类金刚石薄膜
- 格式:doc
- 大小:187.00 KB
- 文档页数:11
类金刚石膜技术基础一、类金刚石薄膜发展史:金刚石、类金刚石薄膜技术,是指利用各种光学薄膜制作技术制作接近天然金刚石和人造单晶金刚石特性(如在较宽光谱内均具有很高的光透过率--在2~15μm(微米)范围光的吸收率低到1%;具有很高的硬度、良好的导热性、耐腐蚀性以及化学稳定性高--1000℃(摄氏度)以上仍保持其化学稳定性等)的人造多晶金刚石薄膜、类金刚石薄膜(又称为硬碳膜、离子碳膜、或透明碳膜)的一种技术。
光学应用金刚石、类金刚石薄膜主要采用低压化学汽相沉积(CVD)技术制备。
低压CVD 技术包括热丝CVD法、等离子体CVD法、离子束蒸镀法、光/激光CVD法附加活性氢激光CVD 法等。
目前,CVD法制作金刚石薄膜已取得丰硕成果,但作为红外光学薄膜应用还需进一步解决金刚石薄膜对红外光学材料的粘着性和光散射的问题。
CVD法制作的金刚石薄膜与硅基片的粘着性是不错的,但是与其他材料(如锗、硫化锌等)基片的粘着性就甚差,或是根本就粘着不到一起去。
对于光散射的问题,则是要求如何更好地控制金刚石薄膜表面形态和晶粒结构。
理想的CVD法制造的红外光学应用的金刚石薄膜或许是一种单晶结构的膜,但是,目前使用CVD法还不能制造单晶结构的金刚石薄膜。
此外,大面积薄膜的制作、膜的光洁度等技术课题以及金刚石薄膜的制作成本问题,都有待于继续研究解决。
1.1金刚石、类金刚石薄膜研究进程自1963年在一次偶然的机会出现了不寻常的硬度和化学性能好的化学汽相沉积(CVD)碳形式的薄膜后,国外有不少研究单位开始研究金刚石薄膜的沉积工艺.1971年,艾森伯格(Aisenberg)和沙博(Chabot)等人,利用离子束蒸镀法,以石墨作薄膜材料,通过氩气弧光放电使石墨分解电离产生碳离子。
碳离子经磁场聚焦成束,在比较高的真空条件下,在低压沉积室内的室温下的基片上沉积出了硬碳膜。
这种硬碳膜具有近似于金刚石的一些特性-如透明度高、电阻抗大、硬度高等。
类金刚石(DLC)多层薄膜残余应力调控及其机械性能研究类金刚石(DLC)薄膜由于具有高硬度和弹性模量、低摩擦系数、优异的耐磨损性和耐腐蚀性等优异性能,而成为具有广泛应用前景的保护膜及耐磨材料。
多年的研究发现DLC薄膜中存在很大的残余应力,降低了薄膜与钛合金基体的结合强度,导致DLC薄膜在使用过程中的早期失效,限制了它的工业应用。
多层薄膜是由不同材料相互交替沉积而成的组分或结构交替变化的薄膜材料,由于它具有大量的界面,通常会增加材料的韧性,阻碍裂纹的扩展,与相应的单层薄膜相比,多层薄膜的残余应力较低,且耐磨性能及耐蚀性能好,具有广泛的应用前景。
因此,基于DLC薄膜急需解决的问题和实际应用的需要,设计了软硬交替DLC多层薄膜体系,其中软层将起到剪切带的作用,以缓解膜层中的内应力和界面应力。
本文采用磁过滤阴极真空弧源(FCVA)沉积技术在Ti6A14V合金及Si(100)表面制备了一系列不同调制参数的软硬交替DLC多层薄膜和TiC/DLC多层薄膜,以减小或控制DLC薄膜中的残余应力、提高硬度和增强钛合金的摩擦学性能。
本文系统研究了调制周期和调制比对软硬交替DLC多层薄膜和TiC/DLC多层薄膜的形貌、残余应力、成分、结构、机械性能和摩擦学性能的影响。
同时采用有限元软件(Ansys)对软硬交替DLC多层薄膜的残余应力进行了模拟。
为使基体与膜层之间形成良好的过渡,进一步增强膜基结合力,本文还研究了Ti/TiC梯度过渡层对DLC多层薄膜性能的影响。
全文主要结果如下:(1)采用FCVA技术在钛合金表面成功的制备出了结构致密、低残余应力、高硬度和优异耐磨性能的软硬交替DLC多层薄膜和TiC/DLC 多层薄膜。
(2)使用FCVA技术制备的软硬交替DLC多层薄膜,在调制周期固定为140nm时,薄膜中sp3键的含量随调制比(硬DLC膜层与软DLC膜层厚度之比)的增大而增加;在调制比固定为1:1时,sp3键的含量随调制周期的减小而减小。
学科前沿知识讲座论文之袁州冬雪创作类金刚石薄膜的性能与应用摘要:类金刚石膜(Diamond-likeCarbon)简称DLC,是一类性质近似于金刚石如具有高硬度、高电阻率、耐腐蚀、杰出的光学性能等,同时其又具有自身独特磨擦学特性的非晶碳膜.作为功能薄膜和呵护薄膜,其广泛应用于机械、电子、光学、医学、航天等范畴中.类金刚石膜制备方法比较简单,易实现工业化,具有广泛的应用前景.关键词:超硬资料类金刚石薄膜制备气象沉积概况工程技术引言磨损是工程界资料功能失效的主要形式之一,由此造成的资源、动力的华侈和经济损失可用“宏大”来暗示.然而,磨损是发生于机械设备零部件概况的资料流失过程,虽然不成防止,但若采纳得力措施,可以提高机件的耐磨性.资料概况工程主要是操纵各种概况改性技术,赋予基体资料自己所不具有的特殊的力学、物理或化学性能,如高硬度、低磨擦系数、杰出的化学及高温稳定性、抱负的综合机械性能及优异的磨擦学性能,从而使零部件概况体系在技术指标、靠得住性、寿命和经济性等方面获得最佳效果.硬质薄膜涂层因能减少工件的磨擦和磨损,有效提高概况硬度、韧性、耐磨性和高温稳定性,大幅度提高涂层产品的使用寿命,而广泛应用于机械制造、汽车工业、纺织工业、地质钻探、模具工业、航空航天等范畴.一、超硬薄膜资料随着资料迷信和现代涂层技术的发展,应用超硬资料涂层技术改善零部件概况的机械性能和磨擦学性能是21世纪概况工程范畴重要的研究方向之一.超硬薄膜是指维氏硬度在40GPa以上的硬质薄膜.到今朝为止,主要有以下几种超硬薄膜:1 金刚石薄膜金刚石薄膜的硬度为50~100GPa(与晶体取向有关),从20世纪80年月初开端,一直受到世界各国的广泛重视,并曾于20世纪80年月中叶至90年月末形成了一个全球范围的研究热潮.金刚石膜所具有的最高硬度、最高热导率、极低磨擦系数、很高的机械强度和杰出化学稳定性的优异性能组合使其成为最抱负的工具和工具涂层资料.金刚石薄膜在磨擦学范畴应用的突出问题,就是在载荷条件下薄膜与基体之间的粘附强度以及薄膜自己的粗糙度问题,今朝,己经有针对性地展开了大量的研究工作.随着研究工作的不竭深入,金刚石薄膜将会为整个人类社会带来宏大的经济效益.2 立方氮化硼(c-BN)薄膜立方氮化硼(c-BN)薄膜的硬度为50~80GPa,它具有与金刚石相近似的晶体布局,其物感性能也与金刚石十分相似.与金刚石相比,c-BN的显著优点是具有杰出的热稳定性和化学稳定性,适用于作为超硬刀具涂层,特别是用于加工铁基合金的刀具涂层.3 碳氮膜碳氮膜是新近开辟的超硬薄膜资料,实际预测它具有达到和超出金刚石的硬度.已有的研究标明CNx薄膜的硬度可高达72GPa,可与DLc 相比较.同时CNx薄膜具有十分独特的磨擦磨损特性.在空气中,CNx薄膜的磨擦系数为0.2-0.4,但在N2、C02和真空中的磨擦系数为0.01~0.1.在N2气氛中的磨擦系数最小(0.01),在大气环境中向实验区域吹氮气,也可将其磨擦系数降至0.017.因此,CNx薄膜有望在磨擦磨损范畴获得实际应用.4 类金刚石薄膜类金刚石膜(DLC)是一大类在性质上和金刚石近似,具有sp2和sp3杂化的碳原子空间网络布局的非晶碳膜.与组分相关的硬度可从20GPa变更至80GPa.类金刚石碳膜作为新型的硬质薄膜资料具有一系列优异的性能,如高硬度、高耐磨性、高热导率、高电阻率、杰出的光学透明性、化学惰性等,可广泛用于机械、电子、光学、热学、声学、医学等范畴,具有杰出的应用前景.DLC的主要缺点是:(a)内应力很大,因此薄膜厚度受到限制,一般只能达到1um~2um以下;(b)热稳定性较差,含氢的a:C-H薄膜中的氢在400℃左右就会逐渐逸出,sp2键增加,sp3键降低,在大约500℃以上就会转变成石墨.5 纳米复合多层膜纳米多层膜是一种人为可控的一维周期布局,这种布局可以有效地调整薄膜中的位错和缺陷及其运动,从而获得高硬度、高模量等性能,近期有关多层膜的研究报导较多,其中以金属/氮化物(碳化物,硼化物等)多层膜和氮化物/氮化物多层膜的研究占多数.最近,纳米晶粒复合的TIN/SINx薄膜资料的硬度达到了创记录的105GPa,可以说完全达到了金刚石的硬度.以纳米厚度薄膜交替沉积获得的纳米复合多层膜的硬度与每层薄膜的厚度(调制周期)有关,有能够高于每种组分的硬度.纳米复合多层膜不但硬度很高,而且涂层的韧性和抗裂纹扩大才能得到了显著改善,磨擦系数也较小,因此是抱负的工模具涂层资料.它的出现向金刚石作为最硬资料的地位提出了严峻的挑战,同时在经济性上也有十分分明的优势,因此具有非常好的市场前景.但是,由于一些技术问题还没有得到处理,今朝暂时还未在工业上得到广泛应用.二、类金刚石薄膜简介类金刚石(Diamond-like Carbon,简称DLC)资料是碳的非晶亚稳态布局存在形式之一,是人工合成的含有sp3和sp2键碳混杂的非晶亚稳态布局.迄今为止,人们发现的由纯碳组成的晶体有3种:金刚石、石墨和最近被发现并引起广泛关注的具有笼状布局的布基球和布基碳管.布局分歧造成三者的性质表示出较大的差别.石墨中的碳原子通过sp2杂化形成3个共价σ键,并与其他碳原子毗连成六元环形的蜂窝平面层状布局.在层中碳原子的配位数为3,别的每个碳原子还有一个垂直于层平面的p轨道电子,它们互相平行,形成离域π电子而贯穿于全层中,层中每两个相邻碳原子间的键长0.142nm,层与层之间由分子力连系,间距0.34nm,远大于C-C键长,所以石墨有杰出的导电、导热和润滑特性;金刚石中每个碳原子停止sp3杂化形成4个σ键,构成正四面体,是典型的原子晶体,有硬度大、熔点高的特点,并具有优良的光学、声学、热学和电学特性.而含有sp3和sp2键碳混杂的非晶DLC,具有石墨和金刚石所共有的性能:硬度大、熔点高、杰出的导热、润滑特性,同时具有优良的光学、声学、热学和电学特性.紫外-可见光拉曼光谱(UVRS)测试标明DLC 薄膜确实具有石墨和金刚石混合布局.天然和人造金刚石晶体的Raman光谱峰位为1332cm-1的单峰,石墨晶体的Raman光谱峰位为1575cm-1,多晶石墨除1575cm-1峰外还有一个峰位于1355cm-1.1355cm-1峰的强度决议于样品中无机碳的含量及石墨晶粒的大小.而DLC薄膜不但则有一个在1560cm-1很强而且半高宽度很小的峰位,还有一个在1350cm-1~0.152nm,而石墨和金刚石的碳-碳原子的最近间隔分别为0.142和0.154nm.由于DLC薄膜制备方法(如PVD、CVD、PCVD 等)和采取碳原子的载体(如各种碳烷气、石墨等)分歧,所生成薄膜的碳原子键合方式(C-H,C-C)与碳原子之间的键合方式(有sp2和sp3)及各种键合方式的比例也分歧.因此DLC薄膜可分为非晶碳膜和含氢非晶碳膜.而非晶碳膜的成分、布局、性能也相差较大,但共同点是空间布局上长程无序而短程有序、由大量sp3和少量sp2碳原子键合的一种网状碳布局.研究标明,DLC薄膜的性质与持续的、无规则的sp3骨架的摆列及sp3/sp2的比例等都有关,DLC膜的物理、化学、力学和电子学等性能由其布局决议.三、类金刚石薄膜的制备DLC薄膜的制备方法分为物理物理气相沉积(PVD)和化学气相沉积(CVD)两大类.在此基础上,今朝己经发展出基于物理物理气相沉积和化学气相沉积以及二者连系的多种DLC薄膜制备方法.PVD方法主要有:离子束辅助沉积法,溅射沉积法,离子束沉积法,真空阴极电弧沉积法等.CVD方法主要有:直流辉光放电等离子体化学气相沉积法、射频辉光放电等离子体化学气相沉积法、电子回旋共振化学气相沉积法、脉冲激光沉积法等.与其他方法相比,磁过滤阴极真空弧沉积方法具有阴极资料离化率高、沉积离子能量可大范围调节、沉积温度低及沉积速率高等优点,被证明是制备高硬度涂层的非常优秀的方法之一,在近十年来得到广泛研究.先进的镀膜技术为沉积超硬薄膜提供了技术包管,完善的镀膜设备功能是包管超硬薄膜资料质量的基础.超硬薄膜资料是资料迷信与工程中蓬勃发展的范畴,只有在实际中得到应用才干增强它的生命力.四、类金刚石膜的应用类金刚石薄膜具有较高的硬度,化学惰性,低磨擦系数,优异的耐磨性,表面电阻高,在可见光区的透射率高.类金刚石膜作为呵护膜已经运用到许多范畴:光学窗口、磁盘和微机电系统(MEMS)等,详细的应用如下:1机械范畴的应用由于其具有高的硬度、低磨擦系数(尤其是在超高真空条件下)以及杰出的导热性,可使机械零件在没有冷却和润滑的情况下运转,而不至于导致过高的温度,因此作为耐磨涂层在磨擦学范畴具有宏大的应用前景.类金刚石膜作为耐磨硬质膜在太空中的应用研究也已经展开.由于其较低的磨擦系数,可较好地使用在高温,高真空等不适于液体润滑的情况以及有清洁要求的环境中.类金刚石作为轴承、齿轮、活塞等易损机件的抗磨损镀层尤其是作为刃具、量具概况的耐磨涂层是十分合适的.类金刚石薄膜用作刀具涂层,能提高刀具寿命和刀具边沿的硬度,减少刃磨时间,节俭成本.类金刚石薄膜用作量具概况涂层,不至于使其改变尺寸和划伤概况,减少标定时间.它还具有杰出的化学稳定性,防止酸碱及有机溶液侵蚀,适用于化工机械部和多种装饰件的镀层.2光学范畴的应用①红外窗口的抗磨损呵护层和反射层:类金刚石膜在整个红外波段范围具有杰出的透明特性.由于薄膜硬度高,耐磨性好,使其可以作为支撑红外窗口或作为ZnS、ZnSe等红外窗口的呵护涂层.朱昌等人发现对NaCl晶体镀类金刚石薄膜做呵护层,既不影响10.6um激光输出功率,又可以防止NaCl潮解,能延长红外窗口的使用寿命;②发光资料:类金刚石膜具有杰出的光学透过性以及室温生长的特点,因此类金刚石膜可以作为由塑料和聚碳酸脂等低熔点资料组成的光学透镜概况的抗磨损呵护层.类金刚石膜光学带隙范围宽,室温下光致发光和电致发光率都很高,能在整个可见光范围发光,这使得类金刚石膜成为性能极佳的发光资料之一;③存储资料:V.Yn Armeyer等人实验发现在硅玻璃基片上沉积厚度为100nm的类金钢石薄膜的光学存储信号密度可高达108bits/㎝2数量级,而且具有信噪比高,硬度高,化学稳定性强以及无需再加呵护层等优点,因此有希望成为一次性写入记录介质;④太阳能光-热转换层:在铝基片概况沉积分歧厚度的单层类金刚石膜、硅及锗涂层后,通过比较各自的性能发现单层类金刚石膜的光热转换效率最高.3医学范畴的应用作为一种种植资料,类金刚石膜具有广泛的应用前景.如:在聚乙烯的人工股骨关节头上镀一层类金刚石膜,其抗磨损性能可以与镀陶瓷和金属制品相比;镀有Ti/DLC多层膜的钛制人工心脏瓣膜,由于其具有疏水性和光滑概况,也取得了较好的效果;在用于骨科内固定机械的Ti-Ni形状记忆合金,镀一层类金刚石膜,使其具有杰出的抗氧化性以及杰出的生物学磨擦特性.在人造牙根上镀制一层类金刚石膜可以改善其生物相容性.4电子范畴的应用~3.8之间的DLC膜和介电常数小于2.3的FDLC膜.对于BEOL互联布局,低K值的DLC膜是很好的选择.采取碳膜和类金刚石膜交替出现的多层布局可构造具有共振隧道效应的多量子阱布局,具有独特的电特性,在微电子范畴有很大的发展前途.结论类金刚石膜(DLC).由于该膜在力学、热学、电学、化学、光学等方面具有优异的性能,且制备简单、成本低廉,较之于金刚石薄膜具有较高的性能价格比,且在相当广泛的范畴里可以代替金刚石薄膜,在机械、电子、化学、医学、军事、航空航天等范畴体现了其广阔的应用前景.参考文献[1] 吴大维. 硬质薄膜资料的最新发展及应用.真空. 2003[2] 吕反修. 超硬资料薄膜涂层研究停顿及应用. 热处理. 2004[3] 陈灵,刘正义,邱万奇等. 类金刚石膜的制备及其影响因素. 中国概况工程. 2002 [4] 程宇航等. 类金刚石膜布局的红外分析.硅酸盐学报,1998(4),26[5]李振军,徐洮,李红轩[6] 刘成龙,杨大智等.医用不锈钢概况沉积类金刚石薄膜的电化学腐蚀性能研究. 硅酸盐学报. 2005(5)[7]杨玉卫,刘慧舟等.类金刚石膜的性能、制备及应用.[9] 黄立业,徐可为,吕坚. 类金刚石薄膜的概况纳米划擦性能评价. 无机资料学报.2001(5)[10]罗崇泰. 类金刚石薄膜的获得和应用. 真空与低温. 1987(1)[11]王淑占,李合琴,巫邵波,赵之明,宋泽润. 掺氮类金刚石薄膜的制备及其布局表征. 真空. 2008(1)[12]王培君,江美福,杜记龙,戴永丰. 射频反应磁控溅射法制备的氟化类金刚石薄膜磨擦特性研究. 物理学报. 2010(12) [13]常海波,徐洮,张治军,刘惠文. 衬底对沉积类金刚石薄膜布局和磨擦学性能的影响. 河南大学学报(自然迷信版). 2005(4) [14]刘成龙,杨大智,邓新绿,齐平易近. 类金刚石薄膜的概况性能研究. 无机资料学报. 2005(3)。
第六节正确选用DLC (类金刚石)涂层类金刚石diamond-like carbon,简称DLC薄膜,涂层的主要成分为碳,是以sp3、sp2键结合为主体,并混合有少量sp1键的远程无序立体网状非晶态结构,这种结构使得DLC薄膜具有一系列优良的物理化学性能,如红外波段透明、硬度高、摩擦系数小、化学性能稳定、热膨胀系数小等,从而使该薄膜在光学、电学、材料、机械、医学、航空航天等领域广泛应用。
由于制备技术和方法不同,DLC膜可能完全由碳元素组成,也可能含有大量的氢,因此一般来说,可将DLC薄膜分为含氢碳膜和不含氢碳膜。
根据薄膜中原子的键合方式(C-H、C-C、sp3、sp2等)及各种键比例不同,DLC膜又有不同的称谓:◎非晶碳(amorphous carbon,a-C)膜,膜中sp2键含量较高;◎含氢非晶碳(hydrogenated amor-phous carbon,a-C:H)膜;◎四面体非晶碳(tetra-hedral amorphous carbon,ta-C)膜,sp3键含量超过70%,也称非晶金刚石膜。
事实上,目前对DLC薄膜尚无明确的定义和统一的概念,但若以其宏观性质而论,国际上广为接受的标准为硬度达到天然金刚石硬度20%的绝缘无定形碳膜就称为DLC薄膜。
一、DLC膜的制备技术:DLC薄膜已经开发了许多种沉积方法,大体上可以分为物理气相沉积(PVD)和化学气相沉积(CVD)两大类。
PVD方法是在真空下加热或离化蒸发材料(石墨),使蒸发粒子沉积在基片表面形成薄膜的一种方法。
按照加热方式不同,热蒸发有激光蒸发、电弧蒸发、电子束加热等方法。
溅射沉积是用高能离子轰击靶物质(石墨),与靶表面原子发生弹性或非弹性碰撞,结果部分靶表面原子或原子团溅射出来,沉积在基板上形成薄膜。
CVD方法是在真空室内通入碳的氢化物、卤化物、氧化物,通过气体放电,在一定条件下促使它们发生分解、聚合、氧化、还原等化学反应过程,在基板上形成DLC薄膜的方法。
金刚石薄膜的性质、制备及应用金刚石薄膜因其独特的物理、化学性质而备受。
作为一种具有高硬度、高熔点、优良光学和电学性能的材料,金刚石薄膜在许多领域具有广泛的应用前景。
本文将详细探讨金刚石薄膜的性质、制备方法以及在各个领域中的应用,旨在为相关领域的研究提供参考和借鉴。
金刚石薄膜具有许多优异的物理和化学性质。
金刚石是已知的世界上最硬的物质,其硬度远高于其他天然矿物。
金刚石的熔点高达3550℃,远高于其他碳材料。
金刚石还具有优良的光学和电学性能。
其透明度较高,可用于制造高效光电设备。
同时,金刚石具有优异的热导率和电绝缘性能,使其在高温和强电场环境下具有广泛的应用潜力。
制备金刚石薄膜的方法主要有物理法、化学法和电子束物理法等。
物理法包括热解吸和化学气相沉积等,可制备高纯度、高质量的金刚石薄膜。
化学法主要包括有机化学气相沉积和溶液法等,具有沉积速率快、设备简单等优点。
电子束物理法是一种较为新兴的方法,具有较高的沉积速率和良好的薄膜质量。
各种方法的优劣和适用范围因具体应用场景而异,需根据实际需求进行选择。
光电领域:金刚石薄膜具有优良的光学性能,可用于制造高效光电设备。
例如,利用金刚石薄膜制造的太阳能电池可将更多的光能转化为电能。
金刚石薄膜还可用于制造高品质的激光器、光电探测器和光学窗口等。
高温领域:金刚石的熔点高达3550℃,使其在高温环境下具有广泛的应用潜力。
例如,金刚石薄膜可应用于高温炉的制造,提高炉具的耐高温性能和加热效率。
金刚石薄膜还可用于制造高温传感器和热电偶等。
高压力领域:金刚石具有很高的硬度,使其在高压环境下保持稳定。
因此,金刚石薄膜可应用于高压设备的制造,如高压泵、超高压测试仪器等。
金刚石薄膜还可用于制造高精度的光学镜头和机械零件等。
本文对金刚石薄膜的性质、制备及应用进行了详细的探讨。
作为一种具有高硬度、高熔点、优良光学和电学性能的材料,金刚石薄膜在光电、高温、高压力等领域具有广泛的应用前景。
南京理工大学科技成果——类金刚石硬质薄膜成果简介:类金刚石薄膜(diamond-like carbon,DLC)是一种亚稳态的非晶碳薄膜,具有一系列类似于金刚石的多种优异性能,如高硬度、低摩擦系数、高耐磨耐蚀性、高热导率、在可见到紫外光范围内透明、良好的绝缘性和化学稳定性、优异的生物兼容性及表面光滑等,可广泛用于机械、电子、光学、医学等领域。
本项目制备的类金刚石薄膜具有质量稳定,与基体结合强,硬度、弹性模量、摩擦系数和透光性可调控,耐摩擦磨损和热稳定性好等综合优良性能。
制备工艺方法具有成膜速率高,可实现低温、大面积沉积。
所制备的类金刚石薄膜,与金刚石相比具有更高的性能价格比。
本项目制备的类金刚石膜可用在许多领域,尤其是在机械制造和先进加工器件方面。
如汽车发动机凸轮、挺杆、陶瓷阀及其他耐磨损机械装置部件;精密模具行业(注塑成型模具、冲压模具、半导体封装模具、吹塑成型模具等);高精密机械(精密轴承、精密传动机构等);各种加工工具和切削刀具;医疗设备和器具;磁介质保护膜、各种装饰镀膜和日常用品(手机和手表外壳、扬声器振膜、高尔夫球具、剃须刀片等)。
技术指标:薄膜厚度:几十纳米到几个微米;硬度:25GPa以上;摩擦系数:小于0.15,摩擦磨损过程中具有自润滑作用;沉积温度:小于200℃。
项目水平:国内领先,成熟程度:小试
合作方式:合作开发、技术转让、技术入股。
类金刚石薄膜材料班级:材料物理081401姓名:谭旭松学号:2007140201241.1类金刚石薄膜材料的概述类金刚石薄膜(Diamond Like Carbon)简称DLC,它是一类性质近似于金刚石,以sp3和 sp2键杂化的碳原子空间网络结构的亚稳态非晶碳膜。
依据制备方法和工艺不同,DLC的性质可以在非常大的范围变化,既可能非常类似与金刚石,也可能非常类似与石墨。
其硬度、摩擦系数、导热率、光学带隙、光学透光率、电阻率等都可以依据需要进行“调制”。
一般类金刚石薄膜沉积温度较低、膜面平整光滑,因而在机械电子光学声学计算机的很多领域得到应用,如耐磨层、高频扬声器振膜、光学保护膜等,因此对DLC的开发研究引起很多材料工作者的极大关注。
自从1971年Aisenberg 和Chabot 两位科学家利用碳离子束沉积出DLC 薄膜以来,人们已经成功地研究出了许多物理气相沉积、化学气相沉积以及液相法制备DLC 薄膜的新方法和新技术。
这之中有两个法分别为气相法和沉积法。
1.2类金刚石薄膜材料的结构和分类常态下碳有三种键和方式:sp1,sp2,sp3。
在sp3态碳原子的四个电子按四面体形状分布成sp3杂化轨道,形成强σ键;在sp2态,碳原子的四个电子中的三个形成在同一平面内的三次轴对称的sp2杂化轨道,它们可形成强σ键第四个电子轨道与该平面垂直,形成π键;在sp1态,仅两个电子形成σ键,另两个电子形成π键。
金刚石(diamond)—碳碳以 sp3键的形式结合;石墨(graphite)—碳碳以sp2键的形式结合;而类金刚石(DLC)—碳碳则是以sp3和 sp2键的形式结合,生成的无定形碳的一种亚稳定形态,它没有严格的定义,可以包括很宽性质范围的非晶碳,因此兼具了金刚石和石墨的优良特性;所以由类金刚石而来的DLC膜同样是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键,因而类金刚石薄膜的结构和性能介于金刚石和石墨之间,收沉积环境和沉积方式影响类金刚石薄膜中还可能含有H等杂质,形成一定数量的C-H键。
类金刚石薄膜制备及应用综述类金刚石薄膜是一种具有高硬度、高热导率、化学稳定性良好等优良性能的材料,在多个领域有着广泛的应用。
在本综述中,我将就类金刚石薄膜的制备方法、特性及应用进行详细的介绍,以期为相关领域的研究人员提供指导和借鉴。
一、类金刚石薄膜的制备方法1. 化学气相沉积法化学气相沉积法是一种常用的制备类金刚石薄膜的方法,其核心原理是利用化学反应在基板表面上沉积出单质碳或烷烃单体,再通过合适的条件使其聚合形成类金刚石薄膜。
其优点是工艺成熟、生产效率高,所需设备成本较高,对操作者的技术要求也较高。
2. 微波等离子体化学气相沉积法微波等离子体化学气相沉积法则是在化学气相沉积法的基础上引入了等离子体,利用微波等离子体来活化反应气体,提高沉积速率和质量,从而得到较高质量的类金刚石薄膜。
3. 溅射法溅射法是利用高能粒子轰击类金刚石靶材,使其表面的碳原子脱离靶材并在基底表面重新结晶形成薄膜。
该方法制备的类金刚石薄膜质量较好,但成本较高。
二、类金刚石薄膜的特性1. 高硬度类金刚石薄膜具有与天然金刚石相近的硬度,达到10GPa以上。
这使得类金刚石薄膜在一些需要高耐磨性能的领域有着广泛的应用,如刀具表面涂层等。
2. 高热导率类金刚石薄膜具有非常高的热导率,可达到约2000W/mK,因此被广泛用于热管理领域,如散热片、导热膏等。
3. 化学稳定性良好类金刚石薄膜在化学腐蚀等方面具有较好的稳定性,这使其在一些特殊的化学环境下得到应用。
4. 其它特性除了上述特性之外,类金刚石薄膜还具有较好的光学性能、生物相容性等特性,这为其在生物医疗、光学涂层等领域的应用提供了可能。
三、类金刚石薄膜的应用1. 刀具涂层由于其高硬度与耐磨性能,类金刚石薄膜被广泛应用于刀具涂层,能够大大提高刀具的使用寿命与切削性能。
2. 热管理材料类金刚石薄膜的高热导率使其成为理想的热管理材料,广泛应用于散热片、导热膏等领域。
3. 光学涂层类金刚石薄膜的优良光学性能使其在激光光学、液晶面板等领域有着广泛的应用。
综合能力培养题目:类金刚石薄膜的制备技术研究姓名:学号:专业:应用化学班级:指导教师姓名:学院:化学与生物工程学院日期:2011年7月21日类金刚石薄膜的制备技术研究摘要:类金刚石薄膜(Diamond-Like Carbon, DLC)是一类非晶碳薄膜材料的统称,主要由含有一定量的sp3金刚石相碳的网络结构和sp2石墨相的团簇混合交叉而成,依含氢的有无可细分为氢化类DLC(a-C:H)薄膜和不含氢的四面体非晶碳膜(ta-C)。
DLC 薄膜具有诸多优异特性如高硬度、高弹性模量、低摩擦系数、良好耐磨耐蚀性、从可见到红外透明、良好生物兼容性、表面光滑等,在机械、电子、光学、医学、航空航天等领域具有极广阔的应用前景,DLC薄膜已引起了人们的极大关注,至今已取得了积极的研究和应用进展。
关键字:类金刚石薄膜结构特性性能研究摩擦学性质制备一.概念类金刚石薄膜通常又被人们称为DLC薄膜,是英文词汇Diamond Like Carbon的简称,它是一类性质近似于金刚石,具有高硬度.高电阻率.良好光学性能等,同时又具有自身独特摩擦学特性的非晶碳薄膜。
碳元素因碳原子和碳原子之间的不同结合方式,从而使其最终产生不同的物质:金刚石(diamond)—碳碳以sp3键的形式结合;石墨(graphite)—碳碳以sp2键的形式结合;而如同绪论里所述类金刚石(DLC)—碳碳则是以sp3和sp2键的形式结合,生成的无定形碳的一种亚稳定形态,它没有严格的定义,可以包括很宽性质范围的非晶碳,因此兼具了金刚石和石墨的优良特性;所以由类金刚石而来的DLC膜同样是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键,而在含氢的DLC膜中还存在一定数量的C-H键[1]。
类金刚石碳膜(diamond-like carbon films,简称DLC膜),是含有类似金刚石结构的非晶碳膜,也是我们在这里真正需要介绍的一种。
DLC膜的基本成分是碳,由于其碳的来源和制备方法的差异,DLC膜可分为含氢和不含氢两大类。
DLC膜是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键,在含氢DLC膜中还存在一定数量的C-H键。
我们从1996年起开始磁过滤真空弧及沉积DLC膜研究,正在完善工业化技术。
如等离子体源沉积法、离子束源沉积法、孪生中频磁控溅射法、真空阴极电弧沉积法和脉冲高压放点等。
不同的制备方法,DLC膜的成分、结构和性能不同[2]。
类金刚石碳膜(Diamond-like carbon films,简称DLC膜)作为新型的硬质薄膜材料具有一系列优异的性能,如高硬度、高耐磨性、高热导率、高电阻率、良好的光学透明性、化学惰性等,可广泛用于机械、电子、光学、热学、声学、医学等领域,具有良好的应用前景。
我们开发了等离子体-离子束源增强沉积系统,并同过该系统中的磁过滤真空阴极弧和非平衡磁控溅射来进行DLC膜的开发。
该项技术广泛用于电子、装饰、宇航、机械和信息等领域,用于摩擦、光学功能等用途。
目前在我国技术正处于发展和完善阶段,有巨大市场潜力。
二.历史发展现在我们知道,在常温常压下金刚石是亚稳相,这其中碳原子的4 个价电子是以sp3杂化方式形成四面体配位的键合结构。
而石墨则是一种更稳定的同素异形体,它的碳原子以sp2 杂化方式形成三配位键合结构。
石墨的形成在热动力学上优于金刚石的形成,这意味着亚稳相的sp2杂化键合只能在非平衡过程中形成。
类金刚石薄膜都是亚稳态材料,在制备方法中需要有荷能离子轰击生长表面这一关键[3]。
自从Aisenberg 和Chabot 两位科学家利用碳离子束沉积出DLC 薄膜以来,人们已经成功地研究出了许多物理气相沉积、化学气相沉积以及液相法制备DLC 薄膜的新方法和新技术。
这之中有两个法分别为气相法和沉积法[4]:气相法是直接利用气体,或者通过各种手段将物质转变为气体,使之在气体状态下发生物理变化或者化学反应,最后在冷却过程中凝聚长大形成纳米粒子的方法。
沉积法又分为直接沉淀法、共沉淀法和均匀沉淀法等,都是利用生成沉淀的液相反应来制取[5]。
近十多年来,真空离子镀膜技术的发展是最快的,它已经成为当今最先进的表面处理方式之一。
我们通常所说的PVD镀膜,指的就是真空离子镀膜;通常所说的PVD镀膜机,指的也就是真空离子镀膜机。
化学气相沉积的英文词原意是化学蒸汽沉积(Chemical Vapor Deposition,CVD),因为很多反应物质在通常条件下是液态或固态,经过汽化成蒸汽再参与反应的。
而化学气相沉积的古老原始形态可以追溯到古人类在取暖或烧烤时熏在岩洞壁或岩石上的黑色碳层作为现代CVD技术发展的开始阶段在20世纪50年代主要着重于刀具涂层的应用。
从20世纪60~70年代以来由于半导体和集成电路技术发展和生产的需要,CVD技术得到了更迅速和更广泛的发展[6]。
目前,CVD反应沉积温度的耕地温化是一个发展方向,金属有机化学气相沉积技术(MOCVD)是一种中温进行的化学气相沉积技术,采用金属有机物作为沉积的反应物,通过金属有机物在较低温度的分解来实现化学气相沉积。
近年来发展的等离子体增强化学气相沉积法(PECVD)也是一种很好的方法,最早用于半导体材料的加工,即利用有机硅在半导体材料的基片上沉积SiO2。
PECVD将沉积温度从1000℃降到600℃以下,最低的只有300℃左右,等离子体增强化学气相沉积技术除了用于半导体材料外,在刀具、模具等领域也获得成功的应用。
三.应用用纳米摩擦设备直接观察微材料疲劳Direct investigation of material fatigue using nano-wear instruments摩擦学应用:对于类金刚石的研究主要集中在其摩擦学特征,但对其摩擦学机理的研究还不够充分,还没有提出一个大家普遍接受的机理。
到目前对金刚石薄膜的建模抗磨机制主要有以下三种观点[7]:有两个相同或不同的原子轨道沿轨道对称轴方向相互重叠而形成的共价键叫做σ键。
σ键原子轨道沿轴方向重叠而形成的,具有较大的重叠程度,因此σ键比较稳定。
σ键是围绕对称轴旋转,而不影响键的强度和键与键之间的角度(键角)。
根据分子轨道理论,两个原子轨道充分接近后,能通过原子轨道的线性组合,形成两个分子轨道。
其中能量低于原来原子轨道的分子轨道叫做成键轨道,能量高于原来原子轨道的分子轨道叫做反键轨道。
以核间轴为对称轴的成键轨道叫做σ轨道,相应的键叫做σ键[8]。
以核间轴为对称轴的反键轨道叫做σ*轨道,相应的键叫做σ*键。
分子在基态时,构成化学键的电子通常处在成键轨道中,而让反键轨道空着。
σ键是共价键的一种,它具有如下特点:(一)σ键有方向性,两个成键原子必须沿着对称轴方向接近,才能达到最大重叠。
(二)成键电子云沿键轴对称分布,两端的原子可以沿轴自由旋转而不改变电子云的密度分布。
(三)σ键是头碰头的重叠,与其他键相比,重叠程度大,键能大,因此,化学性质稳定。
共价单键是σ键,共价双键有一个σ键,π键,共价三键有一个σ键,和两个π键组成。
1.化学吸附钝化悬键理论Erdemir等人认为,PECVD制备的含氢DLC膜在惰性气氛中表现出非常低的摩擦系数[9]。
主要原因是:一方面,在DLC膜的沉积过程中,持续的氢离子轰击,使薄膜中氢离子含量增高,大多数氢被认为以共价方式与碳结合,从而消除自由的σ键。
同时薄膜中还有以原子和分子形式存在的氢,他们可以起到氢储备库的作用,持续不断的消除那些由于机械磨损和热解析作用产生的σ键。
另一方面,等离子体中氢的轰击作用把石墨相刻蚀掉阻止了碳碳双键的形成,从而使由碳的双键而引起π-π*作用减小到最小。
最后,两个氢可以和一个碳成键,它的形成可以使表面最大限度的钝化,从而降低摩擦系数。
由此可见,H对DLC薄膜表面的高度钝化和好的保护作用,有效地消除了滑动接触面之间强的化学相互作用,使DLC 薄膜具有比较低的摩擦系数和磨损率,对于无氢的DLC薄膜,其表面的碳与周围的三个碳原子形成σ键,但第四个键是自由的,并存在于表面。
在空气中,这些键被水,氧,氢等饱和[10]。
但当这种DLC在惰性气氛或真空中时,这些吸附物解吸(可能因为磨损和摩擦过程中,摩擦热导致热解析)强的σ键被暴露,这些键可与界面物质形成强的共价键。
因此在潮湿空气中薄膜的摩擦系数在惰性气氛或真空中的要低。
2.滑行界面的石墨化理论DLC薄膜是一种亚稳态结构的碳,如果能克服能垒,将会转化成稳定的石墨[11]。
这种转化分为两个阶段:氢从薄膜中释放和DLC的剪切形变导致薄膜的石墨化。
在较高的速度下,接触点的闪点温度将会达到600摄氏度,而DLC薄膜在300摄氏度左右氢就会释放出来[163].摩擦产生的剪切力能够引起平行于接触表面方向的应力,此应力和能量可以引起在接触点附近sp3结构的C-H键不稳定而失去氢,同时薄膜中存在于晶格空缺中的多个氢也会释放出来,进而引起sp3碳转化为sp2杂化的石墨结构。
随着进一步的石墨化,石墨层达到临界厚度,在两个接触表面的石墨层具有非常低的剪切厚度(归因于低的范德华力作用),可以在接触表面来回不断的转移,引起地的摩擦系数[12]。
3.转移膜理论liu等在研究了各种对偶材料与DLC的摩擦学性能后发现,在摩擦过程中DLC薄膜经历了相变,从类金刚石变为非晶碳,而不是一般的石墨。
如果对偶材料比DLC薄膜硬,则转移方向从DLC向对偶材料,形成的转移材料为非晶碳;若对偶材料是较软的金属,则由软金属向DLC薄膜转移金属磨屑,两种情况都会导致DLC薄膜又较低的摩擦系数。
Donne认为,不论是什么类型的DLC薄膜,在什么样的测试条件下(接触压力,速度,环境,载荷),在摩擦过程中,总会在滑行界面处形成具有低剪切强度的转移膜,引起波摸底的摩擦系数[13]。
然而,正如上述所述,类金刚石薄膜是一个非常大的“家族”,由于制备工艺、沉积参数等不同,薄膜的内在特性差别很大,使得各个研究者观察到的现象不同;此外,DLC 薄膜的摩擦学行为对测试条件以及环境气氛的敏感性也制约了对其摩擦行为和摩擦机理的认识4.摩擦对偶、载荷及速度的影响与DLC薄膜组成副的材料一般可分为高硬度材料和普通硬度材料两类。
前者包括刚玉、陶瓷,金刚石;后者包括:钢和铜。
总体来说,高硬度材料/类金刚石碳膜的摩擦系数较低(小雨0.01):钢/类金刚石碳膜的摩擦系数较高(0.01-0.02)Byung研究了经过不同温度退火处理后产生的四种钢作为对偶时DLC薄膜的摩擦学行为。
作者认为:软的对偶材料(奥氏体)由于具有较大的接触面积而导致较高的摩擦系数;硬的对偶材料(马氏体)则具有较小的摩擦系数[14]。
Erdemir认为,由于DLC薄膜膜具有很高的硬度和刚度,其低摩擦系数不可能像低硬度材料那样依靠低的硬度和剪切应力获得,而是刚度和化学惰性作用的结果。