大学物理下册试卷.doc
- 格式:doc
- 大小:447.50 KB
- 文档页数:9
大学物理考卷(下学期)一、选择题(每题4分,共40分)A. 速度B. 力C. 位移D. 加速度2. 在国际单位制中,下列哪个单位属于电学基本单位?A. 安培B. 伏特C. 欧姆D. 瓦特A. 物体不受力时,运动状态不会改变B. 物体受平衡力时,运动状态会改变C. 物体受非平衡力时,运动状态不变D. 物体运动时,必定受到力的作用A. 功B. 动能C. 势能D. 路程A. 速度大小B. 速度方向C. 动能D. 动量6. 下列哪个现象属于光的衍射?A. 彩虹B. 海市蜃楼C. 水中倒影D. 光照射在单缝上产生的条纹A. 恢复力与位移成正比B. 恢复力与位移成反比C. 恢复力与位移的平方成正比D. 恢复力与位移的平方成反比8. 一个电路元件的电压u与电流i的关系为u=2i+3,该元件是:A. 电阻B. 电容C. 电感D. 非线性元件A. 电磁波在真空中传播速度小于光速B. 电磁波在介质中传播速度大于光速C. 电磁波在真空中传播速度等于光速D. 电磁波在介质中传播速度等于光速10. 一个理想变压器的初级线圈匝数为1000匝,次级线圈匝数为200匝,若初级线圈电压为220V,则次级线圈电压为:A. 110VB. 220VC. 440VD. 880V二、填空题(每题4分,共40分)1. 在自由落体运动中,物体的加速度为______。
2. 一个物体做匀速圆周运动,其线速度的大小不变,但方向______。
3. 惠更斯原理是研究______现象的重要原理。
4. 一个电阻的电压为10V,电流为2A,则该电阻的功率为______。
5. 根据电磁感应定律,当磁通量发生变化时,会在导体中产生______。
6. 在交流电路中,电阻、电感和电容元件的阻抗分别为______、______和______。
7. 一个单摆在位移为0时速度最大,此时摆球所受回复力为______。
8. 光的折射率与光的传播速度成______比。
9. 一个电子在电场中受到的电势能变化量为______。
大学中医学专业《大学物理(下册)》期末考试试卷C卷附解析姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质点作半径为R的匀速圆周运动,在此过程中质点的切向加速度的方向______,法向加速度的大小______。
(填“改变”或“不变”)2、如图,在双缝干涉实验中,若把一厚度为e、折射率为n的薄云母片覆盖在缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O处的光程差为_________________。
3、理想气体向真空作绝热膨胀。
()A.膨胀后,温度不变,压强减小。
B.膨胀后,温度降低,压强减小。
C.膨胀后,温度升高,压强减小。
D.膨胀后,温度不变,压强不变。
4、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
5、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。
一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。
6、一维保守力的势能曲线如图所示,则总能量为的粒子的运动范围为________;在________时,粒子的动能最大;________时,粒子的动能最小。
7、一个绕有500匝导线的平均周长50cm的细螺绕环,铁芯的相对磁导率为600,载有0.3A 电流时, 铁芯中的磁感应强度B的大小为___________;铁芯中的磁场强度H的大小为___________ 。
8、两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。
开始他们的压强和温度都相同,现将3J的热量传给氦气,使之升高一定的温度。
若使氧气也升高同样的温度,则应向氧气传递的热量为_________J。
07级大学物理(下)试卷A 2009. 01. 02( 注:请将解答写在答题卷上,仅写在答题卷上的内容有效。
)一、选择题(每题3分,共24分)1.在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ和面上各点的磁感应强度大小B 将如何变化?( )(A )Φ增大,B 也增大;(B )Φ不变,B 也不变;(C )Φ增大,B 不变; (D )Φ不变,B 增大。
2.洛仑兹力可以 ( ) (A )改变带电粒子的速率; (B )改变带电粒子的动量;(C )对带电粒子作功; (D )增加带电粒子的动能。
3.在匀强磁场中,有两个平面线圈,其面积A 1 = 2A 2,通有电流I 1 = 2I 2,他们所受的最大磁力矩之比M 1/M 2等于 ( )(A )1 ; (B )2 ; (C )4 ; (D )1/4 。
4.在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A ,B 两点位相差为3π,则此路径AB 的光程为 ( )(A )1.5λ ; (B )1.5nλ ; (C )3λ ; (D )1.5λ /n 。
5.两偏振片组成起偏器及检偏器,当它们的偏振化方向成60°时观察一个强度为I 0的自然光光源,所得的光强是 ( )(A )I 0 / 2 ; (B )I 0 /8 ; (C )I 0 /6 ; (D )I 0 /4 。
6.两不同质量的粒子,其德布罗意波长相同,则这两粒子的 ( )(A) 动量相同; (B) 能量相同; (C) 速度相同; (D) 动能相同。
7.根据玻尔理论,氢原子在n =5轨道上的能量与在第一激发态的能量之比为 ( )(A )5/2 ; (B )4/25 ; (C )5/1 ; (D )25/4 。
8.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感应强度的大小之比B 1/B 2为 ( )(A )0. 90; (B )1. 00; (C )1. 11; (D )1. 22 。
燕山大学《大学物理》(下)考试题一、填空题1,如图所示,在边长为a的正方形平面的中垂线上,距中心0点21a处,有一电量为q的正点电荷,则通过该平面的电场强度通量为____________.2_______________________。
3,两同心带电球面,内球面半径为r1=5cm,带电量q1=3×10-8C;外球面半径为r2=20cm,带电量q2=-6×10-8C,设无穷远处电势为零,则空间另一电势为零的球面半径r=__________________.q2r240的一点为电势零点,则与点电荷距离为r处的电势U=__________________. 5,为什么静电场中的电力线不可能是闭合曲线?6,半径为 0.1m的孤立导体球其电势为300V,则离导体球中心30cm处的电势U=_____________________.(以无穷远为电势零点)7,一平行板电容器,极板面积为S,相距为d,若B板接地,且保持A板的电势UA =U0不变.如图,把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间,则导体薄板C的电势Uc =______________.8,一空气平行板电容器 , 两极板间距为d,极板上带电量分别为+q和-q,板间电势差为U.在忽略边缘效应的情况下,板间场强大小为______若在两板间平行地插入一厚度为t(t<d=的金属板,则板间电势差变为____________,此时电容值等于______________。
9,根据泡利不相容原理,在主量子数n=4的电子壳层上最多可能有的电子数为______个。
q 0U U A CB10,欲使氢原子能发射巴耳末系中波长为6562.8oA 的谱线,最少要给基态氢原子提供__________eV的能量.(里德伯恒量R=1.096776×107m-1)二、选择题1,静止质量不为零的微观粒子作高速运动,这时粒子物质波的波长λ与速度v有如下关系: [ ](A)λ∝v (B)λ∝ 1/v (C)λ∝2211c V - (D)λ∝22c V - 2,边长为 0.3m的正三角形abc,在顶点a处有一电量为10 C的正点电荷,顶点b处有一电量为10 C的负点电荷,则顶点c处的电场强度的大小E和电势U为:[1/(4πε0)=9×109N·m/C2] (A)E=0,U=0.(B)E=1000V/m ,U=0. (C)E=1000V/m ,U=600V.(D)E=2000V/m ,U=600V. [ ] c a b3,图示为一具有球对称性分布的静电场的E~r关系曲线.请指出该静电场是由下列哪种带电体产生的.(A)半径为R的均匀带电球面. (B)半径为R的均匀带电球体.(C)半径为R、电荷体密度ρ=Ar(A为常数)的非均匀带电球体. (D)半径为R、电荷体密度ρ=A/r(A为常数)的非均匀带电球 体. [ ]4,设有一带电油滴,处在带电的水平放置的大平行金属板之间保持稳定,如图所示.若油滴获得了附加的负电荷,为了继续使油滴保持稳定,应采取下面哪个措施?(A)使两金属板相互靠近些.(B)改变两极板上电荷的正负极性. (C)使油滴离正极板远一些.(D)减小两板间的电势差. [ ]+⊙-5,如图所示,两个同心球壳.内球壳半径为R1,均匀带有电量Q;外球壳半径为R2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r处的P点的场强大小及电势分别为: [ ] (A)E=0,U=104R Q πε. (B)E=0,U=)11(4210R R Q -πε. (C)E=204rQ πε,U=rQ 04πε. (D)E=204rQ πε, U=104R Qπε.6,关于电场强度定义式E =F/q ,下列说法中哪个是正确的?[ ](A)场强E的大小与试探电荷q0的大小成反比.(B)对场中某点,试探电荷受力F与q0的比值不因q0而变. (C)试探电荷受力F 的方向就是场强E的方向.(D)若场中某点不放试探电荷q0,则F =0,从而E=0. 7,下面列出的真空中静电场的场强公式,其中哪个是正确的?(A)点电荷q的电场: 204r q E πε=.(B)“无限长”均匀带电直线(电荷线密度λ)的电场:r r E202πελ=.(C)“无限大”均匀带电平面(电荷面密度σ)的电场:2εσ±=E . (D)半径为R的均匀带电球面(电荷面密度σ)外的电场:r r R E 302εσ=. [ ]8,一根均匀细刚体绝缘杆,用细丝线系住一端悬挂起来,先让它的两端部分别带上电荷+q和-q,再加上水平方向的均匀电场E,如图所示.试判断当杆平衡时,将处于下面各图中的哪种状态? [ ]9,A、B为两导体大平板,面积均为S,平行放置,如图所示.A板带电 荷+Q1,B板带电荷+Q2,如果使B板接地,则AB间电场强度的大小E为 (A)S Q 012ε. (B)SQ Q 0212ε-. (C)SQ 01ε. (D)S Q Q 0212ε+. [ ]θc (B) (D)(A) (C) A+Q 110,光电效应和康普顿效应都包含有电子与光子的相互作用过程.对此,在以下几种理解中,正确的是[ ](A)两种效应中电子与光子两者组成的系统都服从动量守恒定律和能量守恒定律.(B)两种效应都相当于电子与光子的弹性碰撞过程.(C)两种效应都属于电子吸收光子的过程.(D)光电效应是吸收光子的过程,而康普顿效应则相当于光子和电子的弹性碰撞过程.三、计算题1,一个细玻璃棒被弯成半径为R的半圆形,沿其上半部分均匀分布有电量+Q,沿其下半部分均匀分布有电量-Q,如图所示.试求圆心O处的电场强度.2,一半径为R的带电细圆环,其电荷线密度为λ=λ0cosφ,式中λ0为一常数,为半径R与X轴所成的夹角,如图所示.试求环心O处的电场强度.3,三个电容器如图联接,其中C1=10×10-6F,C2=5×10-6F,C3=4×10-6F,当A、B间电压U=100V时,试求:(1)A、B之间的电容;(2) 当C3被击穿时,在电容C1上的电荷和电压各变为多少?4,当氢原子从某初始状态跃迁到激发能(从基态到激发态所需的能量)为△E= 10.19eV的状态时,发射出光子的波长是λ=4860oA ,试求该初始状态的能量和主量子数.(普朗克常量h=6.63×10-34J·s,1eV=1.60×10-19J)5,能量为15eV的光子,被处于基态的氢原子吸收,使氢原子电离发射一个光电子,求此光电子的德布罗意波长.(电子的质量me =9.11×10-31kg, 普朗克常量h=6.63×10-34J·s, 1eV=1.60×10-19J)2 B。
大学物理I 复习提纲刚体的转动一、刚体运动的描述 1. 刚体的概念(★)2. 刚体平动:用质心的运动代表(以点带全)3. 刚体转动:用某一个转动平面的运动代表(以面盖全) (1)角坐标 (2)角位移 (3)角速度 (4)角加速度 (5)两种重要转动状态:匀速转动,匀加速转动。
3. 角量与线量的关系二、转动动能 转动惯量 (★) 1. 刚体转动动能:221ωI E I =2. 刚体转动惯量:公式⎰∑=∆==质量分布区域,m r I r m I ni ii d 212; 叠加原理,平行轴定理,正交轴定理。
三、力矩 转动定律(★)1. 外力力矩:2. 转动定律:)。
称为角动量(或动量矩,,ωωωαI L tLt I t I M I M =====d d d )d(d d 四、力矩的功 刚体定轴转动中的动能定理 机械能守恒定律1. 外力矩的功:2. 定轴转动中的动能定理:2221211122I I A E E I I ωω=-=-。
3. 机械能守恒定律:2211=.2C E E I mgh const ω-=只在保守力作用下或非保守力做功等于零时,,。
五、动量矩和冲量矩 动量矩守恒定律(★)1. 动量矩:ωI L =2. 动量矩原理:1221d )(d d d ⎰-===t t L L t M I L t M ,ω3. 动量矩守恒定律:120L L M ==时,六、质点的直线运动与刚体定轴转动的比较2121d d d ()A M A M A M θθθθθθ===-⎰,,均匀力矩作用时,。
iii iz F r M ⋅⋅=∑θsin 合外流体动力学基础一、基本概念 1. 理想流体(★)2. 流线、流管3. 连续性方程(★): 1122 s s or s const υυυ=⋅= 二、伯努利方程及应用(★)1. 伯努利方程: 2211122211 22p v gh p v gh ρρρρ++=++ 本质:能量守恒在理想流体流动时的表达式。
大学物理学专业《大学物理(下册)》期末考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、质量为的物体,初速极小,在外力作用下从原点起沿轴正向运动,所受外力方向沿轴正向,大小为。
物体从原点运动到坐标为点的过程中所受外力冲量的大小为_________。
2、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的。
3、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
4、静电场中有一质子(带电荷) 沿图示路径从a点经c点移动到b点时,电场力作功J.则当质子从b点沿另一路径回到a点过程中,电场力作功A=___________;若设a点电势为零,则b点电势=_________。
5、一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度_____。
6、一个力F作用在质量为 1.0 kg的质点上,使之沿x轴运动.已知在此力作用下质点的运动学方程为 (SI).在0到4 s的时间间隔内, (1) 力F的冲量大小I =__________________. (2) 力F对质点所作的功W =________________。
7、一根长为l,质量为m的均匀细棒在地上竖立着。
如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时细棒的角加速度应为_____。
8、沿半径为R的圆周运动,运动学方程为 (SI) ,则t时刻质点的法向加速度大小为________;角加速度=________。
9、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。
大学物理下考试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 根据牛顿第二定律,力和加速度的关系是:A. F=maB. F=mvC. F=m/aD. F=a/m答案:A3. 一个物体从静止开始做匀加速直线运动,其位移与时间的关系为:A. s = 1/2at^2B. s = 1/2vtC. s = 1/2atD. s = vt答案:A4. 在理想气体状态方程中,压强、体积、温度的关系是:A. PV = nRTB. PV = nTC. PV = nRD. PV = n答案:A二、填空题(每题5分,共20分)1. 根据能量守恒定律,一个物体的动能和势能之和在任何情况下都______。
答案:保持不变2. 电场强度的定义式为______。
答案:E = F/q3. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成反比,其公式为______。
答案:F = kQq/r^24. 光的折射定律表明,入射角和折射角之间的关系为______。
答案:n1sinθ1 = n2sinθ2三、简答题(每题10分,共40分)1. 简述波粒二象性的概念。
答案:波粒二象性是指微观粒子如电子、光子等,既表现出波动性,也表现出粒子性。
在某些实验条件下,它们表现出波动性,如干涉和衍射现象;而在另一些实验条件下,它们表现出粒子性,如光电效应和康普顿散射。
2. 什么是电磁感应定律?请给出其数学表达式。
答案:电磁感应定律描述了变化的磁场在导体中产生电动势的现象。
其数学表达式为ε = -dΦ/dt,其中ε是感应电动势,Φ是磁通量,t是时间。
3. 简述热力学第一定律的内容。
答案:热力学第一定律,也称为能量守恒定律,指出在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。
一、选择题:(每题3分)1、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2.(C) 0 . (D) θ. [ C2、两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [B ]3、一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ D ]4、一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为:(A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = [ B ]5、一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ B ]6、一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ B ]7、一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8.(C) T /6. (D) T /4. [ C ]8、两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位 (A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.[B ]9、一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ B ]10、一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3. [ D ]11、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16. (C) 11/16.(D) 13/16. (E) 15/16. [ E ]12 一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A) T /4. (B) 2/T . (C) T .(D) 2 T . (E) 4T . [ B ]13、当质点以频率ν 作简谐振动时,它的动能的变化频率为(A) 4 ν. (B) 2 ν . (C) ν. (D) ν21. [ B ]14、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ B ]15、若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B . [ C ]16、下列函数f (x , t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量.其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f +=. (B) )cos(),(bt ax A t x f -=.(C) bt ax A t x f cos cos ),(⋅=. (D) bt ax A t x f sin sin ),(⋅=. [ A ]17、频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距 (A) 2.86 m . (B) 2.19 m .A/ -(C) 0.5 m . (D) 0.25 m . [ C ]18、已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a . [ D ]19、一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s . [ C ]20、机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ B ]21、图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形.若波的表达式以余弦函数表示,则O 点处质点振动的初相为(A) 0.(B) π21. (C) π. (D) π23. [ D ]22、一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是 (A) A ,0,-A. (B) -A ,0,A. (C) 0,A ,0. (D) 0,-A ,0. [B ]23一平面简谐波表达式为 )2(sin 05.0x t y -π-= (SI),则该波的频率 ν (Hz), 波速u (m/s)及波线上各点振动的振幅 A (m)依次为(A) 21,21,-0.05. (B) 21,1,-0.05.(C) 21,21,0.05. (D) 2,2,0.05. [C ]24、在下面几种说法中,正确的说法是:(A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.(B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计) [ C ]x y Ou25、在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定 (A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ A ]26、一平面简谐波沿x 轴负方向传播.已知 x = x 0处质点的振动方程为)c o s(0φω+=t A y .若波速为u ,则此波的表达式为(A) }]/)([cos{00φω+--=u x x t A y .(B) }]/)([cos{00φω+--=u x x t A y .(C) }]/)[(cos{00φω+--=u x x t A y .(D) }]/)[(cos{00φω+-+=u x x t A y . [ A ]27、一平面简谐波,其振幅为A ,频率为ν .波沿x 轴正方向传播.设t = t 0时刻波形如图所示.则x = 0处质点的振动方程为(A) ]21)(2cos[0π++π=t t A y ν. (B) ]21)(2cos[0π+-π=t t A y ν. (C) ]21)(2cos[0π--π=t t A y ν. (D) ])(2cos[0π+-π=t t A y ν. [ B ]28、一平面简谐波的表达式为 )/(2c o sλνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 3 [ A ]29、在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ C ]30、如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ. [ D ]31、沿着相反方向传播的两列相干波,其表达式为)/(2c o s 1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=. 叠加后形成的驻波中,波节的位置坐标为(A) λk x ±=. (B) λk x 21±=. x y t =t 0u O(C) λ)12(21+±=k x . (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ D ]32、有两列沿相反方向传播的相干波,其表达式为)/(2c o s 1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=.叠加后形成驻波,其波腹位置的坐标为:(A) x =±k λ. (B) λ)12(21+±=k x . (C) λk x 21±=. (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ C ]33某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是(A) 0 (B) π21(C) π. (D) 5π/4. [ C ]34、沿着相反方向传播的两列相干波,其表达式为)/(2c o s 1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是(A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ D ]35、在波长为λ 的驻波中,两个相邻波腹之间的距离为(A) λ /4. (B) λ /2.(C) 3λ /4. (D) λ . [B ]36、在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ . (B) 3λ /4.(C) λ /2. (D) λ /4. [ C ]37在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式是)/(2c o s 0λνx t E E z -π=,则磁场强度波的表达式是:(A) )/(2cos /000λνμεx t E H y -π=. (B) )/(2cos /000λνμεx t E H z -π=.(C) )/(2cos /000λνμεx t E H y -π-=. (D) )/(2cos /000λνμεx t E H y +π-=. [ C ]38、在真空中沿着z 轴负方向传播的平面电磁波,其磁场强度波的表达式为)/(co s 0c z t H H x +-=ω,则电场强度波的表达式为:(A) )/(cos /000c z t H E y +=ωεμ.(B) )/(cos /000c z t H E x +=ωεμ. (C) )/(cos /000c z t H E y +-=ωεμ.(D) )/(cos /000c z t H E y --=ωεμ. [ C ] 39、电磁波的电场强度E 、磁场强度 H 和传播速度 u 的关系是:(A) 三者互相垂直,而E 和H 位相相差π21. (B) 三者互相垂直,而且E 、H 、 u 构成右旋直角坐标系. (C) 三者中E 和H 是同方向的,但都与 u 垂直. (D) 三者中E 和H 可以是任意方向的,但都必须与 u 垂直. [ B ]40、电磁波在自由空间传播时,电场强度E 和磁场强度H(A) 在垂直于传播方向的同一条直线上.(B) 朝互相垂直的两个方向传播.(C) 互相垂直,且都垂直于传播方向.(D) 有相位差π21. [ C ] 1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ. [ A ]2、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ C ]3、如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )()(111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ B ]4、真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B 点,路径的长度为l .A 、B 两点光振动相位差记为∆φ,则(A) l =3 λ / 2,∆φ=3π. (B) l =3 λ / (2n ),∆φ=3n π.(C) l =3 λ / (2n ),∆φ=3π. (D) l =3n λ / 2,∆φ=3n π. [ C ]P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 15、如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ A ] 6、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2).[ A ]7、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2> n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2.(C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2).[B ]8在双缝干涉实验中,两缝间距为d ,双缝与屏幕的距离为D (D>>d ),单色光波长为λ,屏幕上相邻明条纹之间的距离为(A) λ D/d . (B) λd /D .(C) λD /(2d ). (D) λd/(2D ). [ A ]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [ B ]10、在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm . [ B ]11、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变.(B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. (D) 中央明条纹向上移动,且条纹间距增大. [ B ]Bn 1 3λn 3 n 3 S S '12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变. [ B ]13、在双缝干涉实验中,两缝间距离为d ,双缝与屏幕之间的距离为D (D >>d ).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d . (B) λ d / D .(C) dD / λ. (D) λD /d . [ D ]14把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D(D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ A ]15、一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [ B ]16、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k 的表达式为(A) r k =R k λ. (B) r k =n R k /λ.(C) r k =R kn λ. (D) r k =()nR k /λ. [ B ]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [ A ]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A) λ / 2. (B) λ / (2n ).(C) λ / n . (D) ()12-n λ. [D ]19、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个. [ B ]20、一束波长为λ的平行单色光垂直入射到一单如果P是中央亮纹一侧第一个暗纹所在的位置,则BC的长度为(A) λ / 2.(B) λ.(C) 3λ / 2 .(D) 2λ.B[B ]21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波各自传到P点的(A) 振动振幅之和.(B) 光强之和.(C) 振动振幅之和的平方.(D) 振动的相干叠加.[D ]22、波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2.(B) λ.(C) 2λ.(D) 3 λ.[C ]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[ B ]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为ϕ=30°的方位上.所用单色光波长为λ=500 nm,则单缝宽度为(A) 2.5³10-5 m.(B) 1.0³10-5 m.(C) 1.0³10-6 m.(D) 2.5³10-7.[ C ]25、一单色平行光束垂直照射在宽度为1.0 mm的单缝上,在缝后放一焦距为2.0 m的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm,则入射光波长约为(1nm=10−9m)(A) 100 nm (B) 400 nm(C) 500 nm (D) 600 nm [ C ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大.[A ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小.[ B ]28、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于(A) λ.(B) 1.5 λ.(C) 2 λ. (D) 3 λ. [ D ]29、在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的 (A) 3 / 4倍. (B) 2 / 3倍. (C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ D ]30、测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射. [ D ]31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现?(A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ B ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光. [ D ]33、对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅.(B) 换一个光栅常数较大的光栅.(C) 将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动. [ B ]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0³10-1 mm . (B) 1.0³10-1 mm . D(C) 1.0³10-2 mm . (D) 1.0³10-3 mm . [ D ]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b . (C) a=2b . (D) a=3 b . [ B ]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A) 干涉条纹的间距不变,但明纹的亮度加强. λ(B) 干涉条纹的间距不变,但明纹的亮度减弱.(C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹.[B ]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I0的自然光垂直入射在偏振片上,则出射光强为(A) I0 / 8.(B) I0 / 4.(C) 3 I0 / 8.(D) 3 I0 / 4.[A ]38、一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I为(A) 4/0I2.(B) I0 / 4.(C) I0 / 2.(D) 2I0 / 2.[ B ]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I0的自然光垂直入射在偏振片上,则出射光强为(A) I0 / 8.(B) I0 / 4.(C) 3 I0 / 8.(D) 3 I0 / 4.[ A ]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[ C ]一、选择题:(每题3分)1、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态.A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为(A) 3 p1.(B) 4 p1.(C) 5 p1.(D) 6 p1.[D ]2、若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为:(A) pV / m.(B) pV / (kT).(C) pV / (RT).(D) pV / (mT).[ B ]3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1 kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量为:(A) (1/16) kg.(B) 0.8 kg.(C) 1.6 kg.(D) 3.2 kg.[ C ]4、在标准状态下,任何理想气体在1 m3中含有的分子数都等于(A) 6.02³1023.(B)6.02³1021.(C) 2.69³1025 .(D)2.69³1023.(玻尔兹曼常量k =1.38³10-23 J ²K -1 ) [ C ]5、一定量某理想气体按pV 2=恒量的规律膨胀,则膨胀后理想气体的温度(A) 将升高. (B) 将降低.(C) 不变. (D)升高还是降低,不能确定. [ B ]6、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是:(A) p 1> p 2. (B) p 1< p 2.(C) p 1=p 2. (D)不确定的. [ C ]7、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ D ]8、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ D ]9、温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等. [ C ]10、1 mol 刚性双原子分子理想气体,当温度为T 时,其内能为(A)RT 23. (B) kT 23. (C) RT 25. (D) kT 25. [ C ] (式中R 为普适气体常量,k 为玻尔兹曼常量)11、两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ 不同.(B) n 不同,(E K /V )不同,ρ 相同.(C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. [ C ]12、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能(E / V )A 和(E / V )B 的关系(A) 为(E / V )A <(E / V )B .(B) 为(E / V )A >(E / V )B .(C) 为(E / V )A =(E / V )B .(D) 不能确定. [ A ]13、两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等,现将6 J 热量传给氦气,使之升高到一定温度.若使氢气也升高同样温度,则应向氢气传递热量(A) 12 J . (B) 10 J(C) 6 J . (D) 5 J . [ B ]14、压强为p 、体积为V 的氢气(视为刚性分子理想气体)的内能为: (A)25pV . (B) 23pV . (C) pV . (D) 21pV . [ A ]15、下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量)(A) pV M m 23. (B) pV M M mol23. (C)npV 23. (D)pV N MM A 23mol . [ A ]16、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:(A) 两种气体分子的平均平动动能相等.(B) 两种气体分子的平均动能相等.(C) 两种气体分子的平均速率相等.(D) 两种气体的内能相等. [ A ]17、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为(A) (N 1+N 2) (23kT +25kT ). (B) 21(N 1+N 2) (23kT +25kT ). (C) N 123kT +N 225kT . (D) N 125kT + N 223kT . [ C ]18、设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比22H O /v v 为(A) 1 . (B) 1/2 .(C) 1/3 . (D) 1/4 . [ D ]19、设v 代表气体分子运动的平均速率,p v 代表气体分子运动的最概然速率,2/12)(v 代表气体分子运动的方均根速率.处于平衡状态下理想气体,三种速率关系为(A) p v v v ==2/12)( (B) 2/12)(v v v <=p (C)2/12)(v v v <<p (D)2/12)(v v v >>p[ C ]20、已知一定量的某种理想气体,在温度为T 1与T 2时的分子最概然速率分别为v p 1和v p 2,分子速率分布函数的最大值分别为f (v p 1)和f (v p 2).若T 1>T 2,则(A) v p 1 > v p 2, f (v p 1)> f (v p 2).(B) v p 1 > v p 2, f (v p 1)< f (v p 2).(C) v p 1 < v p 2, f (v p 1)> f (v p 2).(D) v p 1 < v p 2, f (v p 1)< f (v p 2). [ B ]21、 两种不同的理想气体,若它们的最概然速率相等,则它们的(A) 平均速率相等,方均根速率相等.(B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等.(D) 平均速率不相等,方均根速率不相等. [ A ]22、假定氧气的热力学温度提高一倍,氧分子全部离解为氧原子,则这些氧原子的平均速率是原来氧分子平均速率的(A) 4倍. (B) 2倍.(C) 2倍. (D) 21倍. [ B ]23、 麦克斯韦速率分布曲线如图所示,图中A 、B 两部分面积相等,则该图表示(A) 0v 为最概然速率. (B) 0v 为平均速率. (C) 0v 为方均根速率. (D) 速率大于和小于0v 的分子数各占一半. [ D ]24、速率分布函数f (v )的物理意义为:(A) 具有速率v 的分子占总分子数的百分比.(B) 速率分布在v 附近的单位速率间隔中的分子数占总分子数的百分比.(C) 具有速率v 的分子数.(D) 速率分布在v 附近的单位速率间隔中的分子数. [ B ]25、若N 表示分子总数,T 表示气体温度,m 表示气体分子的质量,那么当分子速率v 确定后,决定麦克斯韦速率分布函数f (v )的数值的因素是(A) m ,T . (B) N .(C) N ,m . (D) N ,T .f (v )0(E) N,m,T.[ A ]26、气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z和λ都增大一倍.(B) Z和λ都减为原来的一半.(C) Z增大一倍而λ减为原来的一半.(D) Z减为原来的一半而λ增大一倍.[C ]27、一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z减小而λ不变.(B) Z减小而λ增大.(C) Z增大而λ减小.(D) Z不变而λ增大.[ B ]28、一定量的理想气体,在温度不变的条件下,当压强降低时,分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z和λ都增大.(B) Z和λ都减小.(C) Z增大而λ减小.(D) Z减小而λ增大.[ D ]29、一定量的理想气体,在体积不变的条件下,当温度降低时,分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z减小,但λ不变.(B) Z不变,但λ减小.(C) Z和λ都减小.(D) Z和λ都不变.[ A ]30、一定量的理想气体,在体积不变的条件下,当温度升高时,分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z 增大,λ不变. (B) Z 不变,λ增大.(C) Z 和λ都增大. (D) Z 和λ都不变. [ A ]31、 在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:(A) v =40v ,Z =40Z ,λ=40λ.(B) v =20v ,Z =20Z ,λ=0λ.(C) v =20v ,Z =20Z ,λ=40λ.(D) v =40v ,Z =20Z ,λ=0λ. [ B ]32、在一封闭容器中盛有1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于(A) 压强p . (B) 体积V .(C) 温度T . (D) 平均碰撞频率Z . [ B ]33、一定量的某种理想气体若体积保持不变,则其平均自由程λ和平均碰撞频率Z 与温度的关系是:(A) 温度升高,λ减少而Z 增大.(B) 温度升高,λ增大而Z 减少.(C) 温度升高,λ和Z 均增大.(D) 温度升高,λ保持不变而Z 增大. [ D ]34、一容器贮有某种理想气体,其分子平均自由程为0λ,若气体的热力学温度降到原来的一半,但体积不变,分子作用球半径不变,则此时平均自由程为 (A)02λ. (B) 0λ. (C)2/0. (D) 0/ 2. [ B ]35、图(a)、(b)、(c)各表示联接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程,图(a)和(b)则为半径不等的两个圆.那么: C(A) 图(a)总净功为负.图(b)总净功为正.图(c)总净功为零.(B) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为正.(C) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为零.(D) 图(a)总净功为正.图(b)总净功为正.图(c)总净功为负.V 图(a) V图(b) V 图(c)36、关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A) (1)、(2)、(3).(B) (1)、(2)、(4).(C)(2)、(4).(D)(1)、(4).[ D ]37、如图所示,当气缸中的活塞迅速向外移动从而使气体膨胀时,气体所经历的过程(A) 是平衡过程,它能用p─V图上的一条曲线表示.(B) 不是平衡过程,但它能用p─V图上的一条曲线表示.(C) 不是平衡过程,它不能用p─V图上的一条曲线表示.(D) 是平衡过程,但它不能用p─V图上的一条曲线表示.[C ]38、在下列各种说法(1) 平衡过程就是无摩擦力作用的过程.(2) 平衡过程一定是可逆过程.(3) 平衡过程是无限多个连续变化的平衡态的连接.(4) 平衡过程在p-V图上可用一连续曲线表示.中,哪些是正确的?(A) (1)、(2).(B) (3)、(4).(C) (2)、(3)、(4).(D) (1)、(2)、(3)、(4).[ B ]39、设有下列过程:(1) 用活塞缓慢地压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2) 用缓慢地旋转的叶片使绝热容器中的水温上升.(3) 一滴墨水在水杯中缓慢弥散开.(4) 一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是可逆过程的为(A) (1)、(2)、(4).(B) (1)、(2)、(3).(C) (1)、(3)、(4).(D) (1)、(4).[ D ]40、在下列说法(1) 可逆过程一定是平衡过程.(2) 平衡过程一定是可逆的.(3) 不可逆过程一定是非平衡过程.(4) 非平衡过程一定是不可逆的.。
《大学物理》(下)考试试卷一、选择题(单选题,每小题分,共分):、两根无限长平行直导线载有大小相等方向相反的电流,以的变化率增长,一矩形线圈位于导线平面内(如图所示),则 。
(),矩形线圈中无感应电流;(),矩形线圈中的感应电流为顺时针方向; (),矩形线圈中的感应电流为逆时针方向; (),矩形线圈中的感应电流的方向不确定;{,如图所示的系统作简谐运动,则其振动周期为 。
(),k m T π2=;(), k m T θπsin 2=; (), k m T θπcos 2=; (), θθπcos sin 2k m T =;,在示波器的水平和垂直输入端分别加上余弦交变电压,屏上出现如图所示的闭合曲线,已知水平方向振动的频率为,则垂直方向的振动频率为 。
();(), ;(), ; ~(), ;,振幅、频率、传播速度都相同的两列相干波在同一直线上沿相反方向传播时叠加可形成驻波,对于一根长为的两端固定的弦线,要形成驻波,下面哪种波长不能在其中形成驻波 。
(),λ;(), λ;(), λ;(), λ;,关于机械波在弹性媒质中传播时波的能量的说法,不对的是 。
(),在波动传播媒质中的任一体积元,其动能、势能、总机械能的变化是同相位的;(), 在波动传播媒质中的任一体积元,它都在不断地接收和释放能量,即不断地传播能量。
所以波的传播过程实际上是能量的传播过程; {(), 在波动传播媒质中的任一体积元,其动能和势能的总和时时刻刻保持不变,即其总的机械能守恒;(), 在波动传播媒质中的任一体积元,任一时刻的动能和势能之和与其振动振幅的平方成正比;,以下关于杨氏双缝干涉实验的说法,错误的有 。
(),当屏幕靠近双缝时,干涉条纹变密;(), 当实验中所用的光波波长增加时,干涉条 纹变密;(),当双缝间距减小时,干涉条纹变疏;(),杨氏双缝干涉实验的中央条纹是明条纹,当在上一个缝处放一玻璃时,如图所示,则整个条纹向所在的方向移动,即向上移动。
大学中医学专业《大学物理(下册)》期末考试试题C卷附解析姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、动量定理的内容是__________,其数学表达式可写__________,动量守恒的条件是__________。
2、一个力F作用在质量为 1.0 kg的质点上,使之沿x轴运动.已知在此力作用下质点的运动学方程为 (SI).在0到4 s的时间间隔内, (1) 力F的冲量大小I =__________________. (2) 力F对质点所作的功W =________________。
3、若静电场的某个区域电势等于恒量,则该区域的电场强度为_______________,若电势随空间坐标作线性变化,则该区域的电场强度分布为 _______________。
4、静电场中有一质子(带电荷) 沿图示路径从a点经c点移动到b点时,电场力作功J.则当质子从b点沿另一路径回到a点过程中,电场力作功A=___________;若设a点电势为零,则b点电势=_________。
5、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。
6、真空中有一半径为R均匀带正电的细圆环,其电荷线密度为λ,则电荷在圆心处产生的电场强度的大小为____。
7、二质点的质量分别为、. 当它们之间的距离由a缩短到b时,万有引力所做的功为____________。
8、如图所示,轴沿水平方向,轴竖直向下,在时刻将质量为的质点由a处静止释放,让它自由下落,则在任意时刻,质点所受的对点的力矩=________ ;在任意时刻,质点对原点的角动量=_____________。
汉A一、单项选择题(本大题共5小题,每题只有一个正确答案,答对一题得3分,共15分)1、强度为的自然光,经两平行放置的偏振片,透射光强变为,若不考虑偏振片的反射和吸收,这两块偏振片偏振化方向的夹角为【】A。
30º;B。
45º;C.60º;D。
90º.2、下列描述中正确的是【】A。
感生电场和静电场一样,属于无旋场;B。
感生电场和静电场的一个共同点,就是对场中的电荷具有作用力;C.感生电场中可类似于静电场一样引入电势;D。
感生电场和静电场一样,是能脱离电荷而单独存在.3、一半径为R的金属圆环,载有电流,则在其所围绕的平面内各点的磁感应强度的关系为【】A。
方向相同,数值相等; B。
方向不同,但数值相等;C.方向相同,但数值不等;D.方向不同,数值也不相等。
4、麦克斯韦为建立统一的电磁场理论而提出的两个基本假设是【】A。
感生电场和涡旋磁场; B。
位移电流和位移电流密度;C。
位移电流和涡旋磁场; D.位移电流和感生电场.5、当波长为λ的单色光垂直照射空气中一薄膜(n〉1)的表面时,从入射光方向观察到反射光被加强,此膜的最薄厚度为【】A。
; B。
;C. ;D。
;二、填空题(本大题共15小空,每空2分,共30 分.)6、设杨氏双缝缝距为1mm,双缝与光源的间距为20cm,双缝与光屏的距离为1m.当波长为0。
6μm的光正入射时,屏上相邻暗条纹的中心间距为.7、一螺线管的自感系数为0。
01亨,通过它的电流为4安,则它储藏的磁场能量为焦耳。
8、一质点的振动方程为(SI制),则它的周期是,频率是,最大速度是。
9、半径为R的圆柱形空间分布均匀磁场,如图,磁感应强度随时间以恒定速率变化,设为已知,则感生电场在r〈R区域为,在r〉R区域为.10、一个电子射入的均匀磁场中,当电子速度为时,则电子所受的磁力=。
11、自然光入射到两种媒质的分界面上,当入射角等于布儒斯特角i B时,反射光线与Id折射光线之间的夹角等于.12、铝的逸出功为4。
大学地球物理学专业《大学物理(下册)》开学考试试卷含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一圆锥摆摆长为I、摆锤质量为m,在水平面上作匀速圆周运动,摆线与铅直线夹角,则:(1) 摆线的张力T=_____________________;(2) 摆锤的速率v=_____________________。
2、长为的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。
如果将细杆置与水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为_____,细杆转动到竖直位置时角加速度为_____。
3、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动的角速度_____。
4、一质量为0.2kg的弹簧振子, 周期为2s,此振动系统的劲度系数k为_______ N/m。
5、在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是______________。
6、气体分子的最可几速率的物理意义是__________________。
7、动方程当t=常数时的物理意义是_____________________。
8、一平面余弦波沿Ox轴正方向传播,波动表达式为,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。
9、质量为M的物体A静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为的小球B以沿水平方向向右的速度与物体A发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L=__________。
大学地球物理学专业《大学物理(下册)》期末考试试卷D卷附解析姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一维保守力的势能曲线如图所示,则总能量为的粒子的运动范围为________;在________时,粒子的动能最大;________时,粒子的动能最小。
2、某一波长的X光经物质散射后,其散射光中包含波长________和波长________的两种成分,其中_________的散射成分称为康普顿散射。
3、质点p在一直线上运动,其坐标x与时间t有如下关系:(A为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.4、质量为M的物体A静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为的小球B以沿水平方向向右的速度与物体A发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L=__________。
5、设在某一过程P中,系统由状态A变为状态B,如果________________________________________,则过程P为可逆过程;如果_________________________________________则过程P为不可逆过程。
6、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为(SI),(SI).其合振运动的振动方程为x=____________。
7、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
8、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。
(填“正比”或“反比”)。
9、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
大学机械专业《大学物理(下册)》期末考试试题D卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一电子以0.99 c的速率运动(电子静止质量为9.11×10-31kg,则电子的总能量是__________J,电子的经典力学的动能与相对论动能之比是_____________。
2、一束光线入射到单轴晶体后,成为两束光线,沿着不同方向折射.这样的现象称为双折射现象.其中一束折射光称为寻常光,它______________定律;另一束光线称为非常光,它___________定律。
3、一维保守力的势能曲线如图所示,则总能量为的粒子的运动范围为________;在________时,粒子的动能最大;________时,粒子的动能最小。
4、质点p在一直线上运动,其坐标x与时间t有如下关系:(A为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.5、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。
6、三个容器中装有同种理想气体,分子数密度相同,方均根速率之比为,则压强之比_____________。
7、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。
(填“正比”或“反比”)。
8、在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是______________。
9、两列简谐波发生干涉的条件是_______________,_______________,_______________。
题号 一 二 三 四 总分 得分一、选择题(每题3分,共24分)1. 关于高斯定理的理解有下面几种说法,其中正确的是: [ ](A)如果高斯面上E处处为零,则该面内必无电荷。
(B)如果高斯面内无电荷,则高斯面上E处处为零。
(C)如果高斯面上E处处不为零,则该面内必有电荷。
(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零(E )高斯定理仅适用于具有高度对称性的电场。
2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:[ ](A)1P 和2P 两点的位置。
(B)1P 和2P 两点处的电场强度的大小和方向。
(C)试验电荷所带电荷的正负。
(D)试验电荷的电荷量。
3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:[ ](A)C B A E E E ,C B A U U U (B)C B A E E E ,C B A U U U (C)C B A E E E ,C B A U U U (D)C B A E E E ,C B A U U U4. 粒子的动能等于它本身的静止能量,这时该粒子的速度为 [ ] (A )c 23 (B )c 43 (C )c 21 (D )c 545. 惠更斯原理涉及了下列哪个概念? [ ](A) 波长 (B) 振幅 (C) 次波假设 (D) 位相6. 把一个静止质量为0m 的粒子,由静止加速到0.6c (c 为真空中的速度) 需做的功等于 [ ](A )0.1820c m (B )0.2520c m (C )0.3620c m (D )1.2520c m 7.光强为I 0的自然光依次通过两个偏振片1P 和2P ,1P 和2P 的偏振化方向的夹角,30.则透射偏振光的强度I 是: [ ](A) 0/4I ; (B) 03/4I ; (C) 03/2I ; (D) 03/8I8. 已知园环式螺线管的自感系数为L ,若将该螺线管锯成两个半环式的螺线管,则两个半环螺线管的自感系数:[ ] (A)都等于L 21。
(B)有一个大于L 21,另一个小于L 21。
(C)都大于L 21。
(D)都小于L 21。
二.证明题:(6分) 一环形螺线管,共N 匝,截面为长方形,其尺寸如图,试证明此螺线管自感系数为:a b h N L ln220湖南工程学院试卷纸 2012至2013学年第一学期 (A )专业班级 姓名 学号 共 3 页第 2 页(装订线内不准答题) ----------------------------------------------------装------------订------------线-------------------------------- 命题教师 审核湖南工程学院试卷纸2012至2013学年第一学期(A )专业班级 姓名 学号 共 3 页第 3 页(装订线内不准答题) ----------------------------------------------------装------------订------------线-------------------------------- 命题教师 审核湖南工程学院试卷参考答案及评分标准(A )专业班级2011级 汽车服务,工业工程,化工,生物工程,材料化学,建环 命题教师:成传品2012至2013学年1学期----------------------------------------------------装------------订------------线--------------------------------湖南工程学院试卷纸 2012至2013学年第一学期(B )专业班级 姓名 学号 共 3 页第 1 页课程名称大 学 物 理 II 考试B卷 考试形式:闭卷适用专业班级2011级 汽车服务,工业工程,化工,生物工程,材料化学,建环题号 一 二 三 四 总分 得分一、选择题(每题3分,共24分)1. 设源电荷与试探电荷分别为Q 、q ,则定义式qF E对Q 、q 的要求为: [ ](A)二者必须是点电荷。
(B)Q 为任意电荷,q 必须为正电荷。
(C)Q 为任意电荷,q 是点电荷,且可正可负。
(D)Q 为任意电荷,q 必须是单位正点电荷。
2. 一均匀带电球面,电荷面密度为 ,球面内电场强度处处为零,球面上面元dS 的一个带电量为dS 的电荷元,在球面内各点产生的电场强度:[ ](A)处处为零。
(B)不一定都为零。
(C)处处不为零。
(D)无法判定。
3. 图示为一具有球对称性分布的静电场的E —r 关系曲线,请指出该静电场是由下列哪种带电体产生的:[ ](A)半径为R 的均匀带电球面。
(B)半径为R 的均匀带电球体。
(C)半径为R 的、电荷体密度为Ar (A 为常数)的非均匀带电球体。
(D)半径为R 的、电荷体密度为r A / (A 为常数)的非均匀带电球体。
4.光强为I 0的自然光依次通过两个偏振片1P 和2P ,1P 和2P 的偏振化方向的夹角,30.则透射偏振光的强度I 是: [ ](A) 0/4I ; (B) 03/4I ; (C) 03/2I ; (D) 03/8I5. 粒子的动能等于它本身的静止能量,这时该粒子的速度为 [ ] (A )c 23 (B )c 43 (C )c 21 (D )c 546. 惠更斯原理涉及了下列哪个概念? [ ](A) 波长 (B) 振幅 (C) 次波假设 (D) 位相7.把一个静止质量为0m 的粒子,由静止加速到0.6c (c 为真空中的速度) 需做的功等于 [ ](A )0.1820c m (B )0.2520c m (C )0.3620c m (D )1.2520c m 8. 已知园环式螺线管的自感系数为L ,若将该螺线管锯成两个半环式的螺线管,则两个半环螺线管的自感系数:[ ] (A)都等于L 21。
(B)有一个大于L 21,另一个小于L 21。
(C)都大于L 21。
(D)都小于L 21。
二.证明题:(6分) 一环形螺线管,共N 匝,截面为长方形,其尺寸如图,试证明此螺线管自感系数为:a b h N L ln220(装订线内不准答题) ----------------------------------------------------装------------订------------线-------------------------------- 命题教师 成传品 审核湖南工程学院试卷纸 2012至2013学年第一学期(B )专业班级 姓名 学号 共 3 页第 2 页三、填空题(每题3分共24分1.一电量为C 9105 的试验电荷放在电场中某点时,受到N 91020 向下的力,则该点的电场强度大小为 ,方向 。
2.狭义相对论认为物体长度的测量是相对的,与惯性系的选择 (填有关或无关)。
3.一“无限大”空气平板电容器,极板A 和B 的面积都是S ,两极板间距离为d ,连接电源后,A 板电势V U A ,B 板电势0 B U 。
现将一带电量为q ,面积也是S 而厚度可忽略不计的导体片C 平行地插在两极板中间位置(如图所示),则导体片C 的电势C U = 。
4.光的干涉和衍射现象反映了光的 (填波动性或粒子性),光的偏振现象说明光波是 波。
5.在安培环路定理i LI l d B 0中,iI 是指 ;B是指 ,它是由 决定的。
6.一根无限长直导线通有电流I ,在P 点处被弯成了一个半径为R 的圆,且P 点处无交叉和接触,则圆心O 处的磁感应强度大小为 ,方向为 。
7.在磁感应强度为B的磁场中,以速率v 垂直切割磁力线运动的一长度为L 的金属杆,相当于 ,它的电动势 = ,产生此电动势的非静电力是 。
8.铜的相对磁导率9999912.0 r ,其磁化率 m ,它是 磁性磁介质。
9.光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是 ,可能出现的最小光强是 。
10.狭义相对论认为,时间和空间的测量值都是_________ __(填相对的或绝对的),它们与观察者的运动密切相关。
四、计算题(每题10分,共40分) 1.(10分)1. 一束自然光强度为I 0通过偏振片P 1后再经过偏振片P 2,已知偏振片之间夹角为45度,问通过偏振片P 2后光的强度是多少?2.(10分)2.一粒子静止质量为m 0,当它以23c 的速度高速运动时其质量变为原来的多少倍?(装订线内不准答题) ----------------------------------------------------装------------订------------线-------------------------------- 命题教师 审核湖南工程学院试卷纸2012至2013学年第一学期(B ) 专业班级 姓名 学号 共 3 页第 3页3.(10分)电流均匀地流过宽为a 2的无穷长平面导体薄板,电流强度为I ,通过板的中线并与板面垂直的平面上有一点P ,P 到板的垂直距离为x (见附图),设板厚可略去不计,求P 点的磁感应强度B 。
4.(10分)两根平行导线,横截面的半径都是a ,中心相距为d ,载有大小相等而方向相反的电流。
设a d ,且两导线内部的磁通量都可略去不计。
求这样一对导线长为l 段的自感系数L 。
(装订线内不准答题) ----------------------------------------------------装------------订------------线-------------------------------- 命题教师 审核湖南工程学院试卷参考答案及评分标准(B )专业班级2011级 汽车服务,工业工程,化工,生物工程,材料化学,建环 命题教师:集体2012至2013学年1学期课程名称大 学 物 理 II一、选择题(每题3分)题次 12 3 4 5 6 7 8 C C B D A B B D 二证明题(略) 三、填空题1. C N /4 (2分); 向上(1分)2.有关3. )]2/([210S qd V 4.横波 5. 环路所包围的所有稳恒电流的代数和; (2分) 环路上的磁感应强度; (2分) 环路内外全部电流所产生的磁场叠加。
(1分)6.1120R I (2分); 垂直纸面向里 (1分) 7. 一个电源 (2分) vBL (2分) 洛仑兹力(1分) 8. 6108.8 (2分) 抗 (1分) 9 0I 4 0 10 相对的四、计算题1(略) 2. 略)3.(10分)解:见图,将平板分成无穷多条直导线,在A 处取dl 直导线,其在P 点产生的磁感应强度为:dl arIdl r i dB 42001方向见图 (3分)由对称形可知,平板在P 点产生的磁感应强度沿z 轴正方向。