五年级下册数学试题-奥数专题:牛吃草问题全国通用
- 格式:doc
- 大小:43.55 KB
- 文档页数:10
牛吃草问题(一)例1 牧场上长满牧草,每天匀速生长,这片牧场可供10头牛吃20天,或者可供15头牛吃10天。
问这个牧场供25头牛可吃几天?例2 牧场上一片青草,每天生长速度相同,可供27头牛吃6天,或供69只羊吃9天,如果1头牛的吃草量等于3只羊的吃草量,那么这片青草可供11头牛和30只羊吃几天?例3 有一片牧草,每天以均匀的速度生长,现在派17人去割草,30天才能把草割完,如果派19人去割草,则24天就能割完。
如果需要6天割完,需要派多少人去割草?例4 由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。
经过计算,牧场上的草可供20头牛吃5天,或者供16头牛吃6天,那么这片牧场上的草可供11头牛吃几天?例5 由于天气逐渐冷起,牧场上的草以固定速度在减少.已知牧场上的草可供33头牛吃5天或可供24头牛吃6天.照此计算,这个牧场可供多少头牛吃10天?例6 一片草地,有15头牛吃草,8天可以把草全部吃完。
如果起初这15头牛吃了2天后,又了2头牛,则总共7天就可以把草吃完。
如果起初这15头牛吃了2天后,又了5头牛,则总共多少天可以把草吃完?例7 有三个牧场长满草,第一牧场4公顷,可供24头牛吃6周;第二牧场8公顷,可供36头牛吃12周;第三牧场10公顷,可供50头牛吃几周?(每个牧场每公顷牧草数量相同,草都是匀速生长)例8 22头牛吃33亩草地上的草,54天可以吃完;17头牛吃28亩同样的的草地上的草,84天可吃完。
问:同样的牧草40亩可供多少头牛食用24天?《小学数学思维训练之牛吃草问题(一)》测试题试卷简介《牛吃草问题》属工程问题中的一种,但是工作总量是变化的,本套试卷精选小升初考试真题,归纳各种基本题型,能够很好地锻炼学生的思维能力和分析问题的能力。
学习建议建议:先下载讲义,再观看视频,边听边记,听完了再做课后测试,不放过任何一个问题。
一、单选题(共5道,每道20分)1.一牧场上的青草每天都匀速生长。
小学五年级牛牛吃草奥数题
小学五年级牛牛吃草奥数题
店铺来今天给同学们带来的趣味数学故事是,五年级奥数题及答案:牛牛吃草问题(中等难度)。
每天10分钟头脑大风暴,开发智力,培养探索能力,让你成为学习小天才。
牛牛吃草:(中等难度)
牧场上一片牧草,可供27头牛吃6周,或者供23头牛吃9周.如果牧草每周匀速生长,可供21头牛吃几周?
牛牛吃草答案:
可供21头牛吃12周
27头牛6周吃的草可供多少头牛吃一周? 27×6=162
23头牛9周吃的草可供多少头牛吃一周? 23×9=207
(9-6)周新长的草可供多少头牛吃一周? 207-162=45
一周新长的草可供多少头牛吃一周? 45÷3=15
原有的'草可供多少头牛吃一周? 162-15×6=72或 207-15×9=72 21头牛中的15头牛专吃新长的草,余下的(21-15=)6头牛去吃原有的草几周吃完?
72÷(21-15)=12
【小学五年级牛牛吃草奥数题】。
牛吃草牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
解决牛吃草问题重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决牛吃草问题的基础。
一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
一、例题与方法指导例1.青青一牧场青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。
改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。
“廿”即二十之意。
)【解说】这道诗题,是依据闻名于世界的“牛顿牛吃草问题”编写的。
牛顿是英国人,他的种种事迹早已闻名于世,这里不赘述。
他曾写过一本书,名叫《普遍的算术》,“牛吃草问题”就编写在这本书中。
书中的这道题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。
若是21头牛,要几个星期才可以吃完?(注:牧场的草是不断生长的。
)解答这一问题,首先必须注意牧场里的草是不断生长增多的,而并非一个固定不变的数值。
学科培优数学“牛吃草问题”学生姓名授课日期教师姓名授课时长知识定位牛吃草问题的概念:英国伟大的科学家牛顿,曾经写过一本数学书。
书中有一道非常有名的、关于牛在牧场上吃草的题目,后来人们就把这类题目称为“牛顿问题”,也就是我们今天要学的牛吃草问题。
牛吃草问题实际上是在教我们一种分析题的思想,这种题的类型和解题思想是小升初的考试热点知识梳理“牛顿问题”是这样的:“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
”分析本题就给了牛的头数,和吃草的时间。
设想如果题目给我们操场原有的草量和草的生长速度那么题目就变得简单多了,所以需要我们通过设每头牛每天的吃草速度为“1”来求这两个量。
解决牛吃草问题常用到四个基本公式:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)(2)原有草量=(牛头数-草的生长速度)×吃的天数(3)吃的天数=原有草量÷(牛头数-草的生长速度)(4)牛头数=原有草量÷吃的天数+草的生长速度【授课批注】关于牛吃草这样的题有很多的变例,像抽水问题,超市开口人等待问题,扶梯行走,行程中的追及问题等等,所以不提倡大家生搬这个公来做题,要理解解题的思路和解题的目的,用画图或列表法来解题。
才能做到举一反三。
本讲主要解决纯牛吃草问题,关于牛吃草变型题我们留下以后解决。
解决“牛吃草”问题的步骤可以概括为三步:1、设定1头牛1天吃草量为“1”;2、列出表格,分别表示牛的数量、时间总量、草的总量(原有总量+一定时间内变化的量),根据表格求出草的生长速度和草的总量;也可以画图来解题。
3、根据每头牛单位时间吃草数量和草的生长速度不变这一关系根据题目要求解题。
【重点难点解析】1.牛吃草关键是要求两个量:(1)草的生长速度(2)原有草量2.牛吃草问题的关键是求出工作总量的变化率【竞赛考点挖掘】1.多种动物参与的牛吃草问题2.多块草地上的牛吃草问题例题精讲【试题来源】【题目】牧场上长满牧草,每天牧草都匀速生长。
五年级奥数题及答案:牛吃草问题【三篇】
导读:本文五年级奥数题及答案:牛吃草问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】有一片牧场,草每天都在均匀的生长。
如果在牧场上放养24头牛,那么6天就可以把草吃完;如果放养21头牛,8天可以把草吃完。
那么:
(1)要让草永远吃不完,最多放养多少头牛;
(2)如果放养36头牛,多少天可以把草吃完?牛吃草答案:
(1)设1头牛1天的吃草量为"1",那么天生长的草量为21*8-24*6=24 ,所以,每天生长的草量为24/2=12也就是说,每天生长的草量可以供12头牛吃1天。
那么要让草永远也吃不完,最多放养12头牛。
(2)原有草量(24-12)*6=72 ,72/(36-12)=3天可供36头牛吃。
【第二篇】牧场上一片牧草,可供27头牛吃6周,或者供23头牛吃9周.如果牧草每周匀速生长,可供21头牛吃几周?
牛牛吃草答案:可供21头牛吃12周27头牛6周吃的草可供多少头牛吃一周?27×6=16223头牛9周吃的草可供多少头牛吃一周?23×9=207(9-6)周新长的草可供多少头牛吃一周?207-162=45 一周新长的草可供多少头牛吃一周?45÷3=15原有的草可供多少头牛吃一周?
162-15×6=72 或207-15×9=7221头牛中的15头牛专吃新长的草,余下的(21-15=)6头牛去吃原有的草几周吃完?72÷(21-15)=12
【第三篇】有一堆割下来的青草可供45头牛吃20天,那么可供36头牛吃多少天?牛吃草答案:
【分析】45×20÷36=900÷36=25(天)。
知识概述1.牛吃草问题类型:⎧⎧⎪⎨⎩⎪⎪⎧⎪⎨⎨⎩⎪⎪⎧⎪⎨⎪⎩⎩草增加简单牛吃草草减少牛的数量增加或减少牛吃草复杂牛吃草有多种动物的牛吃草抽水问题牛吃草变例入口问题牛吃草问题的难点在于草的总量有变化,因此要注意单位“1”的选取。
2.牛吃草问题解题步骤:第1步求出两个总量;第2步总量的差÷时间差=每天长草量=安排去吃新草的牛数;第3步每天长草量×天数=总共长出来的草;第4步草的总量-总共长出来的草=原有的草;第5步原有的草÷吃原有草的牛=能吃多少天。
牛吃草问题牛吃草问题是中环杯、小机灵杯等各大杯赛的常考点,这类问题的解题思路相对比较固定,常以牛吃草、检票、抽水机等题型出现。
只要我们掌握熟练牛吃草问题的解题思路,这类问题可轻松应对。
名师点题有一片牧场,草每天都在均匀地生长,如果在牧场上放养18头牛,那么10天能把草吃完;如果只放养24头牛,那么7天就把草吃完了。
请问:如果放养32头牛,多少天可以把草吃完?【解析】设1头牛1天吃1份草。
18头牛10天吃的总草量:18×10=180;24头牛7天吃的总草量:24×7=168;10-7=3天新长的草24*7=168(份)18*10=180(份)1天新生的草量:(180-168)÷(10-7)=4;草地上原有草量:180-4×10=140;这片草地可供32头牛吃的天数:140÷(32-4)=5(天)答:如果放养32头牛,5天可以把草吃完。
进入冬季后,有一片牧场上的草开始枯萎,因此草会均匀地减少。
现在开始在这片牧场上放牛,如果有38头牛,把草吃完需要25天;如果有30头牛,把草吃完需要30天。
如果有20头牛,这片牧场可以吃多少天?【解析】设1头牛1天吃1份草。
38头牛25天吃的总草量:38×25=950;30头牛30天吃的总草量:30×30=900;1天减少的草量:(950-900)÷(30-25)=10;草地上原有草量:900+10×30=1200;这片草地可供20头牛吃的天数:1200÷(20+10)=40(天)答:如果有20头牛,这片牧场可以吃40天。
小学五年级奥数题牛吃草的问题习题小学五年级奥数题牛吃草的问题习题【第一篇】有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
一般方法:先假设1头牛1天所吃的牧草为1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。
)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。
)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)所以养21头牛,12天才能把牧场上的草吃尽公式解法:(1)草的生长速度=(207-162)÷(9-6)=15(2)牧场上原有草=(27-15)×6=72再把题目中的21头牛分成两部分,一部分15头牛去吃新长的草(因为新长的草每天长15份,刚好可供15头牛吃,剩下(21-15=6)头牛吃原有草:72÷(21-15)=72÷6=12(天))所以养21头牛,12天才能把牧场上的草吃完。
方程解答:设草的生长速度为每天x份,利用牧场上的原有草是不变的列方程,则有27×6-6x =23×9-9x解出x=15份再设21头牛,需要x天吃完,同样是根据原有草不变的量来列方程:27×6-6×15 =23×9-9×15=(21-15)x解出x=12(天)所以养21头牛。
12天可以吃完所有的草。
【第二篇】一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?分析与解答这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。
牛吃草问题知识框架(1)英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.(2)“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.(3)解“牛吃草”问题的主要依据:草的每天生长量不变;每头牛每天的食草量不变;草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值新生的草量=每天生长量⨯天数.(4)同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.(5)“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.重难点(1)理解牛吃草这类题目的解题步骤,掌握牛吃草问题的对比的解题思路.(2)初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系一、一块草地的牛吃草【例 1】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【例 2】一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。
若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【巩固】牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【例 3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
五年级奥数题及答案:牛吃草问题【三篇】
(1)要让草永远吃不完,最多放养多少头牛;
(2)如果放养36头牛,多少天能够把草吃完?
牛吃草答案:
(1)设1头牛1天的吃草量为"1",那么天生长的草量为21*8-
24*6=24 ,所以,每天生长的草量为24/2=12也就是说,每天生长的
草量能够供12头牛吃1天。
那么要让草永远也吃不完,最多放养12
头牛。
(2)原有草量(24-12)*6=72 ,72/(36-12)=3天可供36头牛吃。
【第二篇】
牧场上一片牧草,可供27头牛吃6周,或者供23头牛吃9周.如果牧
草每周匀速生长,可供21头牛吃几周?
牛牛吃草答案:
可供21头牛吃12周
27头牛6周吃的草可供多少头牛吃一周?27×6=162
23头牛9周吃的草可供多少头牛吃一周?23×9=207
(9-6)周新长的草可供多少头牛吃一周?207-162=45
一周新长的草可供多少头牛吃一周?45÷3=15
原有的草可供多少头牛吃一周?162-15×6=72 或207-
15×9=72
21头牛中的15头牛专吃新长的草,余下的(21-15=)6头牛去吃
原有的草几周吃完?
72÷(21-15)=12
【第三篇】
有一堆割下来的青草可供45头牛吃20天,那么可供36头牛吃多少天?牛吃草答案:
【分析】45×20÷36=900÷36=25(天)。
知识概述1.牛吃草问题类型:⎧⎧⎪⎨⎩⎪⎪⎧⎪⎨⎨⎩⎪⎪⎧⎪⎨⎪⎩⎩草增加简单牛吃草草减少牛的数量增加或减少牛吃草复杂牛吃草有多种动物的牛吃草抽水问题牛吃草变例入口问题牛吃草问题的难点在于草的总量有变化,因此要注意单位“1”的选取。
2.牛吃草问题解题步骤:第1步求出两个总量;第2步总量的差÷时间差=每天长草量=安排去吃新草的牛数;第3步每天长草量×天数=总共长出来的草;第4步草的总量-总共长出来的草=原有的草;第5步原有的草÷吃原有草的牛=能吃多少天。
牛吃草问题牛吃草问题是中环杯、小机灵杯等各大杯赛的常考点,这类问题的解题思路相对比较固定,常以牛吃草、检票、抽水机等题型出现。
只要我们掌握熟练牛吃草问题的解题思路,这类问题可轻松应对。
名师点题有一片牧场,草每天都在均匀地生长,如果在牧场上放养18头牛,那么10天能把草吃完;如果只放养24头牛,那么7天就把草吃完了。
请问:如果放养32头牛,多少天可以把草吃完?【解析】 设1头牛1天吃1份草。
18头牛10天吃的总草量:18×10=180; 24头牛7天吃的总草量:24×7=168;10-7=3天新长的草24*7=168(份)18*10=180(份)1天新生的草量:(180-168)÷(10-7)=4; 草地上原有草量:180-4×10=140;这片草地可供32头牛吃的天数:140÷(32-4)=5(天) 答:如果放养32头牛,5天可以把草吃完。
进入冬季后,有一片牧场上的草开始枯萎,因此草会均匀地减少。
现在开始在这片牧场上放牛,如果有38头牛,把草吃完需要25天;如果有30头牛,把草吃完需要30天。
如果有20头牛,这片牧场可以吃多少天?【解析】 设1头牛1天吃1份草。
38头牛25天吃的总草量:38×25=950; 30头牛30天吃的总草量:30×30=900; 1天减少的草量:(950-900)÷(30-25)=10; 草地上原有草量:900+10×30=1200;这片草地可供20头牛吃的天数:1200÷(20+10)=40(天) 答:如果有20头牛,这片牧场可以吃40天。
牛吃草问题例:有一片牧草,草每天匀速的生长,这片牧草可供100头牛吃3周,可供50头牛吃8周,那么可供多少头牛吃两周?设每头牛每周吃草一份,100头牛3周吃的草:100×3=300(份)50头牛8周吃的草:50×8=400(份)草的生长速度:(400-300)÷(8-3)=20(份)原有牧草的份数:100×3-3×20=240(份)(240+20×2)÷2=140(头)①一个牧场,草每天匀速生长,每头牛每天吃的草量相同,17头牛30天可以将草吃完,19头牛只需要24天就可以将草吃完。
现有一群牛,吃了6天后,卖掉4头牛,余下的牛再吃2天就将草吃完。
问没有卖掉4头牛之前,这一群牛一共有多少头?设一头牛一天吃一份草.17头牛30天吃的草:17×30=510(份)19头牛24天吃的草:19×24=456(份)每天长草数:(510-456)÷(30-24)=9(份)牧场原有草数:510-9×30=240(份)8天可吃草数:240+8×9=312(份)设卖牛前有x头:6x+2(x-4)=312x=40②一片牧草,可供9头牛12天,也可供8头牛吃16天,开始只有4头牛吃,从第7天起增加了若干头牛来吃草,再吃6天吃完了所有的草,问从第7天起增加了多少头牛?设一头牛一天吃一份草.9头牛12天吃的草:9×12=108(份)8头牛16天吃的草:8×16=128(份)每天新增量:(128-108)÷(16-12)=5(份)原有草量:108-12×5=48(份)从开始4头牛到6天后增加牛后再吃6天可知前后共计12天,这片草地共有草量:48+5×12=108(份)开始的4头牛12天吃的草:4×12=48(份)增加的牛数:108-48)÷6=10(头)③有一片草地,可供8只羊吃20天,或供14只羊吃10天。
小学奥数专题一牛吃草问题牛吃草概念及公式:设定一头牛一天吃草量为“1”1草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;2原有草量=牛头数×吃的天数-草的生长速度×吃的天数;3吃的天数=原有草量÷牛头数-草的生长速度;4牛头数=原有草量÷吃的天数+草的生长速度一、奥数导引例1.一块牧场长满草,每天牧草都均匀生长;这片牧场可供10头牛吃20天,可供15头牛吃10天,那么1可供25头牛吃多少天 2可供多少头牛吃4天例1.解析:假设一头牛一天吃1份草,10天长出草10×20-15×10=50份,每天长出草50÷20-10=5份,原有草10×20-20×5=100份,25头牛吃的草,减去每天长的草,一天消耗草25-5=20份,够吃100÷25-5=5天;可供25头牛吃5天; 解法二:110-x×20=15-x×10=25-x×210-x×20=15-x×10= -x×4例2.如果22头牛吃33公亩牧场的草,54天后可以吃完,17头牛吃28公亩牧场的草,84天后可以吃完,那么要在24天内吃完40公亩牧场的草,需要多少头牛A.50B.46C.38D.35例2解法1:牧场的面积发生变化,所以每天长出的草量不再是常量;设每头牛每天的吃草量为1份,则每亩54天的总草量为:22×54÷33=36份;每亩84天的总草量为:17×84÷28=51份,那么每亩每天的新生长草量为51-36÷84-54=0.5份,每亩原有草量为36-0.5×54=9份,那么40亩原有草量为9×40=360份,40亩24天新生长草量为24×0.5×40=480份,40亩24天共有草量360+480=840,可供牛数为840÷24=35头;解法2:利用列方程解问题;二、历年真题三、奥数拔高训练100分1.一个牧场可供58头牛吃7天,或者可供50头牛吃9天;假设草的生长量每天相等,每头牛的吃草量也相等,那么可供多少头牛吃6天10分2.现要将一池塘水全部抽干,但同时又有水流进池塘;若用8台抽水机10天可以抽干;用6台抽水机20天可以抽干;若要5天抽干水,需要多少台同样的抽水机抽水 15分3.一个蓄水池装有9根水管,1根进水管,8根相同的出水管;先放进一些水再排水;排水时进水管不关;如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光;要想在4.5小时内把池内的水全部排光,需同时打开几个出水管 15分4.旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站开放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客解决完毕;1求增加人数的速度;2原来的人数;30分5.有三块草地,面积分别是5、15、24亩;草地上的草一样厚,而且长得一样快;第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天 30分1.解析:50×9-58×7÷9-7=22份,58×7-22×7=252份,252+6×22÷6=64头可供64头牛吃6天;2.解析:假设一台抽水机一天抽水1份;6×20-8×10÷20-10=4份,8×10-4×10=40份, 40+4×5÷5=12台,需要12台同样的抽水机抽水;3.解析:假设打开一根出水管每小时可排水“一份”,那么8根出水管开3小时共排出水8×3=24份;5根出水管开6小时共排出水5×6=30份;两种情况比较,可知3小时内进水管放进的水是30-24=6份;进水管每小时放进的水是6÷3=2份;3小时排水24份,3小时进水6份,可见打开排水管前,水池中有水24-6=18份;4.5小时再进水4.5×2=9份,4.5小时排完需打开18+9÷4.5=6根排水管;4.解析:设一个检票口一分钟通过一个人1个检票口30分钟30个人1个检票口10分钟20个人30-20÷30-10=0.5个人原有1×30-30×0.5=15人或者2×10-10×0.5=15人5.解析:设每头牛每天的吃草量为1份,则每亩30天的总草量为:10×30÷5=60份;每亩45天的总草量为:28×45÷15=84份,那么每亩每天的新生长草量为84-60÷45-30=1.6份,每亩原有草量为60-1.6×30=12份,那么24亩原有草量为12×24=288份,24亩80天新生长草量为24×1.6×80=3072,24亩80天共有草量3072+288=3360,可供牛数为3360÷80=42头;例 1 一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于l头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天例 22008年“陈省身杯”国际青少年五年级数学邀请赛有一个水池,池底存了一些水,并且还有泉水不断涌出;为了将水池里的水抽干,原计划调来8台抽水机同时工作;但出于节省时间的考虑,实际调来了9台抽水机,这样比原计划节省了8小时;工程师们测算出,如果最初调来10台抽水机,将会比原计划节省12小时;这样,将水池的水抽干后,为了保持池中始终没有水,还应该至少留下台抽水机;例3 甲、乙、丙三车同时从A地出发到B地去.甲、乙两车的速度分别是每小时60千米和每小时48千米.有一辆卡车同时从B地迎面开来,分别在它们出发后6小时、7小时、8小时先后与甲、乙、丙车相遇,求丙车的速度.巩固小新、正南、妮妮三人同时从学校出发到公园去.小新、正南两人的速度分别是每分钟20米和每分钟16米.在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度.例 4 一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽巩固现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间。
年级五年级学科奥数版本通用版课程标题牛吃草问题(一)牛吃草问题特殊之处在于,草的数量是不断变化的。
就像行程问题涉及的人是运动的。
另外就是特殊的度量单位。
一般情况下把一头牛一天吃的草量看做度量单位,题目涉及到的草量用这个单位度量。
草量是这个单位的几倍,草量就是几。
“牛吃草”问题主要涉及四个量:原草量、草的生长速度、牛的头数、时间。
难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定。
主要事实:1. 草的每天生长量不变(有时候也可能减少,速度不变)2. 每头牛每天的食草量不变(涉及多种动物的时候用归一法看成同一种动物)3. 草的总量=草场原有的草量+新生的草量4. 新生的草量=每天生长量⨯天数例1牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么这片草场可供多少头牛吃18周?分析与解:草的生长速度是(23×9-27×6)÷(9-6)=15草场原来的草量(27-15)×6=72需要有15头牛吃新草72÷18=4头牛吃旧草共19头牛。
例2草场上的草可养活3头牛并且草量不会增加,够9头牛吃一周。
请问够4头牛吃几周?分析与解:可养活3头牛并且草量不会增加,意思是说草的增长速度可以看做3。
够9头牛吃一周,意味着有6头牛吃旧草,一周可以吃光原草量就是6现有4头牛,其中3头吃新草,1头吃旧草够吃6周。
例3 牧场上长满牧草,每天牧草都匀速生长。
这片牧场可供10头牛吃20天,可供15头牛吃10天。
可供25头牛吃几天?分析与解:例4 由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
如果某块牧场上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?分析与解:()天)(头牛吃原草量草的减少速度9210108101084)225(2)46(616425=+÷=⨯+=-÷⨯-⨯例5 一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天。
第11讲牛吃草问题【专题精华】牛吃草问题也是牛顿问题,最早是伟大的数学家、物理学家牛顿在《普通算术》中提出来的,形如:牧场上有一片均匀生长的草地,可供10头牛吃20天,或15头牛吃10天。
问供25头牛可吃几天?解答这类问题,难点在于草的总量在不断变化,因此解答的关键是想办法从变化中找到不变的量。
牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以每天新长出的草是不变的。
求出原有草地上的草及每天新长出的草,问题就容易解决了。
【教材深化】[题1]一片草地,每天都匀速的长出青草,这片草地可供24头牛吃6周或18头牛吃10周。
问供给19头牛吃,可以吃几周?<敏捷思维> 假设1头牛1周吃的草的数量为1份,那么24头牛6周需要吃24×6=144(份),此时新长的草与原有的草均被吃完;18头牛10周需要吃18×10=180(份),此时新长的草与原有的草也都被吃完。
而144份是原有的草与6周新长出的草的总和;180份是原有的草与10周新长出的草的总和,因此每周新长出的草的份数是(180—144)÷(10—6)=9(份),所以原有草的数量为:180—9×10=90(份)。
这片草地每周新长出的9份草相当于可安排9头牛专门吃,于是这片草地可供19头牛吃90÷(19—9)=9(周)。
<全解> 每周新长出的草的份数:(18×10—24×6)÷(10—6)=9(份)原有草的份数:18×10—9×10=90(份)这片草地可供19头牛吃的周数:90÷(19—9)=9(周)答:供给19头牛吃,可以吃9周。
<拓展探究> 解牛吃草问题,主要是把草地上的草分成原有的草与新长出的草。
因为原有的草与每天新长出的草是不变的量,所以首先根据:两次吃草的总份数的差÷两次吃草的时间(周数或天数)的差=单位时间内新长出的草的份数,求出单位时间内新长出的草的份数,接着求出原有草的份数,这样就容易求出题目中的问题了。
牛吃草问题知识要点一、定义英国大科学家牛顿在他所著的《普通算术》一书中曾提出一个有趣的数学问题(格尔为牧场面积单位):有三片牧场,场上的草长得一样密,并且长的速度一样快,它们的面积分别是三又三分之一格尔、10格尔和24格尔。
第一片牧场的草饲养12头牛可以吃4个星期,第二片牧场的草饲养21头牛可以吃9个星期,问在第三片牧场上放多少头牛可以吃18个星期?这个问题被人们称为牛顿问题,也就是我们平常说的牛吃草问题。
二、特点牛吃草问题其实就是消长问题,问题的主要特征是:同一个数量一方面增加,另一方面减少,朝两个方向同时变化。
如牛吃草问题中,草生长使草量匀速增加,牛吃草却使草量逐渐减少。
在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。
数量关系分析:在牛吃草问题中,我们一般把一头牛一天的吃草量看作一个单位的草量,作为牧草的计量单位。
在这个问题中,主要研究牧场原有草量、每日新增草量(即牧草生长速度)、牛的饲养数量、饲养时间,这四个数量之间的关系。
一头牛一天吃一个单位的草量。
如果养牛头数等于或小于每日新增草量,则无需动用牧场原有草量,这个牧场就会像个聚宝盆一样,供这些牛永远吃下去,草永远吃不完;如果养牛头数大于每日新增草量,我们可以理解为,每日新增的草先喂养了同等数量的牛,而多出的牛则需要吃牧场原有的草,牧场中原有的草可以供这些多出的牛吃多少天,这个牧场草就可以供这些牛吃多少天。
(原有的草吃完了,新增草未生长,就理解为牧场的草吃完了。
)此类问题中的基本数量关系有:牛的头数×对应的吃的天数=总草量;牛的头数-每日新增草量数=多出牛的头数;每日新增草量=(较长时间总草量-同一牧场较短时间总草量)÷相差天数;原有草量=对应总草量-每日新增草量×天数;吃的天数=原有草量÷多出牛的头数;牛的头数=原有草量÷天数+每日新增草量数。
1 牛吃草问题 知识要点 一、定义 英国大科学家牛顿在他所著的《普通算术》一书中曾提出一个有趣的数学问题(格尔为牧场面积单位): 有三片牧场,场上的草长得一样密,并且长的速度一样快,它们的面积分别是三又三分之一格尔、10格尔和24格尔。第一片牧场的草饲养12头牛可以吃4个星期,第二片牧场的草饲养21头牛可以吃9个星期,问在第三片牧场上放多少头牛可以吃18个星期? 这个问题被人们称为牛顿问题,也就是我们平常说的牛吃草问题。 二、特点 牛吃草问题其实就是消长问题,问题的主要特征是:同一个数量一方面增加,另一方面减少,朝两个方向同时变化。如牛吃草问题中,草生长使草量匀速增加,牛吃草却使草量逐渐减少。 在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。
数量关系分析: 在牛吃草问题中,我们一般把一头牛一天的吃草量看作一个单位的草量,作为牧草的计量单位。 在这个问题中,主要研究牧场原有草量、每日新增草量(即牧草生长速度)、牛的饲养数量、饲养时间,这四个数量之间的关系。 一头牛一天吃一个单位的草量。 如果养牛头数等于或小于每日新增草量,则无需动用牧场原有草量,这个牧场就会像个聚宝盆一样,供这些牛永远吃下去,草永远吃不完; 如果养牛头数大于每日新增草量,我们可以理解为,每日新增的草先喂养了同等数量的牛,而多出的牛则需要吃牧场原有的草,牧场中原有的草可以供这些多出的牛吃多少天,这个牧场草就可以供这些牛吃多少天。(原有的草吃完了,新增草未生长,就理解为牧场的草吃完了。) 此类问题中的基本数量关系有: 牛的头数×对应的吃的天数=总草量; 牛的头数-每日新增草量数=多出牛的头数; 每日新增草量=(较长时间总草量-同一牧场较短时间总草量)÷相差天数; 原有草量=对应总草量-每日新增草量×天数; 吃的天数=原有草量÷多出牛的头数; 牛的头数=原有草量÷天数+每日新增草量数。
解题方法介绍: 上面牛顿提出的牛吃草问题,比较复杂(三片面积不同的牧场),需要进行几次转化解题。本讲只学习较简单的牛吃草问题(同一片牧场),及数量关系、解题方法与之相似的消 2
长问题。 解题时,一般要先根据题中的条件(每日消耗数量等),先求出每日新增数量和原有数量,再根据上面的数量关系,求出对应的时间或个体数量。
典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长,所以草的存量随牛吃的天数不断地变化。
解决牛吃草问题常用的四个基本公式,分别是: 设定一头牛一天吃草量为“1” 1草的生长速度=(对应的牛头数×吃的较多的天数-相应的牛头数×吃的较少的天数)÷(吃的较多的天数-吃得较少的天数) 2原有草量=牛头数×吃的天数-草的生长速度×吃的天数 3吃的天数=原有草量÷(牛头数-草的生长速度) 4牛头数=原有草量÷吃的天数+草的生长速度 由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天 新长出的草量应该是不变的。正由于这个不变量,才能导出上面的四个基本公式。 牛吃草的问题经常给出不同头数的牛吃同一片草地,这地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。 解题的关键:是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有的草量,进而解答问题。
解决多块草地的方法
多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。 精解名题
例1 牧场上长满牧草,每天都匀速生长。这片牧场可供27头牛吃6天或23头牛吃9天。问可供21头牛吃几天?
举一反三 【思考1】一片草地,每天都匀速长出青草,如果可供24头牛吃6天,或20头牛吃10天,那么可供18头牛吃几天? 3
例2 因天气寒冷,牧场上的草不仅不生长,反而每天以均匀的速度在减少。已知牧场上的草可供33头牛吃5天,可供24头牛吃6天,照此计算,这个牧场可供多少头牛吃10天?
举一反三 【思考2】由于天气逐渐变冷,牧场上的草每天以固定的速度在减少,经计算,牧场上的草可供20头牛 吃5天,或可供16头牛吃6天。那么,可供11头牛吃几天?
总结:想办法从变化中找到不变的量。牧场上原有的草是不变的,新长出的草虽然在变化,但是因为是匀速生长,所以每天新长出的草量也是不变的。正确计算草地上原有的草及每天新长出的草,问题就会迎刃而解。 知识衍变
例3 两只蜗牛同时从一口井的井顶爬向井底。白天往下爬,两只蜗牛的爬行速度是不同的,一只每天爬行20分米,另一只每天爬行15分米。黑夜往下滑,两只蜗牛滑行的速度却是相同的,结果一只蜗牛恰好用了5个昼夜到达井底,另一只恰好用了6个昼夜到达井底。那么,井深多少米?
例4 一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。如果用10人舀水,3小时舀完。如果只有5个人舀水,要8小时才能舀完。现在要想在2小时舀完,需要多少人舀水? 4
举一反三 【思考4】一个水池,池底有泉水不断涌出,用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可把水抽干。那么用25部这样的抽水机多少小时可以把水抽干?
例5 有一牧场长满牧草,牧草每天匀速生长,这个牧场可供17头牛吃30天,可供19头牛吃24天,现在有若干头牛在吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,问原来有牛多少头?
举一反三 【思考5】一个牧场上的青草每天都匀速生长。这片青草可供27头牛吃6天,或供23头牛吃9天,现有一群牛吃了4天后卖掉2头,余下的牛又吃了4天将草吃完。这群牛原来有多少头?
例6 有三块草地,面积分别为5公顷,6公顷和8公顷。每块地每公顷的草量相同而且长的一样快,第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。第三块草地可供19头牛吃多少天? 5
备选例题 1、 画展馆9时开门,但是早有人前来排队等候入场,从第一个观众到起,每分钟来的观众人数一样多。如果开3个入场口,9时9分就不再有人排队;如果开5个入场口,9时5分就没有人排队,问第一个观众到达的时间是几时几分?
2、 某水库建有10个泄洪闸,现在水库的水位已经超过安全警戒线,上游的河水还在按一不变的速度增加。为了防洪,需开闸泄洪。假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,30小时水位降到安全线,若打开两个泄洪闸,10小时水位降到安全线。现在抗洪指挥部要求在5.5小时内使水位降到安全线,问:至少要同时打开几个闸门?
6
巩固练习 1.一块牧场长满了草,每天均匀生长。这块牧场的草可供10头牛吃40天,供15头牛吃20天。可供25头牛吃__天。 ( ) A. 10 B. 5 C. 20
2.一块草地上的草以均匀的速度生长,如果20只羊5天可以将草地上的草和新长出的草全部吃光,而14只羊则要10天吃光。那么想用4天的时间,把这块草地的草吃光,需要__只羊。 ( ) A. 22 B. 23 C. 24
3.经测算,地球上的资源可供100亿人生活100年,或 可供80亿人生活300年。假设地球新生成的资源增长速度是一样的。那么,为了满足人类不断发展的要求,地球最多只能养活( )亿人。
4. 快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车。三车的速度分别是每小时24千米、20千米、19千米。快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用( )小时。
5. 一水池中原有一些水,装有一根进水管,若干根抽水管。进水管不断进水,若用24根抽水管抽水,6小时可以把池中的水抽干,那么用16根抽水管,( )小时可将可将水池中的水抽干。 7
6. 某码头剖不断有货轮卸下货物,又不断用汽车把货物运走,如用9辆汽车,12小时可以把它们运完,如果用8辆汽车,16小时可以把它们运完。如果开始只用3辆汽车,10小时后增加若干辆,再过4小时也能运完,那么后来增加的汽车是( )辆。
7.有一片草地,每天都在匀速生长,这片草可供16头牛吃20天,可供80只羊吃12天。如果一头牛的吃草量等于4只羊的吃草量,那么10头牛与60只羊一起吃可以吃多少天?
8. 现有速度不变的甲、乙两车,如果甲车以现在速度的2倍去追乙车,5小时后能追上,如果甲车以现在的速度去追乙车,3小时后能追上。那么甲车以现在的速度去追,几小时后能追上乙车? 8
自我测试 1、 牧场上的牧草每天均匀生长,这片草地可供17头牛吃6天,可供13头牛吃12天.问多少头牛4天把草地的草吃完?
2、 有-牧场,21头牛20天可将草吃完,25头牛则15天可将草吃完,现有牛若干头,吃6天后卖了4头,余下的牛再吃2天则将草吃完,问原有牛多少头?
3、 22头牛,吃33公亩牧场的草54夭可吃尽, 17头牛吃同样牧场28公亩的草,‘84天可吃尽.请问几头牛吃同样牧场40公亩的草,24天可吃尽?
4、 某火车站检票口,在检票开始前已有-些人排队,检票开始后每分钟有10人前来排队检票,-个检票口每分钟能让25人检票进站.如果只有-个检票口,检票开始8分钟后就没有人排队;如果有两个检票口,那么检票开始后多少分钟就没有人排队?
5、 甲、乙、丙三个仓库,各存放着同样数量的大米,甲仓库用皮带输送机-台和12个工人5小时把甲仓库搬空,乙仓库用皮带输送机-台和28个工人3小时把乙仓库搬空.丙仓库有皮带输送机2台,如果要2小时把丙仓库搬空,同时还需要多少名工人?