金属的电沉积过程讲义
- 格式:ppt
- 大小:139.00 KB
- 文档页数:10
金属的电沉积过程电镀过程是镀液中的金属离子在外电场的作用下,经电极反应还原成金属原子并在阴极上进行金属沉积的过程。
图4.4是电沉积过程示意图,完成电沉积过程必须经过液相传质、电化学反应和电结晶三个步骤。
电镀时以上三个步骤是同时进行的,但进行的速度不同,速度最慢的一个被称为整个沉积过程的控制性环节。
不同步骤作为控制性环节,最后的电沉积结果是不一样的。
(1)液相传质步骤液相传质使镀液中的水化金属离子或络离子从溶液内部向阴极界面迁移,到达阴极的双电层溶液一侧。
液相传质有三种方式:电迁移、对流和扩散。
在通常的镀液中,除放电金属离子外,还有大量由附加盐电离出的其他离子,使得向阴极迁移的离子中放电金属离子占的比例很小,甚至趋近于零。
因此,电迁移作用可略去不计。
如果镀液中没有搅拌作用,则镀液流速很小,近似处于静止状态,此时对流的影响也可以不予考虑。
扩散传质是溶液里存在浓度差时出现的一种现象,是物质由浓度高区域向浓度低区域的迁移过程。
电镀时,靠近阴极表面的放电金属离子不断地进行电化学反应得电子析出,从而使金属离子不断地被消耗,于是阴极表面附近放电金属离子的浓度越来越低。
这样,在阴极表面附近出现了放电金属离子浓度高低逐渐变化的溶液层,称为扩散层。
扩散层两端存在的放电离子的浓度差推动金属离子不断地通过扩散层扩散到阴极表面。
因此,扩散总是存在的,它是液相传质的主要方式。
假如传质作为电沉积过程的控制环节,则电极以浓差极化为主。
由于在发生浓差极化时,阴极电流密度要较大,并且达到极限电流密度i d时,阴极电位才急剧地向负偏移,这时很容易产生镀层缺陷。
因此,电镀生产不希望传质步骤作为电沉积过程的控制环节。
图4.4电沉积过程(2)电化学反应步骤电化学反应水化金属离子或络离子通过双电层,并去掉它周围的水化分子或配位体层,从阴极上得到电子生成金属原子(吸附原子)的过程。
水化金属离子或络离子通过双电层到达阴极表而后,不能直接放电生成金属原子,而必须经过在电极表面上的转化过程。
第二章金属电沉积过程中的极化金属电沉积是在外加电场作用下,将金属离子从溶液中转化成金属膜或金属物体的过程。
在金属电沉积过程中,极化现象是一个重要的现象。
极化是指金属电极在电解质溶液中电化学反应过程中形成电势差,导致电流向相反方向流动的现象。
极化现象可以分为正极化和负极化。
正极化是指电极表面形成了与电流方向相同的极化电位,阻碍了电流的流动。
正极化的主要原因是在电解质溶液中,金属电极表面吸附了反应活性物种,如金属离子和氧化物,形成了阻碍电流传输的物种层。
这种极化效应会使电沉积速率减慢,导致沉积物品质下降。
为了克服正极化,可以通过增加电流密度、提高温度或添加激活物质等方法来降低正极化。
负极化是指电极表面形成了与电流方向相反的极化电位,促进了电流的流动。
负极化的主要原因是在电解质溶液中,金属离子的还原速率大于金属离子的生成速率,导致电极表面形成了过电位,从而促进了电流的流动。
负极化效应可以提高电沉积速度和沉积物品质。
然而,当负极化过大时,可能会导致气泡的生成和沉积物品质下降。
为了控制金属电沉积过程中的极化效应,可以采用以下方法:1.控制电导率:电解质溶液的电导率对极化效应有重要影响。
可以通过调整电解质浓度和温度,以控制电解质的电导率。
较高的电导率有助于减小极化效应。
2.调整电流密度:通过调整电流密度,可以调控极化效应。
较大的电流密度有助于减小正极化,促进负极化。
但是,过大的电流密度可能会导致过极化和沉积物质量下降。
3.控制温度:温度对极化效应有明显影响。
较高的温度有助于减小正极化,促进负极化。
这是因为在较高温度下,溶液中的晶体活性和扩散速率会增加,有利于电流的流动。
4.添加添加剂:在电沉积过程中,可以添加一些特定的添加剂来控制极化效应。
添加剂可以改变溶液的电荷分布,调节极化电位,从而改善电沉积过程。
因为金属电沉积过程中的极化现象对沉积物质量和电化学反应速率有着重要影响,所以在金属电沉积工艺中,需要充分了解和控制极化效应,以获得所需的电沉积效果。
第八章金属的电沉积本章主要讨论水溶液中,金属离子还原成金属的电极过程,并简单介绍电结晶过程的基本理论。
8.1 金属电极过程的特点金属电极过程是电镀、电冶金、化学电源等工业的基础,又与金属的腐蚀及防护、电解加工、电化学分析等领域有着密切的关系。
但是,人们对这类过程的了解却远较氢的析出过程为差。
早期有关金属电极过程的研究大多数偏重于工艺方面,直到本世纪二十年代才转入科学研究和工业开发并行发展的阶段。
只是五十年代后,在电极过程理论的迅速发展以及电化学研究新方法和表面测试技术应用的推动下,金属电极过程的基础研究,才有了较大的进展。
研究金属电极过程所遇到的特殊问题是:1.固态金属表面的不均匀性,这对电极反应来说,意味着表面上各点的反应能力有区别。
而且,在金属电极过程进行的同时,还不断发生着电极表面的生长或破坏;因此,如何在实验过程中保持电极表面状态不变,以及如何计算电极的真实面积和真实电流密度,都成为十分困难的问题。
2.在固态金属电极表面上同时进行着电化学过程(反应粒子的得失电子)和结晶过程(晶格的生长或破坏)。
这两类步骤的动力学规律交叠作用,使极化曲线具有比较复杂的形式,增加了分析实验数据的困难。
3.对于大多数金属和它的简单(水合)离子组成的金属电极体系,除Fe、Co、Ni等几种金属外,一般交换电流密度都很大,电化学反应都进行得很快,电极过程的速度往往是由浓度极化所控制。
因而,在用经典极化曲线的方法研究金属电极过程时,所测得的数据不可能揭示界面步骤的动力学规律。
近年来,随着实验技术的发展,采用了暂态方法和交流电方法后,测量过程中电极表面附近液层中的浓度极化和表面状态的变化都比较轻微,因而有利于突出界面反应动力学性质和在实验过程中保持电极表面条件基本不变。
此外,还广泛利用液态金属电极,特别是滴汞电极和汞齐电极来撇开结晶过程的影响而单纯研究电化学步骤的动力学规律。
大致说来,目前对金属电极过程中的电化学步骤研究得多一些,因而对这一步骤的动力学规律也认识得深一些;而对结晶步骤相对地就研究得比较少。