重力式码头基本计算
- 格式:ppt
- 大小:5.64 MB
- 文档页数:12
目录第一章设计资料------------------------------------- 3第二章码头标准断面设计------------------------ 5第三章沉箱设计------------------------------------- 11第四章作用标准值分类及计算----------------- 15第五章码头标准断面各项稳定性验算------- 44第一章设计资料(一)自然条件1.潮位:极端高水位:+6.5m;设计高水位:+5.3m;极端低水位:-1.1m;设计低水位:+1.2m;施工水位:+2.5m。
2.波浪:拟建码头所在水域有掩护,码头前波高小于1米(不考虑波浪力作用)。
3.气象条件:码头所在地区常风主要为北向,其次为东南向;强风向(7级以上大风)主要为北~北北西向,其次为南南东~东南向。
4.地震资料:本地的地震设计烈度为7度。
5.地形地质条件:码头位置处海底地势平缓,底坡平均为1/200,海底标高为-4.0~-5.0m 。
根据勘探资料,码头所在地的地址资料见图1。
图一 地质资料(二)码头前沿设计高程:对于有掩护码头的顶标高,按照两种标准计算:基本标准:码头顶标高=设计高水位+超高值(1.0~1.5m )=5.30+(1.0~1.5)=6.30~6.80m 复核标准:码头顶标高=极端高水位+超高值(0~0.5m )=6.50+(0~0.5)=6.50~7.00m(三) 码头结构安全等级及用途:码头结构安全等级为二级,件杂货码头。
(四) 材料指标:拟建码头所需部分材料及其重度、内摩擦角的标准值可按表1选用。
表1(五)使用荷载:1.堆货荷载:前沿q1=20kpa;前方堆场q2=30kpa。
2.门机荷载:按《港口工程荷载规范》附录C荷载代号Mh-10 -25 设计。
3.铁路荷载:港口通过机车类型为干线机车,按《港口工程荷载规范》表7.0.3-2中的铁路竖向线荷载标准值设计。
总平面布置上海港改建码头是河口港码头,平面布置与工艺设计按《海港总平面设计规范》和《河港总平面设计规范》的有关规定确定。
根据水文、地质、地形、货种、装卸工艺及施工条件等因素综合分析,采用高桩码头结构型式(上层土为淤泥)。
码头前沿大致平行于黄浦江主流向,由于码头前江面宽约500米,水域面积不大,为了不使水流结构发生变化选用顺岸式。
码头前沿布置在规划前沿线,考虑到当地陆域面积紧张,采用满堂式,1#和2#码头连片布置,拆掉原有的防洪墙,将后桩台至陆地之间的短距离水域用当地廉价的砂石料抛填,当汛期来临时,码头停止作业,采用堆沙包的方法来防汛。
由资料得到的水位值:设计高水位:高潮位累积频率曲线的10%处————3.75 m设计低水位:高潮位累积频率曲线的90%处————1.22 m极端高水位:高潮位累积频率曲线的2%处————4.63m极端低水位:高潮位累积频率曲线的98%处————0.60 m1.1一号码头总平面布置1.1.1停靠方式停靠方式采用两点系泊(如图),受力系船柱数目根据船长查得为n=2,系船柱间距最大为20m,最少系船柱个数为6个。
1.1.2一号码头主要尺度的拟定1.1.2.1 泊位长度单个泊位长度:L=L+2dbL————单个泊位长度(m)bL————设计船长(m),L=82.6m;d————富裕长度(m),按《海港总平面设计规范》查表取值为8~10mL=82.6+2×(8~10)=98.6~102.6m,取码头长度为118m, 已b有岸线满足要求.1.1.2.2泊位宽度为了不占用主航道,泊位宽度:B=2bb————设计船宽(m),b=13.6mB=2×13.6=27.2m,取28m1.1.2.3 码头前沿顶高程(按有掩护港口的码头计算)基本标准:E=HWL + 超高值(1.0~1.5)复核标准:E=极端高水位+超高值(0~0.5)E————码头面高程(m)HWL————设计高水位(m)基本标准:E=3.75+(1.0~1.5)=4.75~5.25 m复核标准:E=4.63+(0~0.5)=4.63~5.13 m 由资料知,当地万吨级泊位的码头面标高一般为+4.8m,所以取E=4.8m1.1.2.4码头前沿设计水深D=T+Z1+Z2+Z3+Z4Z2 =KH- Z14%D————码头前沿设计水深(m)T————设计船型满载吃水(m),T=4.47m;Z1————龙骨下最小富裕深度(m),查得Z1=0.2mZ2————波浪富裕深度(m),K————系数,顺浪取0.3,横浪取0.5H————码头前的允许波高(m)4%由于地处黄浦江中,码头前江面宽度只有500米,波浪主要为顺浪,查《港口规划与布置》得3000吨级的杂货船的允许波高为H=0.8m,%4所以:Z2 =0.3 0.8-0.2=0.04 mZ3————船舶因配载不均而增加的船尾吃水值(m),杂货船可不计,Z3=0 m;Z4————备淤富裕深度(m),Z4=0.5mD=4.47+0.2+0.04+0+0.5=5.21m,所以码头前沿水底高程=设计最低水位-码头前沿设计水深=1.22-5.21=-3.99m,由于码头前沿布置在规划前沿线处,且规划挖至-9.0 m,所以水深条件肯定满足。
码头稳定性验算1.计算模型2.计算荷载设计高水位=2.77m ;设计低水位=-2.89m1) 结构自重力①重力(设计高水位2.77m)G1护栏作用力不计G2胸墙=(1.73*23+0.02*13)*1.3=52.065KN G3砼挡墙=0.5*(1.914+2.589)*1.75*13+0.5*(2.589+3.375)*1.0*13=93.21kn力臂计算:稳定力矩计算:②重力(设计低水位-2.89m ) G1护栏 作用力不计G2胸墙=1.75*1.3*23=52.325KN G3砼挡墙=0.5*(1.914+2.589)*1.75*23+ 0.5*(2.589+3.375)*1.0*23=164.91kn 力臂计算:稳定力矩计算:2)土压力强度计算后方回填碎石,二片石,开山石 ︒=45ϕ γ=18kn/m第二破裂角: 005.22)(21)90(21'=---=βεϕθ=β0=ε005.224521=⨯=δ有 15°<α1,α2<θ' ,故土压力可按公式2.4.1.1计算 对胸墙: α=0 ,cos α=1对砼挡墙: 0195.155.31==-tgα ; cos α=0.9613.作用分析1) 永久作用①设计高水位2.77m永久作用土压力强度 cos α1=1 ,cos α2=0.96111e = 0e 12=(18×1.48+11×0.02)×Kan ×cos α1=26.86×0.1597 =4.29kpa1597.0)841.01(924.05.00cos 5.22cos 45sin 5.67sin 1)5.22cos(145cos )cos()cos()sin()sin(1)cos(cos )(cos 2000002222=+⨯=⎥⎥⎦⎤⎢⎢⎣⎡︒+⨯=⎥⎦⎤⎢⎣⎡-+-+++-=βαδαβϕδϕδαααϕαn n n n n n n k 2835.0)9319.01(723.0765.095.15cos 45.38cos 45sin 5.67sin 1)45.38cos()95.15(cos 05.29cos )cos()cos()sin()sin(1)cos(cos )(cos 20000202222=+⨯=⎥⎥⎦⎤⎢⎢⎣⎡︒+⨯=⎥⎦⎤⎢⎣⎡-+-+++-=βαδαβϕδϕδαααϕαn n n n n n n ke 21 =(18×1.48+11×0.02)×0.2835×0.961=7.318kpa e 2=57.11×kan ×cos α2=57.11×0.2835×0.961=15.559kpa 胸墙后土压力合力水平合力:Eh n =竖直合力:Ev n = 计算得:(按填料分层,单位kn)力臂计算水平力壁di 和倾覆力矩MEHi 计算竖直力壁di 和稳定力矩MEVi 计算)cos(25.011n an n n i n n i i K h h r h r δα+⎪⎭⎫⎝⎛+∑-=)sin(25.011n an n n i n n i i K h h r h r δα+⎪⎭⎫ ⎝⎛+∑-=②设计低水位-2.89m永久作用土压力强度 cos α1=1 ,cos α2=0.961 e 11=0e 12=(18×1.5)×Kan ×cos α1=27×0.1597×1 =4.312kpa e 21=(18×1.5)×Kan ×cos α1=27×0.2835×0.961 =7.356kpae 22=76.5×kan ×cos α2=76.5×0.2835×0.961=20.842kpa 胸墙后土压力合力水平合力:Eh n =竖直合力:Ev n = 计算得:(按填料分层,单位kn)力臂计算水平力臂di 和倾覆力矩MEHi 计算)cos(25.011n an n n i n n i i K h h r h r δα+⎪⎭⎫⎝⎛+∑-=)sin(25.011n an n n i n n i i K h h r h r δα+⎪⎭⎫ ⎝⎛+∑-=竖直力臂di和稳定力矩MEVi计算2)可变作用取可变荷载Q=30kn/m①可变作用土压力强度胸墙Eq1=q·kq·Kan·hn=30×1×0.1597×1.5=7.187kn 砼挡墙Eq2=q·kq·Kan·hn=30×1×0.2835×2.75=23.389kn胸墙后土压力合力水平分力Eqh1=7.19×cos22.5°= 6.64kn竖向分力Eqv1=7.19×sin22.5°= 2.752kn砼挡墙后土压力合力水平分力Eqh2=23.39×cos38.45°= 18.313kn 竖向分力Eqv2=23.39×sin38.45°= 14.548kn 可变土压力合力水平力 Eqh=6.64+18.304 = 24.954kn 竖向力 Eqv=2.75+14.56 = 17.300kn ②可变土压力力臂及力矩计算水平力臂di 和倾覆力矩MEqhi 计算竖直力臂di 和稳定力矩MEqvi 计算3)波浪作用,地震作用和系缆力,剩余水压力暂不考虑。
文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。
码头结构整体稳定性计算书设计:校对:审核:1、设计条件1)设计船型设计代表船型见下表。
2)结构安全等级结构安全等级为二级。
3)自然条件(1)设计水位设计高水位(高潮位累计频率10%): 1.76m设计低水位(低潮位累计频率90%):+0.0m极端高水位(重现期50年一遇):+2.66m极端低水位(重现期50年一遇):-1.71m施工水位: 1.40m(2)波浪海西湾内波高H1%=2.67m。
(3)地质资料码头基床底面全部座落在全风化花岗岩层,风化岩承载力容许值为f=340kPa。
(4)码头面荷载a.门座起重机靠海侧轨道至码头前沿20kPa,其余30kPa。
b. 起重机荷载:码头设40吨门座起重机。
轮数48,轮压垂直方向(非工作状态)200kN,(工作状态)250kN,水平轮压35kN,基距12m,轮距840-980-840-840-840-980-840-840-840 -980-840。
(5)材料重度2、作用分类及计算2.1 结构自重力计算(1)极端高水位情况:计算图示见下图。
极端高水位作用分布图(2)设计高水位情况:计算图示见下图。
设计高水作用分布图设计低水作用分布图(3)设计低水位情况:计算图示见下图。
2.2 土压力强度计算码头后方填料为积砂石(按粗砂计算),35ϕ=︒,根据《重力式码头设计与施工规范》(JTJ290—98)第2(45/2)an K tg ϕ=︒-则2(45/2)0.271an K tg ϕ=︒-= 沉箱顶面以下考虑3511.6733ϕδ︒===︒ 根据(JTJ290—98)表,查的0.24an K =cos 0.24cos11.670.235ax an K K δ==⨯︒= sin 0.24sin11.670.0485ay an K K δ==⨯︒=土压力标准值按(JTJ290—98)3.5条计算:110cos n n i i an i e h K γα-==∑21cos n n i i an i e h K γα==∑式中:cos 1α=1)码头后方填料土压力(永久作用) (1)极端高水位情况(2.66m ):e 4.0=0e 2.66=18×1.34×0.271=6.54(kPa )e 1.4=(18×1.34+9.5×1.26)×0.271=9.78(kPa ) e ‘1.4=(18×1.34+9.5×1.26)×0.235=8.48(kPa )e -9.0=(18×1.34+9.5×1.26+9.5×10.4)×0.235=31.7(kPa ) 土压力强度分布图见 图 土压力引起的水平作用:1116.54 1.34(6.549.78) 1.26(8.4831.7)10.4222H E =⨯⨯+⨯+⨯+⨯+⨯4.38210.28208.94223.602(/)kN m =++=土压力引起的竖向作用:208.9411.6743.16(/)V E tg kN m =⨯︒=土压力引起的倾覆力矩:1(2 6.549.78) 1.344.382( 1.3411.66)10.2810.433(6.549.78)(28.4831.7)10.4208.941043.58(/)3(8.4831.7)EH M kN m m ⎡⎤⨯+⨯=⨯⨯++⨯++⎢⎥⨯+⎣⎦⨯+⨯⨯=⨯+土压力引起的稳定力矩:43.1611.02475.62(/)EV M kN m m =⨯=(2)设计高水位情况e 4.0=0e 1.76=18×2.24×0.271=10.93(kPa )e 1.4=(18×2.24+9.5×0.36)×0.271=11.85(kPa ) e ‘1.4=(18×2.24+9.5×0.36)×0.235=10.28(kPa )e -9.0=(18×2.24+9.5×0.36+9.5×10.4)×0.235=33.5(kPa ) 土压力强度分布图见 图 土压力引起的水平作用:11110.93 2.24(10.9311.85)0.36(10.2833.5)10.4222H E =⨯⨯+⨯+⨯+⨯+⨯12.24 4.1227.66244.0(/)kN m =++=土压力引起的竖向作用:227.6611.6747.02(/)V E tg kN m =⨯︒=土压力引起的倾覆力矩:1(210.9311.85)0.3612.24( 2.2410.76) 4.110.433(10.9311.85)(210.2833.5)10.4227.661158.75(/)3(10.2833.5)EH M kN m m ⎡⎤⨯+⨯=⨯⨯++⨯++⎢⎥⨯+⎣⎦⨯+⨯⨯=⨯+土压力引起的稳定力矩:47.0211.02518.16(/)EV M kN m m =⨯=(3)设计低水位情况e 4.0=0e 1.4=18×2.6×0.271=12.68(kPa ) e ‘1.4=18×2.6×0.235=11.0(kPa )e 0.0=(18×2.6+18×1.4)×0.235=16.92(kPa ) e -9.0=(18×2.6+18×1.4+9.5×9)×0.235=37.01(kPa ) 土压力强度分布图见 图 土压力引起的水平作用:11112.68 2.6(1116.92) 1.4(16.9237.01)9222H E =⨯⨯+⨯+⨯+⨯+⨯16.48419.544242.69278.72(/)kN m =++=土压力引起的竖向作用:(19.544242.69)11.6754.16(/)V E tg kN m =+⨯︒=土压力引起的倾覆力矩:1(21116.92) 1.416.484(12.8610.4)19.544933(1116.92)(216.9237.01)9242.691387.21(/)3(16.9237.01)EH M kN m m ⎡⎤⨯+⨯=⨯⨯++⨯++⎢⎥⨯+⎣⎦⨯+⨯⨯=⨯+土压力引起的稳定力矩:54.1611.02596.84(/)EV M kN m m =⨯=2)均布荷载产生的土压力(可变作用):各种水位时,均布荷载产生的土压力标准值均相同。
某重力式码头设计方案及结构计算摘要:重力式码头具有整体性好、结构坚固耐久、对较大集中荷载的适应性强、设计和施工较为简单等优点,在港口工程中被广泛应用。
本文以某重力式煤码头为例,详细阐述了码头结构设计方案,并根据自然条件、船舶及工艺荷载进行结构计算,验证了码头结构的安全可靠性,可为类似工程实践提供参考。
关键字:重力式;煤码头;沉箱;结构设计一、项目概况某工程拟建1个7万吨级煤码头泊位(结构按10万吨级散货船设计预留),码头长366.2m,顶高程8.5m(以当地理论最低潮面为基准),前沿底高程-15.6m。
水工建筑物的结构安全等级为Ⅱ级。
二、主要设计参数(1)设计水位200年重现期高潮位:4.58m100年重现期高潮位:3.96m设计高水位:1.81m(高潮累计频率10%)设计低水位:0.08m(低潮累计频率90%)极端高水位:3.62m(50年一遇高潮位)极端低水位:-0.40m(50年一遇低潮位)(2)设计流速水流流速按1.05m/s计算。
(3)设计风速按瞬时9级风设计,设计风速为22m/s,大于9级风时船舶离开码头避风。
(3)工程地质工程场地陆域多为低山丘陵地貌,勘察区海岸地貌为岩质海岸,未发现不良地质作用的影响。
根据钻探揭示地层情况,拟建码头上覆土层为第四系全新统海相或海陆交互相形成的淤泥类土以及砂类土,下伏燕山期花岗岩的风化残积层、全风化岩、强风化岩、中风化岩等。
根据工程勘查报告提供的各岩、土层的主要涉及参数及物理力学性质指标、各土(岩)层的容许承载力建议值,确定码头持力层为强风化或局部全风化岩。
(4)工艺荷载1)码头面均布荷载:20kPa;2)桥式抓斗卸船机:基距16m,每腿8轮,轮距1.0m;工作状态和非工作状态最大轮压分别为500kN/轮和550kN/轮,卸船机轨道采用QU120。
两台卸船机之间最小距离为2m。
三、码头结构选型码头结构型式一般根据当地自然条件、使用要求、投资最优、施工工艺和外部协作条件等因素综合决定。
重力式码头劳动力计划一、重力式码头劳动力计划概述 (1)1.1重力式码头工程特点 (1)1.2劳动力计划的重要性 (2)二、重力式码头施工阶段劳动力需求分析 (2)2.1基础施工劳动力需求 (2)2.2墙身施工劳动力需求 (2)2.3上部结构施工劳动力需求 (2)三、劳动力技能要求 (3)3.1基础施工技能要求 (3)3.2墙身施工技能要求 (3)3.3上部结构施工技能要求 (3)四、劳动力数量计算方法 (3)4.1定额计算法 (3)4.2经验估算法 (4)五、劳动力来源与招聘 (4)5.1内部劳动力调配 (4)5.2外部劳动力招聘 (4)六、劳动力培训计划 (4)6.1入职培训 (4)6.2技能提升培训 (5)七、劳动力管理措施 (5)7.1考勤管理 (5)7.2绩效管理 (5)八、劳动力成本控制 (5)8.1工资成本控制 (5)8.2福利成本控制 (5)一、重力式码头劳动力计划概述1.1重力式码头工程特点重力式码头是码头建筑的一种常见形式,其结构坚固,主要依靠自身重力来维持稳定。
它通常由基础、墙身和上部结构等部分组成。
基础部分需要承受巨大的荷载,对地基的要求较高。
墙身多采用混凝土或块石等材料砌筑,施工过程中需要精确控制垂直度和水平度。
上部结构则要满足装卸设备的安装和运营需求。
这些特点决定了重力式码头在建设过程中需要不同专业技能的劳动力协同作业。
1.2劳动力计划的重要性劳动力计划在重力式码头建设中起着关键作用。
合理的劳动力计划能够保证工程按时完成。
例如,如果在基础施工阶段劳动力不足,可能会导致基础浇筑延迟,进而影响整个码头的建设进度。
同时它还能保证工程质量,不同工序需要具备相应技能和经验的工人。
比如,模板安装工人必须熟练掌握模板拼接技术,以保证墙身混凝土浇筑的外观和尺寸精度。
而且,有效的劳动力计划有助于控制成本,避免劳动力闲置或过度使用带来的浪费。
二、重力式码头施工阶段劳动力需求分析2.1基础施工劳动力需求在重力式码头基础施工阶段,需要大量的土方工程劳动力。