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C = . 15.平行四边形ABCD 中,AB =46,AC =43,∠BAC =45°,那么AD = .16.在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则最大角的余弦值= .三、解答题17. 已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形.18.在△ABC 中,已知b =3,c =1,∠B =60°,求a 和∠A ,∠C .19. 根据所给条件,判断△ABC 的形状.(1)a cos A =b cos B ;(2)A a cos =B b cos =Cc cos .20.△ABC 中,己知∠A >∠B >∠C ,且∠A =2∠C ,b =4,a +c =8,求a ,c 的长.第一章 解三角形参考答案一、选择题1.B解析:设三边分别为5k ,7k ,8k (k >0),中间角为, 由cos =k k k k k 85249-64+25222⨯⨯=21,得 =60°,∴最大角和最小角之和为180°-60°=120°.2.B 3.B4.C5.C6.C7.C8.B解析:依题可得:⎪⎪⎩⎪⎪⎨⎧︒︒30cos 2-+=23=30sin 212=+222ac c a b ac b c a ⇒⎪⎩⎪⎨⎧ac ac c a b ac b c a 3-2-)+(=6=2=+22 代入后消去a ,c ,得b 2=4+23,∴b =3+1,故选B .9.C10.A二、填空题11.56.12.2.13.23.解析:设A a sin =B b sin =C c sin =k ,则C B A c b a +sin +sin sin ++=k =A a sin =︒60sin 3=23. 14.32π.15.43.16.-41.三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C =26sin 45°=26·22=23. ∵c sin A =6×22=3,a =2,c =6,3<2<6, ∴本题有二解,即∠C =60°或∠C =120°,∠B =180°-60°-45°=75°或∠B =180°-120°-45°=15°.故b =Aa sin sin B ,所以b =3+1或b =3-1, ∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.解法2:由余弦定理得b 2+(6)2-26b cos 45°=4,∴b 2-23b +2=0,解得b =3±1. 又(6)2=b 2+22-2×2b cos C ,得cos C =±21,∠C =60°或∠C =120°,所以∠B =75°或∠B =15°.∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.18.解析:已知两边及其中一边的对角,可利用正弦定理求解. 解:∵B b sin =Cc sin , ∴sin C =b B c sin ⋅=360sin 1︒⋅=21. ∵b >c ,∠B =60°,∴∠C <∠B ,∠C =30°,∴∠A =90°.由勾股定理a =22+c b =2,即a =2,∠A =90°,∠C =30°.19.解析:本题主要考查利用正、余弦定理判断三角形的形状.(1)解法1:由余弦定理得a cos A =b cos B ⇒a ·(bc a c b 2222-+)=b ·(acc b a 2222+-)⇒a 2c 2-a 4-b 2c 2+b 4=0, ∴(a 2-b 2)(c 2-a 2-b 2)=0,∴a 2-b 2=0或c 2-a 2-b 2=0,∴a =b 或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.解法2:由正弦定理得sin A cos A =sin B cos B⇒sin 2A =sin 2B⇒2∠A =2∠B 或2∠A =-2∠B ,∠A ,∠B ∈(0,)⇒∠A =∠B 或∠A +∠B =2π, ∴△ABC 是等腰三角形或直角三角形.(2)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C 代入已知等式,得A A R cos sin 2=BB R cos sin 2=C C R cos sin 2, ∴A A cos sin =B B cos sin =CC cos sin , 即tan A =tan B =tan C .∵∠A ,∠B ,∠C ∈(0,π),∴∠A =∠B =∠C,∴△ABC 为等边三角形.20.解析:利用正弦定理及∠A =2∠C 用a ,c 的代数式表示cos C ;再利用余弦定理,用a ,c 的代数式表示cos C ,这样可以建立a ,c 的等量关系;再由a +c =8,解方程组得a ,c . 解:由正弦定理A a sin =Cc sin 及∠A =2∠C ,得 C a 2sin =C c sin ,即C C a cos sin 2⋅=Cc sin , ∴cos C =ca 2. 由余弦定理cos C =abc b a 2222-+, ∵b =4,a +c =8,∴a +c =2b ,∴cos C =)()(c a a c c a a +-4++222=)())((c a a c a c a +4+3-5=a c a 43-5, ∴c a 2=ac a 43-5, 整理得(2a -3c )(a -c )=0,∵a ≠c ,∴2a =3c . 又∵a +c =8,∴a =524,c =516.。
解斜三角形习题精选1.已知(a +b +c )(b +c -a )=3bc ,则∠A =_______.2在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是_______.3在△ABC 中,若∠C =60°,则ca b c b a +++=_______.4.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若三角形的面积S =41(a 2+b 2-c 2),则∠C 的度数是_______.5已知锐角△ABC 中,sin (A +B )=53,sin (A -B )=51. (1)求证:tan A =2tan B ;(2)设AB =3,求AB 边上的高.6在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及cB b sin 的值.7在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,依次成等比数列,求y =BB B cos sin 2sin 1++的取值范围.8.已知△ABC 中,22(sin 2A -sin 2C )=(a -b )sin B ,外接圆半径为2.(1)求∠C ;(2)求△ABC 面积的最大值.答案:1解析:由已知得(b +c )2-a 2=3bc ,∴b 2+c 2-a 2=bc .∴bc a c b 2222-+=21.∴∠A =3π. 2解析:若c 是最大边,则cos C >0.∴abc b a 2222-+>0,∴c <5.又c >b -a =1, ∴1<c <5.3解析:c a b c b a +++=))((c a c b bc b ac a +++++22=222c bc ac ab bc ac b a ++++++.(*)∵∠C =60°,∴a 2+b 2-c 2=2ab cos C =ab .∴a 2+b 2=ab +c 2. 代入(*)式得222c bc ac ab bc ac b a ++++++=1.答案:1 4解析:由S =41(a 2+b 2-c 2)得21ab sin C =41·2ab cos C .∴tan C =1.∴C =4π. 答案:45°5剖析:有两角的和与差联想到两角和与差的正弦公式,结合图形,以(1)为铺垫,解决(1)证明:∵sin (A +B )=53,sin (A -B )=51, ∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A B A B A B A tan tan 51sin cos 52cos sin ⇒⎪⎪⎩⎪⎪⎨⎧==⇒=2. ∴tan A =2tan B .(2)解:2π<A +B <π,∴sin (A +B )=53. ∴tan (A +B )=-43, 即B A B A tan tan 1tan tan -+=-43.将tan A =2tan B 代入上式整理得2tan 2B -4tan B -1=0,解得tan B =262±(负值舍去).得tan B =262+,∴tan A =2tan B =2+6. 设AB 边上的高为CD ,则AB =AD +DB =A CD tan +B CD tan =623+CD .由AB =3得CD =2+6,所以AB 边上的高为2+6.6、剖析:因给出的是a 、b 、c 之间的等量关系,要求∠A ,需找∠A 与三边的关系,故可用余弦定理.由b 2=ac 可变形为c b 2=a ,再用正弦定理可求cB b sin 的值. 解法一:∵a 、b 、c 成等比数列,∴b 2=ac .又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理得 cos A =bc a c b 2222-+=bc bc 2=21,∴∠A =60°. 在△ABC 中,由正弦定理得sin B =aA b sin , ∵b 2=ac ,∠A =60°, ∴acb c B b ︒=60sin sin 2=sin60°=23. 解法二:在△ABC 中, 由面积公式得21bc sin A =21ac sin B . ∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B . ∴cB b sin =sin A =23.7、解:∵b 2=ac ,∴cos B =ac b c a 2222-+=ac ac c a 222-+=21(c a +a c )-21≥21. ∴0<B ≤3π, y =B B B cos sin 2sin 1++=B B B B cos sin cos sin 2++)(=sin B +cos B =2sin (B +4π).∵4π<B +4π≤12π7, ∴22<sin (B +4π)≤1.故1<y ≤2. 8、解:(1)由22(sin 2A -sin 2C )=(a -b )·sin B 得22(224R a -224R c )=(a -b )Rb 2. 又∵R =2,∴a 2-c 2=ab -b 2.∴a 2+b 2-c 2=ab .∴cos C =ab c b a 2222-+=21. 又∵0°<C <180°,∴C =60°.(2)S =21ab sin C =21×23ab =23sin A sin B =23sin A sin (120°-A ) =23sin A (sin120°cos A -cos120°sin A )=3sin A cos A +3sin 2A=23sin2A -23sin2A cos2A +23 =3sin (2A -30°)+23. ∴当2A =120°,即A =60°时,S max =233.。
数学三角函数与解三角形多选题知识点及练习题含答案一、三角函数与解三角形多选题 1.(多选题)如图,设ABC 的内角、、A B C 所对的边分别为a b c 、、,若a b c 、、成等比数列,、、A B C 成等差数列,D 是ABC 外一点,1,3DC DA ==,下列说法中,正确的是( )A .3B π=B .ABC 是等边三角形C .若A B CD 、、、四点共圆,则13AC =D .四边形ABCD 面积无最大值 【答案】ABC 【分析】根据等差数列的性质和三角形内角和可得3B π=,根据等比中项和余弦定理可得a c =,即ABC 是等边三角形,若A B C D 、、、四点共圆,根据圆内接四边形的性质可得23D π=,再利用余弦定理可求13AC =211sin sin 223ACD ABC S S S AD CD D AC π∆∆=+=⋅+和2222cos AC AD CD AD CD D 可得3335353sin 3sin()23S D D D π=-+=-+. 【详解】由、、A B C 成等差数列可得,2A+C =B ,又A B C π++=, 则3B π=,故A 正确;由a b c 、、成等比数列可得,2b ac =,根据余弦定理,2222cos b a c ac B =+-,两式相减整理得,2()0a c -=,即a c =,又3B π=,所以,ABC 是等边三角形,故B 正确;若A B C D 、、、四点共圆,则B D π+=,所以,23D π=, ADC 中,根据余弦定理,2222cos AC AD CD AD CD D ,解得13AC =C 正确;四边形ABCD 面积为:211sin sin 223ACD ABC S S S AD CD D AC π∆∆=+=⋅+233sin 2D AC =+ 又2222cos 106cos AC AD CD AD CD D D =+-⋅=-, 所以,3335353sin cos 3sin()22232S D D D π=-+=-+, 因为(0,)D π∈,当四边形面积最大时,sin()13D π-=,此时max 533S =+,故D 错误. 故选:ABC 【点睛】本题考查解三角形和平面几何的一些性质,同时考查了等差等比数列的基本知识,综合性强,尤其是求面积的最大值需要一定的运算,属难题.2.已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,则下列关于函数()f x 的说法中正确的是( )A .函数()f x 最靠近原点的零点为3π-B .函数()f x 的图像在y 3C .函数56f x π⎛⎫-⎪⎝⎭是偶函数 D .函数()f x 在72,3ππ⎛⎫⎪⎝⎭上单调递增 【答案】ABC 【分析】首先根据图象求函数的解析式,利用零点,以及函数的性质,整体代入的方法判断选项. 【详解】根据函数()()cos f x A x ωϕ=+的部分图像知,2A =,设()f x 的最小正周期为T ,则24362T πππ=-=,∴2T π=,21T πω==. ∵2cos 266f ππϕ⎛⎫⎛⎫=+=⎪⎪⎝⎭⎝⎭,且2πϕ<,∴6πϕ=-, 故()2cos 6f x x π⎛⎫=- ⎪⎝⎭.令()2cos 06f x x π⎛⎫=-= ⎪⎝⎭,得62x k πππ-=+,k Z ∈, 即23x k ππ=+,k Z ∈,因此函数()f x 最靠近原点的零点为3π-,故A 正确;由()02cos 6f π⎛⎫=-= ⎪⎝⎭()f x 的图像在y B 正确; 由()52cos 2cos 6f x x x ππ⎛⎫-=-=- ⎪⎝⎭,因此函数56f x π⎛⎫-⎪⎝⎭是偶函数,故C 正确; 令226k x k ππππ-≤-≤,k Z ∈,得52266k x k ππππ-≤≤+,k Z ∈,此时函数()f x 单调递增,于是函数()f x 在132,6ππ⎛⎫ ⎪⎝⎭上单调递增,在137,63ππ⎛⎫⎪⎝⎭上单调递减,故D 不正确. 故选:ABC . 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.3.函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,则下列结论正确的是( )A .1()2sin 36f x x π⎛⎫=-⎪⎝⎭ B .若把()f x 的横坐标缩短为原来的23倍,纵坐标不变,得到的函数在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位,则所得函数是奇函数 D .函数()y f x =的图象关于直线4x π=-对称【答案】ACD 【分析】根据函数的图象求出函数的解析式,得选项A 正确; 求出213263x πππ--得到函数在[],ππ-上不是增函数,得选项B 错误;求出图象变换后的解析式得到选项C 正确; 求出函数的对称轴方程,得到选项D 正确. 【详解】 A, 如图所示:1732422T πππ=-=, 6T π∴=,∴2163πωπ==,(2)2f π=,∴2(2)2sin()23f ππϕ=+=,即2sin()13πϕ+=, ∴22()32k k Z ππϕπ+=+∈, ∴2()6k k Z πϕπ=-∈,||ϕπ<,∴6πϕ=-,∴1()2sin()36f x x π=-,故选项A 正确;B, 把()y f x =的横坐标缩短为原来的23倍,纵坐标不变,得到的函数12sin()26y x π=-,[x π∈-,]π,∴213263x πππ--,∴12sin()26y x π=-在[π-,]π上不单调递增,故选项B 错误;C, 把()y f x =的图象向左平移2π个单位,则所得函数12sin[()]2sin 3223xy x ππ=-+=,是奇函数,故选项C 正确; D, 设1,,32,362x k k Z x k πππππ-=+∈∴=+当24k x π=-⇒=-,所以函数()y f x =的图象关于直线4x π=-对称,故选项D 正确.故选:ACD 【点睛】方法点睛:求三角函数的解析式,一般利用待定系数法,一般先设出三角函数的解析式sin()y A wx k ,再求待定系数,,,A w k ,最值确定函数的,A k ,周期确定函数的w ,非平衡位置的点确定函数的φ.4.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为πB .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减C .函数()y f x =的图象关于直线512x π=-对称 D .该图象向右平移6π个单位可得2sin 2y x =的图象 【答案】ACD 【分析】先根据图像求出()y f x =的解析式,再分别验证A 、B 、C 、D 是否正确. 对于A :利用周期公式求周期;对于B :利用复合函数“同增异减”求单调区间; 对于C :计算512f π⎛-⎫⎪⎝⎭,看512x π=-是否经过顶点; 对于D :利用“左加右减”判断. 【详解】由图像可知:A =2,周期24,2312T T ππππω⎛⎫=-=∴==⎪⎝⎭; 由=2sin 2212122f ππϕπϕ⎧⎛⎫⎛⎫⨯+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎪<⎪⎩解得:3πϕ=故函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭对于A :4312T πππ⎛⎫=-= ⎪⎝⎭,故A 正确; 对于B :当236x ππ-≤≤- 时203x ππ-≤+≤,所以()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦上不单调.故B 错误; 对于C :当512x π=-时255s 2121232in f πππ⎛⎫⎛⎫=-=- ⎪ ⎭⎝-⎪⎭+⎝⨯,即直线512x π=-是()y f x =的一条对称轴.故C 正确;对于D :()y f x =向右平移6π个单位得到2sin 222sin 263y x x ππ⎛⎫=-⨯+= ⎪⎝⎭,故D 正确. 故选:ACD 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.5.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示,则下列说法正确的是( )A .23ϕπ=B .()f x 的最小正周期为πC .()f x 的图象关于直线12x π=对称D .()f x 的图象关于点5,06π⎛⎫⎪⎝⎭对称 【答案】BCD 【分析】利用图象,把(3代入求ϕ,利用周期求出2ω=,从而2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,研究对称轴和对称中心. 【详解】由图可知2sin 3ϕ=3sin ϕ=,根据图象可知0x =在()f x 的单调递增区间上,又0ϕπ<<,所以3πϕ=,A 项错误;因为()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,所以结合图像,由五点法得33ωπππ+=,解得2ω=,则()f x 的最小正周期2T ππω==,B 项正确;将12x π=代入2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,得2sin 21263f πππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称,C 项正确﹔将56x π=代入可得552sin 0633f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以点5,06π⎛⎫⎪⎝⎭是()f x 图象的一个对称中心,D 项正确. 故选:BCD. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.6.将函数cos 2y x =的图象上所有点向左平移6π个单位长度,再向下平移1个单位长度,得到函数()y f x =的图象,则( ) A .()f x 的图象的对称轴方程为()62k x k Z ππ=-+∈ B .()f x 的图象的对称中心坐标为(),0212k k Z ππ⎛⎫+∈ ⎪⎝⎭C .()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭D .()f x 的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】AC 【分析】首先根据图象平移求函数()y f x =的解析式,再根据整体代入的方法判断函数的对称性和单调区间. 【详解】cos 2y x =的图象上所有点向左平移π6个单位长度,得到cos 26y x π⎛⎫=+ ⎪⎝⎭,再向下平移1个单位长度后得到()cos 213y f x x π⎛⎫==+- ⎪⎝⎭, 对于A ,令23x k ππ+=,解得,62k x k Z ππ=-+∈,函数的对称轴是,62k x k Z ππ=-+∈,故A 正确; 对于B ,令232x k πππ+=+,解得:,122k x k Z ππ=+∈,所以函数的对称中心,1,122k k Z ππ⎛⎫+-∈ ⎪⎝⎭,故B 不正确; 对于C ,令2223k x k ππππ-+≤+≤,解得:236k x k ππ-+π≤≤-+π,所以函数的单调递增区间是2,,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦,由于单点不具有单调性,所以()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭也正确,故C 正确;对于D ,令2223k x k ππππ≤+≤+,解得:63k x k ππππ-+≤≤+,所以函数单调递减区间是,63k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈,故D 不正确. 故选:AC 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.7.在ABC 中,下列说法正确的是( ) A .若A B >,则sin sin A B > B .若2C π>,则222sin sin sin C A B >+C .若sin cos A B <,则ABC 为钝角三角形D .存在ABC 满足cos cos 0A B +≤ 【答案】ABC 【分析】根据大角对大边,以及正弦定理,判断选项A ;利用余弦定理和正弦定理边角互化,判断选项B ;结合诱导公式,以及三角函数的单调性判断CD. 【详解】 A.A B >,a b ∴>,根据正弦定理sin sin a bA B=,可知sin sin A B >,故A 正确; B.2C π>,222cos 02a b c C ab +-∴=<,即222a b c +<,由正弦定理边角互化可知222sin sin sin C A B >+,故B 正确;C.当02A π<<时,sin cos cos cos 2A B A B π⎛⎫<⇔-<⎪⎝⎭,即22A B A B ππ->⇒+<,即2C π>,则ABC 为钝角三角形,若2A π>,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒>+成立,A 是钝角,当2A π=是,sin cos A B >,所以综上可知:若sin cos A B <,则ABC 为钝角三角形,故C 正确;D.A B A B ππ+<⇒<-,0,0A B πππ<<<-<,()cos cos cos A B B π∴>-=-,即cos cos 0A B +>,故D 不正确. 故选:ABC 【点睛】关键点点睛:本题考查判断三角形的形状,关键知识点是正弦定理和余弦定理,判断三角形形状,以及诱导公式和三角函数的单调性.8.已知函数()2sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭,则下列结论正确的是( ) A .函数()f x 的初相为6π- B .若函数()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增,则(0,2]ω∈ C .若函数()f x 关于点,02π⎛⎫⎪⎝⎭对称,则ω可以为12D .将函数()f x 的图象向左平移一个单位得到的新函数是偶函数,则ω可以为2023 【答案】AB 【分析】根据选项条件一一判断即可得结果. 【详解】A 选项:函数()2sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭的初相为6π-,正确; B 选项:若函数()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增,则2266k ππωππ-+≤-,2362k πωπππ-≤+,k Z ∈,所以21226k k ω-+≤≤+,k Z ∈,又因为0ω<,则02ω<≤,正确;C 选项:若函数()f x 关于点,02π⎛⎫⎪⎝⎭对称,则,26k k Z πωππ-=∈,所以12,3k k Z ω=+∈故ω不可以为12,错误;D 选项:将函数()f x 的图象向左平移一个单位得到()12sin 6f x x πωω⎛⎫+=+- ⎪⎝⎭是偶函数,则,62k k Z ππωπ-=+∈,所以2,3k k Z πωπ=+∈故ω不是整数,则ω不可以为2023,错误;故选:AB【点睛】掌握三角函数图象与性质是解题的关键.二、数列多选题9.设数列{}{},n n a b 的前n 项和分别为,n n S T ,1121,n n n S S S n++==,且212n n n n a b a a ++=,则下列结论正确的是( )A .20202020a =B .()12n n n S +=C .()112n b n n =-+D .1334n T n ≤-< 【答案】ABD【分析】可由累乘法求得n S 的通项公式,再由()12n n n S +=得出n a n =,代入212n n n n a b a a ++=中可得()112n b n n =++.由裂项相消法求出n T ,利用数列的单调性证明1334n T n ≤-<. 【详解】 由题意得,12n n S n S n++=, ∴当2n ≥时,121121112n n n n n S S S n n S S S S S n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅--()13112n n +⋅=,且当1n =时也成立, ∴ ()12n n n S +=,易得n a n =,∴ 20202020a =,故,A B 正确; ∴ ()()()211111112222n n b n n n n n n +⎛⎫==+=+- ⎪+++⎝⎭, ∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-++-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭, 又n T n -随着n 的增加而增加, ∴1113n T n T -≥-=,∴1334n T n ≤-<,C 错误,D 正确, 故选:ABD.【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.10.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ-=(λ为常数).若数列{}n b 满足2920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )A .5B .6C .7D .8【答案】AB【分析】 利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n n a ,进而得到n b ;利用10n n b b 可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果.【详解】当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n n n n a S S a a ,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列,12n n a 2920n n a b n n =-+-,219202n n n n b --+-∴= ()()222111912092011280222n n n n n n n n n n n b b +--+++--+--+∴-=-=< 20n >,()()21128470n n n n ∴-+=--<,解得:47n << 又n *∈N ,5n ∴=或6故选:AB【点睛】关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.。
解三角形专题(高考题)练习【附答案】1、在ABC ∆中,已知内角3A π=,边BC =.设内角B x =,面积为y .(1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。
2、已知ABC ∆中,1||=AC ,0120=∠ABC ,θ=∠BAC ,…记→→•=BC AB f )(θ,(1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域;3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ∆中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。
(I )求锐角B 的大小; (II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。
5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=⋅,且22=b ,求c a 和b 的值. 6、在ABC ∆中,cos A =cos 10B =. —(Ⅰ)求角C ; (Ⅱ)设AB =,求ABC ∆的面积.7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,A B C120°θ(sin ,1cos ),//,3.n A A m n b c a =++=满足 (I )求A 的大小;(II )求)sin(6π+B 的值.8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。
高一数学解斜三角形试题答案及解析1.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.【答案】B【解析】将代入可得,所以或,当时有有.【考点】解三角形.2.已知ABC中,,, 则= .【答案】【解析】根据题意,由于ABC中,,,则有正弦定理可知,由于b<a,则可知B<A,因此可知=,故答案为。
【考点】解三角形点评:主要是考查了解三角形的运用,属于基础题。
3.在△ABC中,BC=a,AC=b,a,b是方程的两个根,且。
求:⑴角C的度数;⑵ AB的长度。
【答案】(1)C=120°;(2)【解析】(1)C=120°(2)由题设:【考点】三角形内角和定理,诱导公式,两角和的三角函数,余弦定理的应用。
点评:中档题,本题综合性较强,三角形问题,一般要注意应用三角形内角和定理,适时的变角。
在确定三角形边长的过程中,有时须正弦定理与余弦定理综合应用。
4.在中,内角的对边分别为.已知.(Ⅰ)求的值;(Ⅱ)若为钝角,,求的取值范围.【答案】(Ⅰ)3(Ⅱ)【解析】(1)由正玄定理,设所以又:A+B+C=因此(2)由,得c=3a由题意【考点】解三角形点评:解三角形时常借助于正弦定理,余弦定理,实现边与角的互相转化5.如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【答案】米【解析】先根据三角形内角和求得∠BAC,进而根据正弦定理求得BC,最后在在Rt△BCD中,根据CD=BC•sin∠CBD求得答案。
解:在△ABC中,∵∠ABC=30°,∠ACB=15°,∴∠BAC=135°.又AB=20,由正弦定理,得BC= +1).∴在Rt△BCD中,CD=BC•sin∠CBD=10(3+).故山高为10(3+)m.【考点】解三角形点评:本题主要考查了解三角形的实际应用.考查了考生综合运用所学知识的能力6.在△ABC中,A、B、C的对边分别为a、b、c, 且( 1 )求;( 2 )若,的面积为,求的值.【答案】(1). ( 2 ) =7。
专题六 三角比与解斜三角形【考题回放】1. [10年 理4文3]行列式ππcossin 36ππsin cos 36的值是_________.2. [11年 理6文8]在相距2千米的A , B 两点处测量目标点C , 若75CAB ︒∠=, 60CBA ︒∠=, 则A , C 两点间的距离为_______________.3. [12年 理16文17]在ABC ∆中, 若222sin sin sin A B C +<, 则ABC ∆的形状是 [答] ( ) (A) 锐角三角形. (B) 直角三角形. (C) 钝角三角形. (D) 不能确定.4. [10年 理15文16]“π2π()4x k k =+∈”是“tan 1x =”成立的 [答] ( )(A) 充分不必要条件. (B) 必要不充分条件.(C) 充要条件. (D) 既不充分也不必要条件.5. [13年 理4]已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c ,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)[13年 文5]已知ABC ∆的内角A 、B 、C 所对的边分别是a ,b ,c .若2220a ab b c ++-=,则角C 的大小是 (结果用反三角函数值表示).6. [10年 理18]某人要制作一个三角形, 要求它的三条高的长度分别为111,,13115, 则此人能[答]( ) (A) 不能作出这样的三角形. (B) 作出一个锐角三角形. (C) 作出一个直角三角形. (D) 作出一个钝角三角形. [10年 文18]若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =, 则ABC ∆ [答]( ) (A) 一定是锐角三角形. (B) 一定是直角三角形.(C) 一定是钝角三角形. (D) 可能是锐角三角形, 也可能是钝角三角形.【高考说明】历年高考中, 三角比以及三角函数均占有一定的比重. 其考察方式多为两种, 其一是考察解斜三角形; 另一种则是考察三角函数. 值得注意的是, 直接考察三角恒等式的情况虽然比较少, 但在解三角形与三角函数解析式的转化过程中都要使用到, 故应当引起重视.【重点突破】一、定义与基本公式高考要求理解有关弧度制的概念, 会进行弧度制与角度制的互化, 掌握任意角三角比的定义以及同角三角比的关系. 研究π, π, 2π()2k k ααα±±±∈的正弦、余弦和正切公式.例1. 已知3tan 4α=-, 且α是第二象限角, 求下列各式的值.(1)πcos()2sin(3π)2π2tan(3π)cos()2αααα-+-+++; (2)sin 2cos 2sin cos αααα-+; (3)21sin 2sin cos ααα+.例2. 已知定义在π(0,)2上的函数2(sin 1)y x =+与83y =的图像的交点为P , 过P 作1PP x ⊥轴于1P , 直线1PP 与tan y x =的图像交于点2P , 则线段12P P 的长为_____________.二、和差倍半公式这一板块高考的要求为: 研究两角和与差的余弦、正弦、正切公式. 会用这些公式进行恒等变形和解决有关计算问题. 掌握二倍角公式. 例3. 基本问题.(1) 若θ为第四象限角, 且π4sin()25θ+=, 则sin 2θ=__________.(2) 已知1cos21sin cos ααα-=, 1tan()3βα-=-, 则tan(2)βα-的值为___________.(3) 已知3sin 5α=-, 3π(π,)2α∈, 则cos 2α=_________.例4. [10年 文理19]已知π02x <<, 化简:2πlg(cos tan 12sin ))]lg(1sin 2)24x x x x x ⋅+-+--+.例5. 已知,αβ为锐角, 且1sin cos 1sin cos 2sin sin ααββαβ+-+-⋅=, 则tan tan αβ=_________. 三、解三角形解三角形时, 主要的工具是正弦定理和余弦定理. 要求是会根据已知三角比的值求角. 会用正弦定理、余弦定理以及有关三角知识解三角形和简单的实际问题. 会用三角比的知识去观察解决一些实际问题, 增强用数学的意识. 例6. 基本问题.(1) 在ABC ∆中, 角A , B , C 的对边分别为a , b , c , 且满足cos 2A =, 3AB AC ⋅=, 则ABC ∆的面积为________.(2) 在ABC ∆中, 已知1tan 4A =, 3tan 5B =, 且ABC ∆则ABC ∆的最小边的长为__________.(3) 在ABC ∆中, AB =2AC =且30B ︒∠=, 则ABC ∆的面积等于__________. (4) 已知ABC ∆中角A , B 的对边边长分别为a , b , 若cos cos a B b A =, 则三角形的形状为____________.例7.在ABC∆中, a, b, c分别为角A, B, C的对边,已知tan C=72c=, ABC∆的面积为ABCS∆=, 求a b+的值.例8.如图,甲船以每小时, 乙船按固定方向匀速直线航行, 当甲船位于1A处时, 乙船位于甲船的北偏西105︒方向的1B处, 此时两船相距20海里; 当甲船航行20分钟到达2A处时, 乙船航行到甲船的北偏西120︒方向的2B处,此时两船相距, 问乙船每小时航行多少海里?甲乙北1201051A2A1B2B专题六 三角比与解斜三角形姓名 班级【巩固练习】1. 如果,αβ的终边关于x 轴对称, 那么,αβ的关系是__________________(用α表示β).2. 已知角α的终边经过点0(2,)P y -, sin α=, tan α=_________. 3. 若α是锐角, 且满足π1sin()63α-=, 则cos α=_____________.4. 已知3cos(π)5α-=, 则3πsin(2)2α+的值为__________.5. 在三角形ABC 中,已知2BC AB ==, 30C ︒∠=, 则AC =__________.6. 在ABC ∆中, 已知1cos 3A =,且BC 则ABC ∆面积的最大值为_________.7. 设3π2π2α<<, 1cos()cos sin()sin 3αββαββ+++=, 求cos 2α和πcot()42α-的值.8. 已知tan (1)a a θ=>, 求πsin()4tan 2πsin()2θθθ+⋅-的值.9. 设锐角三角形ABC 的内角A , B , C 的对边分别为a , b , c , 且2sin a b A =, (1) 求B 的大小;(2) 求cos sin A C +的取值范围.10. 如图, 当甲船位于A 处时获悉, 在其正东方向相距20海里的B处有一艘渔船遇险等待营救. 甲船立即前往救援, 同时把消息告知在甲船的南偏西30︒, 相距10海里C 处的乙船, 试问乙船应朝北偏东多少度的方向沿直线前往B 处救援(角度精确到1︒).11. [理]在ABC ∆中, 已知三内角A , B , C 依次成等差数列, 求22cos cos A C +的取值范围.C专题六 三角比与解斜三角形 考题回放答案【考题回放】1. [10年 理4文3]行列式ππcossin 36ππsin cos 36的值是_________. 2. [11年 理6文8]2千米的A , B 两点处测量目标点C , 若75CAB ︒∠=, 60CBA ︒∠=, 则A , C两点间的距离为解: 45C ︒∠=, 由正弦定理: sin60sin 45AC ABAC ︒︒=⇒=.3. [12年 理16文17]在ABC ∆中, 若222sin sin sin A B C +<, 则ABC ∆的形状是 [答] ( C )(A) 锐角三角形. (B) 直角三角形. (C) 钝角三角形. (D) 不能确定.4. [10年 理15文16]“π2π()4x k k =+∈Z ”是“tan 1x =”成立的 [答] ( A )(A) 充分不必要条件. (B) 必要不充分条件.(C) 充要条件. (D) 既不充分也不必要条件.5. [13年 理4]已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c ,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示) 【解答】2222222323303a ab b c c a b ab ++-=⇒=++,故11cos ,arccos 33C C π=-=-. [13年 文5]已知ABC ∆的内角A 、B 、C 所对的边分别是a ,b ,c .若2220a ab b c ++-=,则角C 的大小是 (结果用反三角函数值表示).23π6. [10年 理18]某人要制作一个三角形, 要求它的三条高的长度分别为111,,13115, 则此人能 [答]( D )(A) 不能作出这样的三角形. (B) 作出一个锐角三角形. (C) 作出一个直角三角形. (D) 作出一个钝角三角形. [10年 文18]若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =, 则ABC ∆ [答]( C )(A) 一定是锐角三角形. (B) 一定是直角三角形.(C) 一定是钝角三角形. (D) 可能是锐角三角形, 也可能是钝角三角形.专题六 三角比与解斜三角形 重点突破答案【重点突破】一、定义与基本公式高考要求理解有关弧度制的概念, 会进行弧度制与角度制的互化, 掌握任意角三角比的定义以及同角三角比的关系. 研究π, π, 2π()2k k ααα±±±∈Z 的正弦、余弦和正切公式.例1. 已知3tan 4α=-, 且α是第二象限角, 求下列各式的值.(1)πcos()2sin(3π)2π2tan(3π)cos()2αααα-+-+++; (2)sin 2cos 2sin cos αααα-+; (3)21sin 2sin cos ααα+.答案: (1)67-; (2)112; (3)53-.例2. [闵行 文理10]已知定义在π(0,)2上的函数2(sin 1)y x =+与83y =的图像的交点为P , 过P 作1PP x ⊥轴于1P , 直线1PP 与tan y x =的图像交于点2P , 则线段12P P 的长为_____________.解: 由题意, 12,,P P P 三点的横坐标相等, 设为0x , 则120||tan PP x =则00812(sin 1)sin 33x x +=⇒=, 结合0π(0,)2x ∈可得0tan x =即12||P P =.二、和差倍半公式这一板块高考的要求为: 研究两角和与差的余弦、正弦、正切公式. 会用这些公式进行恒等变形和解决有关计算问题. 掌握二倍角公式. 例3. 基本问题. (1) 若θ为第四象限角, 且π4sin()25θ+=, 则sin 2θ=__________.(2) 已知1cos21sin cos ααα-=, 1tan()3βα-=-, 则tan(2)βα-的值为___________.解: 21cos22sin 11tan sin cos sin cos 2ααααααα-==⇒=,tan()tan tan(2)tan[()]11tan()tan βααβαβααβαα---=--==-+-.(3) 已知3sin 5α=-, 3π(π,)α∈, 则cos α=_________.解: π3π(,)cos 242αα∈⇒==[评注]涉及半角公式, 供理科班使用.例4. 已知π02x <<, 化简:2πlg(cos tan 12sin ))]lg(1sin 2)24x x x x x ⋅+-+--+.解: 原式lg(sin cos )lg(sin cos )lg(1sin 2)x x x x x=+++-+ 22(sin cos )lg lg10(sin cos )x x x x +===+.2425-例5. 已知,αβ为锐角, 且1sin cos 1sin cos 2sin sin ααββαβ+-+-⋅=, 则tan tan αβ=_________.解: 即1cos 1cos (1)(1)2tan tan 1tan tan tan 1sin sin 22222αβαβαβαβαβ--++⋅+=⇒+=-⇒=, 结合,αβ为锐角得π24αβ+=, 即π2αβ+=,故πtan tan tan tan()tan cot 12αβαααα=-==.[评注]本题为理科题, 涉及半角公式. 相应的文科题直接给出(1tan )(1tan )222αβ+⋅+=.三、解三角形解三角形时, 主要的工具是正弦定理和余弦定理. 要求是会根据已知三角比的值求角. 会用正弦定理、余弦定理以及有关三角知识解三角形和简单的实际问题. 会用三角比的知识去观察解决一些实际问题, 增强用数学的意识. 例6. 基本问题.(1) 在ABC ∆中, 角A , B , C 的对边分别为a , b , c ,且满足cos 2A =, 3AB AC ⋅=, 则ABC ∆的面积为________. (2) 在ABC ∆中, 已知1tan 4A =, 3tan 5B =, 且ABC ∆则ABC ∆的最小边的长为__________.解: 3πtan tan()14C A B C =-+=-⇒=, 结合tan tan A B <知A 为最小角, 即a 为最小边;由正弦定理: sin sin c aa C A=⇒=(3) 在ABC ∆中, AB =2AC =且30B ︒∠=, 则ABC ∆的面积等于__________.解: 由余弦定理: cos302a ︒=⇒=或者4, 11sin 24S ac B ac ===(4) 已知ABC ∆中角A , B 的对边边长分别为a , b , 若cos cos a B b A =, 则三角形的形状为____________.解: 由正弦定理: 2sin , 2sin a R A b R B ==, 代入条件得sin cos sin cos tan tan A B B A A B A B =⇒=⇒=,即三角形为等腰三角形.例7. 在ABC ∆中, a , b , c 分别为角A , B , C 的对边,已知tan C =72c =, ABC ∆的面积为ABC S ∆=, 求a b +的值.解:由tan 60C C ︒==,由余弦定理: 22222492cos 4c a b ab C a b ab =+-⇒+-=, 又1sin 62ABC S ab C ab ∆=⇒=,故224912111218442a b ab a b ++=+=⇒+=.2例8. 如图,甲船以每小时, 乙船按固定方向匀速直线航行, 当甲船位于1A 处时, 乙船位于甲船的北偏西105︒方向的1B 处, 此时两船相距20海里; 当甲船航行20分钟到达2A 处时, 乙船航行到甲船的北偏西120︒方向的2B 处,此时两船相距, 问乙船每小时航行多少海里?答案: 单位: 海里/小时).甲乙北1201051A 2A 1B 2B专题六 三角比与解斜三角形 巩固练习答案【巩固练习】1. 如果,αβ的终边关于x 轴对称, 那么,αβ的关系是用α表示β).2.已知角α的终边经过点0(2,)P y -, sin α=, tan α=3. 若α是锐角, 且满足π1sin()63α-=, 则cos α=解: ππππππcos cos[()]cos()cos sin()sin 6666αααα=-+=---1132=⋅=. 4. 已知3cos(π)5α-=, 则3πsin(2)2α+的值为__________.解: 3cos 5α=-; 237sin(π2)cos22cos 1225ααα+=-=-+=.5. 在三角形ABC 中, 已知2BC AB ==, 30C ︒∠= 则AC =__________.6. 在ABC ∆中, 已知1cos 3A =, 且BC 则ABC ∆面积的最大值为解: 2222cos a b c bc A =+-, 2224333b c bc bc =+-≥, 所以94bc ≤,119sin 224S bc A =≤⋅=.7. 设3π2π2α<<, 1cos()cos sin()sin 3αββαββ+++=, 求cos 2α和πcot()42α-的值.答案: 7cos29α=-; πcot()342α-=-8. 已知tan (1)a a θ=>, 求πsin()4tan 2πsin()2θθθ+⋅-的值. 答案.9. 设锐角三角形ABC 的内角A , B , C 的对边分别为a , b , c , 且2sin a b A =, (3) 求B 的大小;(4) 求cos sin A C +的取值范围.答案: (1)π6B =; (2)3)2.10. 如图, 当甲船位于A 处时获悉, 在其正东方向相距20海里的B 处有一艘渔船遇险等待营救. 甲船立即前往救援, 同时把消息告知在甲船的南偏西30︒, 相距10海里C 处的乙船, 试问乙船应朝北偏东多少度的方向沿直线前往B 处救援(角度精确到1︒).解: 连接BC , 由余弦定理:222201022010cos120700BC ︒=+-⨯⨯=, 即BC =10sin ACB =∠, sin ACB ∴∠=2π)k k β=∈C725高三第二轮复习 三角比与解斜三角形11 90ACB ︒∠<, 41ACB ︒∴∠=.答: 乙船应朝北偏东71︒方向沿直线前往B 处救援.11. [理]在ABC ∆中, 已知三内角A , B , C 依次成等差数列, 求22cos cos A C +的取值范围. 解: 由已知得60B ︒=, 120A C ︒+=,()221cos21cos21cos cos cos2cos21222A C A C A C +++=+=++ ()()()1cos cos 11cos 2A C A C A C =+-+=--, 120120A C ︒︒-<-<, ()1cos 12A C ∴-<-≤, ()1151cos 224A C ∴≤--<,即22cos cos A C +的取值范围为15[,)24.。