重力式码头基本计算
- 格式:ppt
- 大小:5.64 MB
- 文档页数:12
目录第一章设计资料------------------------------------- 3第二章码头标准断面设计------------------------ 5第三章沉箱设计------------------------------------- 11第四章作用标准值分类及计算----------------- 15第五章码头标准断面各项稳定性验算------- 44第一章设计资料(一)自然条件1.潮位:极端高水位:+6.5m;设计高水位:+5.3m;极端低水位:-1.1m;设计低水位:+1.2m;施工水位:+2.5m。
2.波浪:拟建码头所在水域有掩护,码头前波高小于1米(不考虑波浪力作用)。
3.气象条件:码头所在地区常风主要为北向,其次为东南向;强风向(7级以上大风)主要为北~北北西向,其次为南南东~东南向。
4.地震资料:本地的地震设计烈度为7度。
5.地形地质条件:码头位置处海底地势平缓,底坡平均为1/200,海底标高为-4.0~-5.0m 。
根据勘探资料,码头所在地的地址资料见图1。
图一 地质资料(二)码头前沿设计高程:对于有掩护码头的顶标高,按照两种标准计算:基本标准:码头顶标高=设计高水位+超高值(1.0~1.5m )=5.30+(1.0~1.5)=6.30~6.80m 复核标准:码头顶标高=极端高水位+超高值(0~0.5m )=6.50+(0~0.5)=6.50~7.00m(三) 码头结构安全等级及用途:码头结构安全等级为二级,件杂货码头。
(四) 材料指标:拟建码头所需部分材料及其重度、内摩擦角的标准值可按表1选用。
表1(五)使用荷载:1.堆货荷载:前沿q1=20kpa;前方堆场q2=30kpa。
2.门机荷载:按《港口工程荷载规范》附录C荷载代号Mh-10 -25 设计。
3.铁路荷载:港口通过机车类型为干线机车,按《港口工程荷载规范》表7.0.3-2中的铁路竖向线荷载标准值设计。
总平面布置上海港改建码头是河口港码头,平面布置与工艺设计按《海港总平面设计规范》和《河港总平面设计规范》的有关规定确定。
根据水文、地质、地形、货种、装卸工艺及施工条件等因素综合分析,采用高桩码头结构型式(上层土为淤泥)。
码头前沿大致平行于黄浦江主流向,由于码头前江面宽约500米,水域面积不大,为了不使水流结构发生变化选用顺岸式。
码头前沿布置在规划前沿线,考虑到当地陆域面积紧张,采用满堂式,1#和2#码头连片布置,拆掉原有的防洪墙,将后桩台至陆地之间的短距离水域用当地廉价的砂石料抛填,当汛期来临时,码头停止作业,采用堆沙包的方法来防汛。
由资料得到的水位值:设计高水位:高潮位累积频率曲线的10%处————3.75 m设计低水位:高潮位累积频率曲线的90%处————1.22 m极端高水位:高潮位累积频率曲线的2%处————4.63m极端低水位:高潮位累积频率曲线的98%处————0.60 m1.1一号码头总平面布置1.1.1停靠方式停靠方式采用两点系泊(如图),受力系船柱数目根据船长查得为n=2,系船柱间距最大为20m,最少系船柱个数为6个。
1.1.2一号码头主要尺度的拟定1.1.2.1 泊位长度单个泊位长度:L=L+2dbL————单个泊位长度(m)bL————设计船长(m),L=82.6m;d————富裕长度(m),按《海港总平面设计规范》查表取值为8~10mL=82.6+2×(8~10)=98.6~102.6m,取码头长度为118m, 已b有岸线满足要求.1.1.2.2泊位宽度为了不占用主航道,泊位宽度:B=2bb————设计船宽(m),b=13.6mB=2×13.6=27.2m,取28m1.1.2.3 码头前沿顶高程(按有掩护港口的码头计算)基本标准:E=HWL + 超高值(1.0~1.5)复核标准:E=极端高水位+超高值(0~0.5)E————码头面高程(m)HWL————设计高水位(m)基本标准:E=3.75+(1.0~1.5)=4.75~5.25 m复核标准:E=4.63+(0~0.5)=4.63~5.13 m 由资料知,当地万吨级泊位的码头面标高一般为+4.8m,所以取E=4.8m1.1.2.4码头前沿设计水深D=T+Z1+Z2+Z3+Z4Z2 =KH- Z14%D————码头前沿设计水深(m)T————设计船型满载吃水(m),T=4.47m;Z1————龙骨下最小富裕深度(m),查得Z1=0.2mZ2————波浪富裕深度(m),K————系数,顺浪取0.3,横浪取0.5H————码头前的允许波高(m)4%由于地处黄浦江中,码头前江面宽度只有500米,波浪主要为顺浪,查《港口规划与布置》得3000吨级的杂货船的允许波高为H=0.8m,%4所以:Z2 =0.3 0.8-0.2=0.04 mZ3————船舶因配载不均而增加的船尾吃水值(m),杂货船可不计,Z3=0 m;Z4————备淤富裕深度(m),Z4=0.5mD=4.47+0.2+0.04+0+0.5=5.21m,所以码头前沿水底高程=设计最低水位-码头前沿设计水深=1.22-5.21=-3.99m,由于码头前沿布置在规划前沿线处,且规划挖至-9.0 m,所以水深条件肯定满足。
码头稳定性验算1.计算模型2.计算荷载设计高水位=2.77m ;设计低水位=-2.89m1) 结构自重力①重力(设计高水位2.77m)G1护栏作用力不计G2胸墙=(1.73*23+0.02*13)*1.3=52.065KN G3砼挡墙=0.5*(1.914+2.589)*1.75*13+0.5*(2.589+3.375)*1.0*13=93.21kn力臂计算:稳定力矩计算:②重力(设计低水位-2.89m ) G1护栏 作用力不计G2胸墙=1.75*1.3*23=52.325KN G3砼挡墙=0.5*(1.914+2.589)*1.75*23+ 0.5*(2.589+3.375)*1.0*23=164.91kn 力臂计算:稳定力矩计算:2)土压力强度计算后方回填碎石,二片石,开山石 ︒=45ϕ γ=18kn/m第二破裂角: 005.22)(21)90(21'=---=βεϕθ=β0=ε005.224521=⨯=δ有 15°<α1,α2<θ' ,故土压力可按公式2.4.1.1计算 对胸墙: α=0 ,cos α=1对砼挡墙: 0195.155.31==-tgα ; cos α=0.9613.作用分析1) 永久作用①设计高水位2.77m永久作用土压力强度 cos α1=1 ,cos α2=0.96111e = 0e 12=(18×1.48+11×0.02)×Kan ×cos α1=26.86×0.1597 =4.29kpa1597.0)841.01(924.05.00cos 5.22cos 45sin 5.67sin 1)5.22cos(145cos )cos()cos()sin()sin(1)cos(cos )(cos 2000002222=+⨯=⎥⎥⎦⎤⎢⎢⎣⎡︒+⨯=⎥⎦⎤⎢⎣⎡-+-+++-=βαδαβϕδϕδαααϕαn n n n n n n k 2835.0)9319.01(723.0765.095.15cos 45.38cos 45sin 5.67sin 1)45.38cos()95.15(cos 05.29cos )cos()cos()sin()sin(1)cos(cos )(cos 20000202222=+⨯=⎥⎥⎦⎤⎢⎢⎣⎡︒+⨯=⎥⎦⎤⎢⎣⎡-+-+++-=βαδαβϕδϕδαααϕαn n n n n n n ke 21 =(18×1.48+11×0.02)×0.2835×0.961=7.318kpa e 2=57.11×kan ×cos α2=57.11×0.2835×0.961=15.559kpa 胸墙后土压力合力水平合力:Eh n =竖直合力:Ev n = 计算得:(按填料分层,单位kn)力臂计算水平力壁di 和倾覆力矩MEHi 计算竖直力壁di 和稳定力矩MEVi 计算)cos(25.011n an n n i n n i i K h h r h r δα+⎪⎭⎫⎝⎛+∑-=)sin(25.011n an n n i n n i i K h h r h r δα+⎪⎭⎫ ⎝⎛+∑-=②设计低水位-2.89m永久作用土压力强度 cos α1=1 ,cos α2=0.961 e 11=0e 12=(18×1.5)×Kan ×cos α1=27×0.1597×1 =4.312kpa e 21=(18×1.5)×Kan ×cos α1=27×0.2835×0.961 =7.356kpae 22=76.5×kan ×cos α2=76.5×0.2835×0.961=20.842kpa 胸墙后土压力合力水平合力:Eh n =竖直合力:Ev n = 计算得:(按填料分层,单位kn)力臂计算水平力臂di 和倾覆力矩MEHi 计算)cos(25.011n an n n i n n i i K h h r h r δα+⎪⎭⎫⎝⎛+∑-=)sin(25.011n an n n i n n i i K h h r h r δα+⎪⎭⎫ ⎝⎛+∑-=竖直力臂di和稳定力矩MEVi计算2)可变作用取可变荷载Q=30kn/m①可变作用土压力强度胸墙Eq1=q·kq·Kan·hn=30×1×0.1597×1.5=7.187kn 砼挡墙Eq2=q·kq·Kan·hn=30×1×0.2835×2.75=23.389kn胸墙后土压力合力水平分力Eqh1=7.19×cos22.5°= 6.64kn竖向分力Eqv1=7.19×sin22.5°= 2.752kn砼挡墙后土压力合力水平分力Eqh2=23.39×cos38.45°= 18.313kn 竖向分力Eqv2=23.39×sin38.45°= 14.548kn 可变土压力合力水平力 Eqh=6.64+18.304 = 24.954kn 竖向力 Eqv=2.75+14.56 = 17.300kn ②可变土压力力臂及力矩计算水平力臂di 和倾覆力矩MEqhi 计算竖直力臂di 和稳定力矩MEqvi 计算3)波浪作用,地震作用和系缆力,剩余水压力暂不考虑。
文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。
码头结构整体稳定性计算书设计:校对:审核:1、设计条件1)设计船型设计代表船型见下表。
2)结构安全等级结构安全等级为二级。
3)自然条件(1)设计水位设计高水位(高潮位累计频率10%): 1.76m设计低水位(低潮位累计频率90%):+0.0m极端高水位(重现期50年一遇):+2.66m极端低水位(重现期50年一遇):-1.71m施工水位: 1.40m(2)波浪海西湾内波高H1%=2.67m。
(3)地质资料码头基床底面全部座落在全风化花岗岩层,风化岩承载力容许值为f=340kPa。
(4)码头面荷载a.门座起重机靠海侧轨道至码头前沿20kPa,其余30kPa。
b. 起重机荷载:码头设40吨门座起重机。
轮数48,轮压垂直方向(非工作状态)200kN,(工作状态)250kN,水平轮压35kN,基距12m,轮距840-980-840-840-840-980-840-840-840 -980-840。
(5)材料重度2、作用分类及计算2.1 结构自重力计算(1)极端高水位情况:计算图示见下图。
极端高水位作用分布图(2)设计高水位情况:计算图示见下图。
设计高水作用分布图设计低水作用分布图(3)设计低水位情况:计算图示见下图。
2.2 土压力强度计算码头后方填料为积砂石(按粗砂计算),35ϕ=︒,根据《重力式码头设计与施工规范》(JTJ290—98)第2(45/2)an K tg ϕ=︒-则2(45/2)0.271an K tg ϕ=︒-= 沉箱顶面以下考虑3511.6733ϕδ︒===︒ 根据(JTJ290—98)表,查的0.24an K =cos 0.24cos11.670.235ax an K K δ==⨯︒= sin 0.24sin11.670.0485ay an K K δ==⨯︒=土压力标准值按(JTJ290—98)3.5条计算:110cos n n i i an i e h K γα-==∑21cos n n i i an i e h K γα==∑式中:cos 1α=1)码头后方填料土压力(永久作用) (1)极端高水位情况(2.66m ):e 4.0=0e 2.66=18×1.34×0.271=6.54(kPa )e 1.4=(18×1.34+9.5×1.26)×0.271=9.78(kPa ) e ‘1.4=(18×1.34+9.5×1.26)×0.235=8.48(kPa )e -9.0=(18×1.34+9.5×1.26+9.5×10.4)×0.235=31.7(kPa ) 土压力强度分布图见 图 土压力引起的水平作用:1116.54 1.34(6.549.78) 1.26(8.4831.7)10.4222H E =⨯⨯+⨯+⨯+⨯+⨯4.38210.28208.94223.602(/)kN m =++=土压力引起的竖向作用:208.9411.6743.16(/)V E tg kN m =⨯︒=土压力引起的倾覆力矩:1(2 6.549.78) 1.344.382( 1.3411.66)10.2810.433(6.549.78)(28.4831.7)10.4208.941043.58(/)3(8.4831.7)EH M kN m m ⎡⎤⨯+⨯=⨯⨯++⨯++⎢⎥⨯+⎣⎦⨯+⨯⨯=⨯+土压力引起的稳定力矩:43.1611.02475.62(/)EV M kN m m =⨯=(2)设计高水位情况e 4.0=0e 1.76=18×2.24×0.271=10.93(kPa )e 1.4=(18×2.24+9.5×0.36)×0.271=11.85(kPa ) e ‘1.4=(18×2.24+9.5×0.36)×0.235=10.28(kPa )e -9.0=(18×2.24+9.5×0.36+9.5×10.4)×0.235=33.5(kPa ) 土压力强度分布图见 图 土压力引起的水平作用:11110.93 2.24(10.9311.85)0.36(10.2833.5)10.4222H E =⨯⨯+⨯+⨯+⨯+⨯12.24 4.1227.66244.0(/)kN m =++=土压力引起的竖向作用:227.6611.6747.02(/)V E tg kN m =⨯︒=土压力引起的倾覆力矩:1(210.9311.85)0.3612.24( 2.2410.76) 4.110.433(10.9311.85)(210.2833.5)10.4227.661158.75(/)3(10.2833.5)EH M kN m m ⎡⎤⨯+⨯=⨯⨯++⨯++⎢⎥⨯+⎣⎦⨯+⨯⨯=⨯+土压力引起的稳定力矩:47.0211.02518.16(/)EV M kN m m =⨯=(3)设计低水位情况e 4.0=0e 1.4=18×2.6×0.271=12.68(kPa ) e ‘1.4=18×2.6×0.235=11.0(kPa )e 0.0=(18×2.6+18×1.4)×0.235=16.92(kPa ) e -9.0=(18×2.6+18×1.4+9.5×9)×0.235=37.01(kPa ) 土压力强度分布图见 图 土压力引起的水平作用:11112.68 2.6(1116.92) 1.4(16.9237.01)9222H E =⨯⨯+⨯+⨯+⨯+⨯16.48419.544242.69278.72(/)kN m =++=土压力引起的竖向作用:(19.544242.69)11.6754.16(/)V E tg kN m =+⨯︒=土压力引起的倾覆力矩:1(21116.92) 1.416.484(12.8610.4)19.544933(1116.92)(216.9237.01)9242.691387.21(/)3(16.9237.01)EH M kN m m ⎡⎤⨯+⨯=⨯⨯++⨯++⎢⎥⨯+⎣⎦⨯+⨯⨯=⨯+土压力引起的稳定力矩:54.1611.02596.84(/)EV M kN m m =⨯=2)均布荷载产生的土压力(可变作用):各种水位时,均布荷载产生的土压力标准值均相同。