八年级数学:统计测试题
- 格式:doc
- 大小:83.38 KB
- 文档页数:3
八年级数学-条形统计图与扇形统计图练习题(含解析)1.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280人.解析:∵骑车人数所占的百分比为126°360°×100%=35%,∴步行的有700×(1-10%-35%-15%)=280(人).2.小亮一天的时间安排如图所示,请根据图中的信息计算:小亮一天中,上学、做家庭作业和体育锻炼的总时间占全天时间的37.5%.解析:(7+1+1)÷24×100%=37.5%.3.某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对小组全体成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图.次数1086 5人数3 a 2 1(1)表中a=4;(2)请将条形统计图补充完整.解:补全条形统计图,如图.4.某中学开展“阳光体育一小时”活动.根据学校实际情况,决定开设四项运动项目:A:踢毽子;B:篮球;C:跳绳;D:乒乓球.为了解学生最喜欢哪一种运动项目,随机抽取了n 名学生进行问卷调查,每位学生在问卷调查时都按要求只选择了其中一种喜欢的运动项目.收回全部问卷后,将收集到的数据整理并绘制成如下的统计图,若参与调查的学生中喜欢A方式的学生的人数占参与调查学生人数的40%.根据统计图提供的信息,解答下列问题:(1)求n的值;(2)求参与调查的学生中喜欢C的学生的人数;(3)根据统计结果,估计该校1 800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数.解:(1)80÷40%=200(人).(2)200-80-30-50=40(人).(3)40-30200×1 800=90(人).答:该校1 800名学生中喜欢C方式的学生比喜欢B方式的学生多90人.5.某校学生会就同学们对我国改革开放30多年来所取得的辉煌成就的了解程度进行了随机抽样调查,如图①②所示是根据调查结果绘制成的统计图的一部分.根据统计图中的信息,解答下列问题:(1)本次抽样调查的样本容量是50,调查中“了解很少”的学生占50%.(2)补全条形统计图.(3)若全校共有学生1 300人,那么该校约有多少名学生“很了解”我国改革开放30多年来取得的辉煌成就?(4)通过以上数据分析,请你从爱国教育的角度提出自己的观点和建议.解:(2)补全条形统计图如图所示.(3)1 300×10%=130(人).答:该校约有130名学生“很了解”我国改革开放30多年来所取得的辉煌成就.(4)由统计图可知,“不了解”和“了解很少”的占60%,由此可以看出同学们对国情的关注不够.建议:加强国情教育、爱国教育等.(本题答案不唯一,只要观点正确,建议合理即可)。
扇形统计图一.选择题(共10小题)1.如图的两个统计图,女生人数多的学校是()A.甲校 B.乙校C.甲、乙两校女生人数一样多 D.无法确定2.甲校的女生占所有学生的50%,乙校的男生占所有学生的60%,那么()A.甲校的女生人数多 B.乙校的女生人数多C.两个学校的女生一样多 D.不能判断3.如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为()A.33 B.36 C.39 D.424.如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.音乐组B.美术组C.体育组D.科技组5.某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有()A.25人B.35人C.40人D.100人6.某数学兴趣小组根据温州气象部门发布的有关数据,制作了PM2.5来源统计图,根据该统计图,下列判断正确的是()A.表示汽车尾气污染的圆心角约为72°B.表示建筑扬尘的约占6%C.汽车尾气污染约为建筑扬尘的5倍D.煤炭以及其他燃料排放占所有PM2.5污染源的7.某中学九年级1班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是()A.120°B.108°C.90° D.30°8.某班有60名学生,班长把全班学生对周末出游地的意向绘制成了扇形统计图,其中“想去重庆金佛山滑雪的学生数”的扇形圆心角是60°,则下列说法正确的是()A.想去重庆金佛山滑雪的学生有12人B.想去重庆金佛山滑雪的学生肯定最多C.想去重庆金佛山滑雪的学生占全班学生的D.想去重庆金佛山滑雪的学生占全班学生的60%9.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况10.某中学就到校的方式问题对初三年级的所有学生进行了一次调查,并将调查结果制作了)A.60 B.78 C.132 D.9二.填空题(共4小题)11.小明一家三口随旅游团外出旅游,旅途的费用支出情况如图所示,若他们共支出了4800元,则在购物上用去了元.12.如图,扇形A表示地球陆地面积占全球面积的百分比,则此扇形A的圆心角为度.13.为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有人.14.如图是初一(2)班英语成绩统计图根据图中的数据可以算出,优秀人数占总人数的;根据图中的数据画出的扇形统计图中,表示成绩中等的人数的扇形所对的圆心角是度.三.解答题(共6小题)15.某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.(1)训练后篮球定时定点投篮人均进球数为个;(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.16.为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,某市教体局做了一个随机调查,调查内容是:每天锻炼是否超过1h及锻炼未超过1h的原因.他们随机调查了600名学生,用所得的数据制成了扇形统计图和频数分布直方图(图1、图2).根据图示,请回答以下问题:(1)“没时间”的人数是,并补全频数分布直方图;(2)2009年该市中小学生约40万人,按此调查,可以估计2009年全市中小学生每天锻炼超过1h的约有万人;(3)如果计划2011年该市中小学生每天锻炼未超过1h的人数降到7.5万人,求2009年至2011年锻炼未超过1h人数的年平均降低的百分率.17.观察如图所示的扇形统计图,并回答:(1)全世界共有个大洲,的面积最大;(2)这两个洲的面积之和最接近地球总陆地面积的一半;(3)图中各个扇形分别代表了,所有百分比之和是;(4)地球的表面积为5.1亿平方千米,而陆地面积为1.49亿平方千米,仅占整个地球表面积的29.2%.则亚洲的陆地面积约为万平方千米(用科学记数法表示),它占地球的表面积约为.18.我市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有若干名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表(注:5~10的意义为大于等于5分且小于10分,其余类似)和扇形统的值是,的值是;(2)C等级人数的百分比是;(3)在抽取的这个样本中,请说明哪个分数段的学生最多?(4)请你帮助老师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).19.甲、乙、丙三所学校进行了一次八年级数学联合考试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四种情况之一:A~概念错误;B~计算错误;C~解答基本正确,但不完整;D~解答完全正确.已知甲校八年级有400名学生,根据以上信息,解答下列问题:(1)求三校八年级学生总数;(2)求三校解答完全正确的学生总数占三校八年级学生总数的百分比m(精确到0.01%);(3)请你对表中三校的数据进行对比分析,给丙校八年级数学老师们提一个值得关注的问题,并说明理由.20.某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x分)进行了统计,具体统计结果见下表:某地区八年级地理会考模拟测试成绩统计表)填空:①本次抽样调查共测试了名;②若用扇形统计图表示统计结果,则分数段为90<x≤100的人数所对应扇形的圆心角的度数为;(2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?参考答案与试题解析一.选择题(共10小题)1.(2016春•罗平县期末)如图的两个统计图,女生人数多的学校是()A.甲校 B.乙校C.甲、乙两校女生人数一样多 D.无法确定【分析】根据题意,结合扇形图的性质,扇形统计图只能得到每部分所占的比例,具体人数不能直接体现,易得答案.【解答】解:根据题意,因不知道甲乙两校学生的总人数,只知道两校女生占的比例,故无法比较两校女生的人数,故选D.【点评】本题考查对扇形图意义的理解,即表现各部分占总体的百分比大小,直观表示各部分占总体的大小.2.(2016春•宜城市期末)甲校的女生占所有学生的50%,乙校的男生占所有学生的60%,那么()A.甲校的女生人数多 B.乙校的女生人数多C.两个学校的女生一样多 D.不能判断【分析】判断男女生的人数要根据学生总数和所占的百分比的大小.【解答】解:因为两个学校的学生数不同,故不能判断哪个学校的男女生人数的多少.故选:D.【点评】本题考查了扇形统计图的知识,难度较小,是一道基础题.3.(2016春•成都期末)如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为()A.33 B.36 C.39 D.42【分析】先求出选择短跑的学生所占的百分比,再乘以总人数即可.【解答】解:根据题意得:300×(1﹣33%﹣26%﹣28%)=39(名).答:选择短跑的学生有39名.故选C.【点评】此题考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小,关键是求出选择短跑的学生所占的百分比.4.(2015•扬州)如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.音乐组B.美术组C.体育组D.科技组【分析】根据扇形统计图中扇形面积越大,所占的比例越重,相应的人数越多,可得答案.【解答】解:由40%>25%>23%>12%,体育组的人数最多,故选:C.【点评】本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.5.(2015•温州)某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有()A.25人B.35人C.40人D.100人【分析】根据参加足球的人数除以参加足球所长的百分比,可得参加兴趣小组的总人数,参加兴趣小组的总人数乘以参加乒乓球所占的百分比,可得答案.【解答】解:参加兴趣小组的总人数25÷25%=100(人),参加乒乓球小组的人数100×(1﹣25%﹣35%)=40(人),故选:C.【点评】本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.6.(2015•桐庐县模拟)某数学兴趣小组根据温州气象部门发布的有关数据,制作了PM2.5来源统计图,根据该统计图,下列判断正确的是()A.表示汽车尾气污染的圆心角约为72°B.表示建筑扬尘的约占6%C.汽车尾气污染约为建筑扬尘的5倍D.煤炭以及其他燃料排放占所有PM2.5污染源的【分析】根据扇形图的信息进行计算,然后判断各个选项即可.【解答】解:表示汽车尾气污染的圆心角约为360°×40%=144°,A错误;表示建筑扬尘的约占1﹣40%﹣33%﹣19%=8%,B错误;汽车尾气污染约为建筑扬尘的5倍,C正确;煤炭以及其他燃料排放占所有PM2.5污染源的近,D错误,故选:C.【点评】本题考查的是扇形统计图的知识,正确获取统计图的信息是解题的关键.7.(2015•和平区一模)某中学九年级1班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是()A.120°B.108°C.90° D.30°【分析】首先计算出A部分所占百分比,再利用360°乘以百分比可得答案.【解答】解:A所占百分比:100%﹣15%﹣20%﹣35%=30%,圆心角:360°×30%=108°,故选B.【点评】此题主要考查了扇形统计图,关键是掌握圆心角度数=360°×所占百分比.8.(2015秋•重庆校级期末)某班有60名学生,班长把全班学生对周末出游地的意向绘制成了扇形统计图,其中“想去重庆金佛山滑雪的学生数”的扇形圆心角是60°,则下列说法正确的是()A.想去重庆金佛山滑雪的学生有12人B.想去重庆金佛山滑雪的学生肯定最多C.想去重庆金佛山滑雪的学生占全班学生的D.想去重庆金佛山滑雪的学生占全班学生的60%【分析】根据扇形统计图的相关知识,“想去重庆金佛山滑雪的学生数”的扇形圆心角为60°,而一个圆的圆心角是360°,因而,“想去重庆金佛山滑雪的学生数”就是总人数的,据此即可求解.【解答】解:A、想去重庆金佛山滑雪的学生有60×=10人,故选项错误;B、没有其它去处的数据,不能确定为最多,故选项错误;C、想去重庆金佛山滑雪的学生占全班学生的,故选项正确;D、想去重庆金佛山滑雪的学生占全班学生的,故选项错误.故选:C.【点评】本题考查的是条形统计图的综合运用,读懂题意,从题意中得到必要的信息是解决问题的关键.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.9.(2014•舟山)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况【分析】利用扇形统计图的特点结合各选项利用排除法确定答案即可.【解答】解:A、从图中能够看出各项消费占总消费额的百分比,故A正确;B、从图中不能确定各项的消费金额,故B错误;C、从图中不能看出消费的总金额,故C错误;D、从图中不能看出增减情况,故D错误.故选:A.【点评】本题考查了扇形统计图的知识,扇形统计图能清楚的反应各部分所占的百分比,难度较小.10.(2014•汉阳区二模)某中学就到校的方式问题对初三年级的所有学生进行了一次调查,并将调查结果制作了表格和扇形统计图,请你根据表格信息回答:则初三学生乘公交车的人A.60 B.78 C.132 D.9【分析】先求出调查的学生总数,再用总数乘乘公交车人数的百分比即可得出答案.【解答】解:调查的学生总数是:60÷20%=300(人),则乘公交车的人数为:300×(1﹣20%﹣33%﹣3%)=300×44%=132(人).故选:C.【点评】本题主要考查了扇形统计图及统计表,读懂统计图,从统计图及统计表中得到必要的信息是解决问题的关键.二.填空题(共4小题)11.(2016春•厦门期末)小明一家三口随旅游团外出旅游,旅途的费用支出情况如图所示,若他们共支出了4800元,则在购物上用去了1200 元.【分析】根据统计扇形图我们可知小明一家在购物上用去了总支出的25%,因此让总支出乘以25%就可得到他们在购物上的支出.【解答】解:∵小明一家支出分为三种即路费、食宿和购物,而前两项占了75%,∴购物占总支出的1﹣75%=25%,∴总购物支出为:4800×25%=1200元.故答案为:1200.【点评】本题考查了扇形统计图的应用.12.(2016春•黔南州期末)如图,扇形A表示地球陆地面积占全球面积的百分比,则此扇形A的圆心角为144 度.【分析】利用部分占总体的百分比×360°,即可求出对应的圆心角的度数.【解答】解:根据扇形统计图的定义,各部分占总体的百分比之和为1,各部分圆心角之和为360°,由图可知,其扇形圆心角的度数为40%×360°=144°.故答案为:144.【点评】本题主要考查扇形统计图的定义及扇形圆心角的计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.13.(2015•咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有360 人.【分析】根据扇形图求出喜爱科普常识的学生所占的百分比,1200乘百分比得到答案.【解答】解:喜爱科普常识的学生所占的百分比为:1﹣40%﹣20%﹣10%=30%,1200×30%=360,故答案为:360.【点评】本题考查的是扇形统计图的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.14.(2015春•句容市校级期中)如图是初一(2)班英语成绩统计图根据图中的数据可以算出,优秀人数占总人数的24% ;根据图中的数据画出的扇形统计图中,表示成绩中等的人数的扇形所对的圆心角是144度.【分析】总人数为50人,优秀人数为12人,则可求出优秀人数占总人数的百分比;圆心角度数=360°×该部分所占总体的百分比.【解答】解:优秀人数占总人数的百分比为:12÷50=24%;中等的人数的扇形所对的圆心角度数为:360°×(20÷50)=144°.【点评】此题综合考查条形统计图的运用.条形统计图可以清楚地表明各种数量的多少.三.解答题(共6小题)15.(2015•酒泉)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.(1)训练后篮球定时定点投篮人均进球数为 5 个;(2)选择长跑训练的人数占全班人数的百分比是10% ,该班共有同学40 人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.【分析】(1)根据平均数的概念计算平均进球数;(2)根据所有人数的比例和为1计算选择长跑训练的人数占全班人数的百分比;由总人数=某种运动的人数÷所占比例计算总人数;(3)通过比较训练前后的成绩,利用增长率的意义即可列方程求解.【解答】解:(1)参加篮球训练的人数是:2+1+4+7+8+2=24(人).训练后篮球定时定点投篮人均进球数==5(个).故答案是:5;(2)由扇形图可以看出:选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%,则全班同学的人数为24÷60%=40(人),故答案是:10%,40;(3)设参加训练之前的人均进球数为x个,则x(1+25%)=5,解得 x=4.即参加训练之前的人均进球数是4个.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.16.(2015•湖州模拟)为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,某市教体局做了一个随机调查,调查内容是:每天锻炼是否超过1h及锻炼未超过1h的原因.他们随机调查了600名学生,用所得的数据制成了扇形统计图和频数分布直方图(图1、图2).根据图示,请回答以下问题:(1)“没时间”的人数是300 ,并补全频数分布直方图;(2)2009年该市中小学生约40万人,按此调查,可以估计2009年全市中小学生每天锻炼超过1h的约有10 万人;(3)如果计划2011年该市中小学生每天锻炼未超过1h的人数降到7.5万人,求2009年至2011年锻炼未超过1h人数的年平均降低的百分率.【分析】(1)由于随机调查了600名学生,首先根据扇形统计图可知锻炼未超过1h的中小学生占=75%,从而得出锻炼未超过1h的中小学生人数;又根据题意,将锻炼未超过1h的原因所得的数据制成了频数分布直方图,由频数分布直方图得到不喜欢的人数和其他的人数分别是130和20,由此即可求出“没时间”的人数,然后就可以补全频数分布直方图;(2)计算出锻炼超过1h的人数所占比例,再用40×锻炼超过1h的人数所占比例即可;(3)设2009年至2011年锻炼未超过1h人数的年平均降低的百分率为x,由于计划2011年我区中小学生每天锻炼未超过1h的人数降到7.5万人,由此可以列出方程30(1﹣x)2=7.5,解方程即可求出2008年至2010年锻炼未超过1h人数的年平均降低的百分率.【解答】解:(1)600×75%=450(人),450﹣130﹣20=300(人);(2)40×=10(万人)∴2008年全市初中毕业生每天锻炼超过1小时有10万人.(3)设年平均降低率为x,30(1﹣x)2=7.5,解得:x1=1.5(不合题意舍去),x2=0.5,答:锻炼未超过1h人数的年平均降低率为50%.【点评】此题主要考查了扇形图与频数分布直方图的应用以及一元二次方程的应用,根据已知正确利用增长率得出等式方程是解题关键.17.(2015春•赣榆县校级月考)观察如图所示的扇形统计图,并回答:(1)全世界共有七个大洲,亚洲的面积最大;(2)亚洲和非洲这两个洲的面积之和最接近地球总陆地面积的一半;(3)图中各个扇形分别代表了每个大洲所占的百分比,所有百分比之和是 1 ;(4)地球的表面积为5.1亿平方千米,而陆地面积为1.49亿平方千米,仅占整个地球表面积的29.2%.则亚洲的陆地面积约为 4.3657×103万平方千米(用科学记数法表示),它占地球的表面积约为8.56% .【分析】(1)根据扇形统计图可得,扇形统计图中有七部分,据此即可判断;(2)根据扇形统计图即可直接求解;(3)根据实现男性统计图即可直接求解;(4)利用总面积乘以对应的百分比即可求解.【解答】解:(1)全世界共有七个大洲,亚洲的面积最大;(2)亚洲、非洲这两个洲的面积之和最接近地球总陆地面积的一半;(3)图中各个扇形分别代表了每个大洲所占的百分比,所有百分比之和是1;(4)地球的表面积为5.1亿平方千米,而陆地面积为1.49亿平方千米,仅占整个地球表面积的29.2%.则亚洲的陆地面积约为4.3657×103万平方千米(用科学记数法表示),它占地球的表面积约为8.56%.【点评】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.(2014春•路北区期末)我市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有若干名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表(注:5~10的意义为大于等于5分且小于10分,的值是14 ,的值是30 ;(2)C等级人数的百分比是10% ;(3)在抽取的这个样本中,请说明哪个分数段的学生最多?(4)请你帮助老师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).【分析】(1)首先根据B等级的人数除以其所占的百分比即可求得总人数,然后乘以28%即可求得m的值,总人数减去其他三个小组的频数即可求得n的值;(2)用n值除以总人数即可求得其所占的百分比;(3)从统计表的数据就可以直接求出结论;(4)先计算10分以上的人数,再除以50乘以100%就可以求出结论.【解答】解:(1)观察统计图和统计表知B等级的有30人,占60%,∴总人数为:30÷60%=50人,∴m=50×28%=14人,n=50﹣14﹣30﹣1=5;(2)C等级所占的百分比为:×100%=10%;(3)B等级的人数最多;(4)及格率为:×100%=88%.【点评】本题考查了频数分布表的运用,扇形统计图的运用,在解答时看懂统计表与统计图得关系式关键.19.(2013•下关区一模)甲、乙、丙三所学校进行了一次八年级数学联合考试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四种情况之一:A~概念错误;B~计算错误;C~解答基本正确,但不完整;D~解答完全正确.各校出现这四类种情况的人数分别占本校八年级学生数的百分比如下表.已知甲校八年级有400名学生,根据以上信息,解答下列问题:(1)求三校八年级学生总数;(2)求三校解答完全正确的学生总数占三校八年级学生总数的百分比m(精确到0.01%);(3)请你对表中三校的数据进行对比分析,给丙校八年级数学老师们提一个值得关注的问题,并说明理由.【分析】(1)根据甲校得人数及在扇形中所占的比例即可得出八年级学生总数.(2)根据(1)的结果可求出解答完全正确的学生数,进而可得出解答完全正确的学生数占八年级学生总数的百分比m.(3)根据概念错误所占的比例可提一些这方面的建议.【解答】解:(1)三校八年级学生总数=400÷=1200人;(2)乙校人数=1200×=500人,丙校人数=1200×=300人,∴D总人数=400×36.25%+500×57.6%+300×38%=547,∴解答完全正确的学生数占学生总数的百分比m=≈45.58%.(3)丙校的学生犯计算性的错误所占的比例很大,丙校的老师应加强计算的运用及掌握.【点评】本题考查了扇形统计图及统计表的知识,难度一般,注意掌握在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.(2012春•启东市校级期末)某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x分)进行了统计,具体统计结果见下表:(1)填空:①本次抽样调查共测试了4000 名;②若用扇形统计图表示统计结果,则分数段为90<x≤100的人数所对应扇形的圆心角的度数为108°;。
概率与统计的运算练习初二数学下册综合算式专项练习题一、选择题1. 下面哪项不是描述数据集中数据分布形式的统计量?A. 方差B. 中位数C. 标准差D. 众数2. 一组数据的方差为24,标准差为4,则这组数据的样本数是多少?A. 2B. 4C. 8D. 123. 一个班级有30名学生,某次数学测验的成绩分布如下表所示。
根据数据,回答问题。
分数段学生人数60-70 570-80 880-90 1090-100 7某次数学测验的平均分是多少?A. 77B. 82C. 87D. 924. 对于一组数据,下列哪项描述是正确的?A. 方差越小,数据分散越大B. 方差越大,数据分散越小C. 方差越小,数据分散越小D. 方差越大,数据分散越大二、填空题1. 一个有12个元素的数据集,第5位和第10位的数分别是7和11,那么该数据集的中位数是 \underline{~~~~~~~~~} 。
2. 某次数学测验共有24名学生参加,所有学生的平均分是72分,其中一名学生由于特殊情况未能参加考试。
为了维持平均分为72分,这名学生的分数为 \underline{~~~~~~~~~} 分。
3. 下面是某班学生的数学成绩:85, 93, 78, 92, 87, 80, 79, 86, 88。
这组数据的标准差是 \underline{~~~~~~~~~} 。
三、计算题1. 根据下列数据集,计算平均数、中位数、众数、方差和标准差。
数据集:12, 17, 14, 15, 18, 12, 18, 16, 14, 152. 下表是某个图书馆的借书记录,根据这组数据回答问题。
借阅次数读者人数1-5 206-10 3211-15 1516-20 821-25 5(1) 这个图书馆的读者人数是多少?(2) 借阅次数最多的区间是哪个区间?(3) 借阅次数超过10次的读者人数有多少人?四、解答题1. 有两个骰子,一个是正常六面骰,另一个是标有数字2、3、4、5、6、8的六面骰。
第六章数据的分析测试卷一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.极差是5 C.众数是5 D.中位数是92.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和403.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.64.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8 B.C.2 D.57.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2,B.2,1 C.4,D.4,38.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩9.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5二、填空题10.一组数据2、﹣2、4、1、0的中位数是.11.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为.12.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是cm,中位数是cm.13.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为.14.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是.三、解答题15.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人中位数方差平均字数数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班16.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.17.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.18.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组乙组19.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?20.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.答案1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.极差是5 C.众数是5 D.中位数是9【考点】极差;算术平均数;中位数;众数.【专题】选择题.【分析】根据极差、平均数、众数、中位数的概念求解.【解答】解:这组数据的平均数为:=9,极差为:14﹣5=9,众数为:5,中位数为:9.故选B.【点评】本题考查了极差、平均数、众数、中位数的知识,掌握各知识点的概念是解答本题的关键.2.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40【考点】众数;中位数.【专题】选择题.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.6【考点】算术平均数;众数.【专题】选择题.【分析】要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.【解答】解:数据3,a,4,5的众数为4,即4次数最多;即a=4.则其平均数为(3+4+4+5)÷4=4.故选B.【点评】本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.4.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【专题】选择题.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选B.【点评】本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数【考点】平均数、中位数和众数的比较.【专题】选择题.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选D.【点评】本题考查了众数及中位数的定义,属于统计基础知识,难度较小.6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8 B.C.2 D.5【考点】方差;众数.【专题】选择题.【分析】根据众数的概念,确定x的值,再求该组数据的方差.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2=[(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]==2.8.故选A.【点评】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.7.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2,B.2,1 C.4,D.4,3【考点】方差;算术平均数.【专题】选择题.【分析】本题可将平均数和方差公式中的x换成3x﹣2,再化简进行计算.【解答】解:∵x1,x2,…,x5的平均数是2,则x1+x2+…+x5=2×5=10.∴数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是:′=[(3x1﹣2)+(3x2﹣2)+(3x3﹣2)+(3x4﹣2)+(3x5﹣2)]=[3×(x1+x2+ (x5)﹣10]=4,S′2=×[(3x1﹣2﹣4)2+(3x2﹣2﹣4)2+…+(3x5﹣2﹣4)2],=×[(3x1﹣6)2+…+(3x5﹣6)2]=9×[(x1﹣2)2+(x2﹣2)2+…+(x5﹣2)2]=3.故选D.【点评】本题考查的是方差和平均数的性质.设平均数为E(x),方差为D(x).则E(cx+d)=cE(x)+d;D(cx+d)=c2D(x).8.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【考点】算术平均数.【专题】选择题.【分析】平均数是指一组数据之和再除以总个数;而中位数是数据从小到大的顺序排列,所以只要找出最中间的一个数(或最中间的两个数)即为中位数;众数是出现次数最多的数;所以,这三个量之间没有必然的联系.【解答】解:A、全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间,正确;B、可能会出现各班的人数不等,所以,6个的班总平均成绩就不能简单的6个的班的平均成绩相加再除以6,故错误;C、中位数和平均数是不同的概念,故错误;D、六个平均成绩的众数也可能是全年级学生的平均成绩,故错误;故选A.【点评】本题主要考查了平均数与众数,中位数的关系.平均数:=(x1+x2+…x n).众数:一组数据中出现次数最多的那个数据叫做这组数据的众数.中位数:n个数据按大小顺序排列,处于最中间位置的数(或最中间两个数据的平均数)叫做这组数据的中位数.9.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5【考点】极差;加权平均数;中位数;众数.【专题】选择题.【分析】根据中位数、平均数、极差、众数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12,则中位数为:8,平均数为:=9,众数为:7,极差为:12﹣7=5.故选A.【点评】本题考查了中位数、平均数、极差、众数的知识,掌握各知识点的概念是解答本题的关键.10.一组数据2、﹣2、4、1、0的中位数是.【考点】中位数.【专题】填空题.【分析】按大小顺序排列这组数据,中间两个数的平均数是中位数.【解答】解:从小到大排列此数据为:﹣2、0、1、2、4,处在中间位置的是1,则1为中位数.所以本题这组数据的中位数是1.故答案为1.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.11.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为.【考点】算术平均数.【专题】填空题.【分析】根据平均数的计算公式进行计算即可.【解答】解:根据题意得:(11+13+15+19+x)÷5=16.2,解得:x=23,则x的值为23;故答案为:23.【点评】此题考查了算术平均数,熟记平均数的计算公式是本题的关键,是一道基础题.12.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的众数是cm,中位数是cm.【考点】众数;中位数.【专题】填空题.【分析】根据中位数的定义与众数的定义,结合图表信息解答.【解答】解:同一尺寸最多的是39cm,共有4件,所以,众数是39cm,11件衬衫按照尺寸从小到大排列,第6件的尺寸是40cm,所以中位数是40cm.故答案为:39,40.【点评】本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个.13.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为.【考点】中位数;算术平均数.【专题】填空题.【分析】根据平均数和中位数的定义,结合正整数的概念求出这三个数.【解答】解:因为这三个不相等的正整数的中位数是3,设这三个正整数为a,3,b(a<3<b);其平均数是3,有(a+b+3)=3,即a+b=6.且a b为正整数,故a可取1,2,分别求得b的值为5,4.故这三个数分别为1,3,5或2,3,4.故填1,3,5或2,3,4.【点评】本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.平均数的求法.14.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是.【考点】方差;算术平均数.【专题】填空题.【分析】先由平均数公式求得x的值,再由方差公式求解即可.【解答】解:∵1,3,x,2,5,它的平均数是3,∴(1+3+x+2+5)÷5=3,∴x=4,∴S2=[(1﹣3)2+(3﹣3)2+(4﹣3)2+(2﹣3)2+(5﹣3)2]=2;∴这个样本的方差是2.故答案为:2.【点评】本题考查了平均数和方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是 (把你认为正确结论的序号都填上). 【考点】方差;算术平均数;中位数. 【专题】填空题.【分析】平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.【解答】解:①由表中可知,平均字数都是135,正确;②甲班的中位数是149,过半的人数低于150,乙班的中位数是151,过半的人数大于等于151,说明乙的优秀人数多于甲班的,正确;③甲班的方差大于乙班的,又说明甲班的波动情况大,所以也正确. 故填①②③.【点评】本题考查了平均数、中位数和方差的意义.对统计中的概念理解是学好统计的关键,这道题把统计初步知识的考查与现代社会生活联系起来,避免了对该部分知识的抽象考查和脱离实际的弊病.16.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示: 请决出两人的名次.【考点】加权平均数.【专题】解答题.【分析】按照权重为演讲内容:演讲能力:演讲效果=5:4:1的比例计算两人的测试成绩,再进行比较即可求解.【解答】解:选手A的最后得分是:(85×5+95×4+95×1)÷(5+4+1)=900÷10=90,选手B最后得分是:(95×5+85×4+95×1)÷(5+4+1)=910÷10=91.由上可知选手B获得第一名,选手A获得第二名.【点评】本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.17.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.【考点】折线统计图;算术平均数;中位数;极差.【专题】解答题.【分析】(1)把这五年的全年空气质量优良天数按照从小到大排列,根据中位数的定义解答;根据极差的定义,用最大的数减去最小的数即可;(2)分别求出相邻两年下一年比前一年多的优良天数,然后即可得解;(3)根据平均数的求解方法列式计算即可得解.【解答】解:(1)这五年的全年空气质量优良天数按照从小到大排列如下:333、334、345、347、357,所以中位数是345;极差是:357﹣333=24;(2)2007年与2006年相比,333﹣334=﹣1,2008年与2007年相比,345﹣333=12,2009年与2008年相比,347﹣345=2,2010年与2009年相比,357﹣347=10,所以增加最多的是2008年;(3)这五年的全年空气质量优良天数的平均数===343.2天.【点评】本题考查了折线统计图,要理解极差的概念,中位数的定义,以及算术平均数的求解方法,能够根据计算的数据进行综合分析,熟练掌握对统计图的分析和平均数的计算是解题的关键.18.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组乙组【考点】折线统计图;算术平均数;中位数;方差.【专题】解答题.【分析】(1)根据平均数、中位数、方差的定义,可得答案;(2)根据描点、连线,可得折线统计图;(3)根据折线统计图中的信息,统计表中的信息,可得答案.【解答】解:(1)填表如下:平均数中位数方差甲组14 14 1.7乙组14 15 11.7(2)如图:(3)从折线图可看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.【点评】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.19.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?【考点】条形统计图;扇形统计图;加权平均数;众数.【专题】解答题.【分析】(1)用捐款15元的人数14除以所占的百分比28%,计算即可得解;(2)用该班总人数减去其它四种捐款额的人数,计算即可求出捐款10元的人数,然后补全条形统计图,根据众数的定义,人数最多即为捐款总额的众数;(3)根据加权平均数的求解方法列式计算即可得解.【解答】解:(1)=50(人).该班总人数为50人;(2)捐款10元的人数:50﹣9﹣14﹣7﹣4=50﹣34=16,图形补充如右图所示,众数是10;(3)(5×9+10×16+15×14+20×7+25×4)=×655=13.1元,因此,该班平均每人捐款13.1元.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.【考点】方差;算术平均数.【专题】解答题.【分析】(1)根据图表得出甲、乙每次数据和平均数的计算公式列式计算即可;(2)根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],即可求出甲乙的方差;(3)根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,找出方差较小的即可.【解答】解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=.乙的方差=[(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【点评】此题主要考查了平均数的求法以及方差的求法,正确的记忆方差公式是解决问题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2+…+(xn﹣)。
初中数学统计与概率测试题(含答案)初中数学统计与概率测试题(含答案)题目1. 某班级中共有32名学生,其中有20名男生和12名女生。
请回答以下问题:a) 男生的比例是多少?b) 女生的比例是多少?答案:a) 男生的比例 = (男生人数 / 总人数) × 100% = (20 / 32) × 100% =62.5%b) 女生的比例 = (女生人数 / 总人数) × 100% = (12 / 32) × 100% =37.5%题目2. 某小组有8名成员,其中有3名男生和5名女生。
请回答以下问题:a) 随机选择一个成员,男生的概率是多少?b) 随机选择一个成员,女生的概率是多少?答案:a) 男生的概率 = 男生人数 / 总人数 = 3 / 8 = 0.375b) 女生的概率 = 女生人数 / 总人数 = 5 / 8 = 0.625题目3. 根据某城市的气象数据,统计了过去一周的天气情况,得到如下表格:| 天气 | 晴天 | 雨天 | 多云 || ------- | ---- | ---- | ---- || 出现次数 | 3次 | 2次 | 2次 |请回答以下问题:a) 晴天的概率是多少?b) 下雨的概率是多少?c) 多云的概率是多少?答案:a) 晴天的概率 = 晴天出现次数 / 总天数= 3 / 7 ≈ 0.429b) 下雨的概率 = 雨天出现次数 / 总天数= 2 / 7 ≈ 0.286c) 多云的概率 = 多云出现次数 / 总天数= 2 / 7 ≈ 0.286题目4. 某班级有35名学生,其中10名学生喜欢阅读科幻小说,15名学生喜欢阅读推理小说,其中有5名学生两者都喜欢,问:a) 喜欢阅读科幻小说或者推理小说的学生有多少人?b) 不喜欢阅读科幻小说和推理小说的学生有多少人?答案:a) 喜欢阅读科幻小说或者推理小说的学生 = 喜欢阅读科幻小说的学生 + 喜欢阅读推理小说的学生 - 两者都喜欢的学生 = 10 + 15 - 5 = 20人b) 不喜欢阅读科幻小说和推理小说的学生 = 总人数 - 喜欢阅读科幻小说或者推理小说的学生 = 35 - 20 = 15人题目5. 某次抽奖活动中,共有100人参与抽奖,其中只有5名幸运儿中奖。
统计与概率综合测试(时间:100分钟 总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.如图,是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,指针落在()区域的可能性最大 A .1 B .2 C .3 D .42.下列事件为确定事件的有( )①在一标准大气压下,20℃的纯水结冰;②平时的百分制测验,•小明的成绩为105分;③抛一枚硬币落地后正面朝上;④边长为a 、b 的长方形面积为ab . A .1个 B .2个 C .3个 D .4个3.关于全班50名同学的生日,下列说法正确的是( )A .一定有两名同学生日相同;B .每一个月都至少有四名同学过生日C .至少有四名同学的生日相同;D .每名同学的生日均不相同 4.华北某市近几年连年干旱,市政府采取各种措施扩大水源,措施之一是投资增建水厂,如图,是该市目前水资源结构扇形统计图,•请根据图中圆心角的大小计算黄河水在总供水中所占的百分比约为( )A .64%B .60%C .54%D .74%5.2000年某区有15 000名学生参加高考,为了考查他们的数学考试情况,评卷人抽取了800名学生的数学成绩进行统计,那么下列四个判断正确的是( )A .每名学生的数学成绩是个体;B .15 000名学生是总体;C .800名学生是总体的一个样本;D .上述调查是普查 6.下列说法不正确的是( )A .频数与总数的比值叫做频率;B .频率与频数成正比;C .在频数分布直方图中,小长方形的面积是该组的频率;D .用样本来估计总体时,样本越大对总体的估计就越精确。
7.如果一组数据x 1,x 2,x 3,x 4,x 5的平均数是x ,则另一组数据x 1,x 2+1,x 3+2,x 4+3,x 5+4的平均数为( ) A .x B .x +2 C .x +52D .x +1 8.一组数据9.9,10.3,10,10.1,9.7的方差为( ) A .0 B .0.04 C .0.2 D .0.4 9.甲、乙两名同学在几次测验中,平均分都是86分,甲的方差是0.61,•乙的方差是0.72,则可知( )A .甲的成绩好B .乙的成绩好;C .甲的成绩稳定D .乙的成绩稳定 10.当五个数从小到大排列后,其中位数是4,如果这组数据唯一的众数是6,那么这5个数可能的最大和是( )A .21B .22C .23D .24二、填空题(本大题共8小题,每小题3分,共24分) 11.在一副扑克牌中任取一张,则P (抽到梅花)=______.12.甲、乙、丙三种糖果售价分别为每千克6元、7元、8元,若将甲种8千克,•乙种10千克,丙种2千克混合在一起,则售价应定为________元.13.对某班60名同学的一次数学测验成绩进行统计,如果频率分布直方图80.5~90.5分这一组的频率是0.35,那么这个班的学生这次数学测验成绩在80.5~90.5•分之间的人数是_________.14.你想对一批炮弹的质量进行检查,应选用________方法来调查最合理.15.一个班25名男生中,身高1.79米的1人,4人身高1.75米,9人身高1.70米,8•人身高1.65米,2人身高1.60米,1人身高1.56米,则这个班男生身高的众数为______,中位数为________.16.在相同的条件下,对30辆同一型号的汽车进行耗油1升走的路程的试验,根据测得的数据画出频率分布直方图如图,则本次实验中,耗油1•升所行走的路程在13.05~13.35千米范围内的汽车共______辆.17.已知一组数据x 1,x 2,x 3,x 4,x 5的方差是1,那么另一组数据2x 1-1,2x 2-1,2x 3-1,2x 4-1,2x 5-1的方差为________. 18.•随机掷一枚均匀的骰子,•连续掷两次,•则两次骰子的总数和为6•的概率是________. 三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分,解答题应写出文字说明、证明过程或演算步骤)19.你能从图中获取哪些信息?(1)小明家在哪方面的支出最多?占总支出的百分比是多少?(2)小明家在哪两个方面的支出相差不大,所占的百分比分别是多少?(3)若小明一家教育支出为2 800元,则生活费用是多少?20.设计一个均匀的正二十面体形状的骰子,将这个骰子掷出后,“5”朝上的概率为14,“3”朝上的概率是310,“1”朝上的概率为110,“2”朝上的概率是320,“4”朝上的可能性是320,“6”朝上的概率为120,问正二十面体形状的骰子上的数的分布情况.21(1)如果根据平分分来排名,则哪个班得分高一些?(2)如果地面、门窗、桌椅按3:3:4的比例算分,则哪个班得分高一些?22.将分别标有数字1,2,3的3张卡片洗匀后,背面朝上放在桌面上.(1)随机抽一张,求P(奇数).(2)随机抽取一张作为十位上的数字(不放回),再抽一张作为个位上的数字能组成哪些两位数?恰好是32的概率是多少?23.某农民2003年收获了44袋大米,先随意称了5袋大米的质量,每袋大米的质量(单位:千克)如下:35,35,34,39,37.(1)根据样本平均数估计这年该农民粮食的总产量约是多少?(2)若该农民2002年粮食的总产量为1 100千克,•近几年来该农民的粮食产量的增长率大致相同,请你预测一下2004年该农民可以收多少粮食?24.为了解中学生的体能情况,某校抽取了50名中学生进行了一分钟跳绳测试,•将所得数据整理后画出部分频率分布直方图,如图所示,已知图中从左到右前四个小组的频率分别为0.04、0.12、0.4、0.28,根据已知条件填空或画图.(1)第四小组频数为_________,第五小组频率为__________.(2)在这次测验中,跳绳次数的中位数落在第______小组中.(3)补全频率分布直方图.25.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初中三个年级根据初赛情况分别选出了10•名同学参加决赛,•这些选手的决赛成绩(••满分100分)(1(2)请你从以下两个不同的角度对三个年级的决赛成绩进行分析:①以平均数和众数相结合分析哪个年级成绩好些.②以平均数和中位数相合分析哪个年级成绩好些.③如果在每个年级参加决赛的选手中选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.答案:一、选择题1.A 2.C 3.C 4.A 5.A 6.C 7.B 8.B 9.C 10.A 二、填空题11.135412.6.7 13.21 14.抽样调查15.1.70米,1.70米 16.12 17.4 18.5 36三、解答题19.解:(1)小明家在生活方面支出最多,占总支出的百分比是35%.(2)小明家在教育与储蓄方面支出相差不大,所占的百分比分别为28%和30%.(3)280028%×35%=3 500(元).20.解:20×14=5,20×310=6,20×110=6,20×320=3,20×320=3,20×120=1,分布情况为:5个5个点,6个3点,2个1点,3个2点,3个4点,1个6点.21.解:(1)三个班的平均分一样,都为90分.(2)一班:95×0.3+90×0.3+85×0.4=89.5.二班:95×0.3+80×0.3+95×0.4=90.5.三班:90×0.3+90×0.3+90×0.4=90.二班得分高一些.22.解:(1)P(奇数)=23.(2)可以组成12,13,21,23,31,32,P(32)=16.23.解:(1)35353439375++++×44=1 584(千克).(2)1 584×158411001100-+1 584≈2 281(千克).24.解:(1)14,0.16 (2)三.(3)略.25.解:(1)平均数85.5,众数80,78,中位数86.(2)①初二年级;②初一年级;③初三年级实力更强一些,因为初三年级前三名选手的平均分高.。
初中数学《八下》第二十章数据的分析-数据的集中趋势考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7 份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表甲、乙两种西瓜得分统计表(1 )___________ ,___________ ;(2 )从方差的角度看, ___________ 种西瓜的得分较稳定(填“ 甲” 或“ 乙” );(3 )小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.知识点:数据的集中趋势【答案】(1 )a =88 ,b =90 ;(2 )乙;(3 )见解析【分析】(1 )根据中位数、众数的意义求解即可;(2 )根据数据大小波动情况,直观可得答案;(3 )从方差、中位数、众数的比较得出答案.【详解】解:(1 )甲品种西瓜测评得分从小到大排列处在中间位置的一个数是 88 ,所以中位数是 88 ,即a =88 ,将乙品种西瓜的测评得分出现次数最多的是90 分,因此众数是 90 ,即b =90 ,故答案为:a =88 ,b =90 ;(2 )由甲、乙两种西瓜的测评得分的大小波动情况,直观可得S 乙2<S 甲2,故答案为:乙;(3 )小明认为甲种西瓜的品质较好些,是因为甲的得分众数比乙的得分众数高;小军认为乙种西瓜的品质较好些,是因为乙的得分方差小和得分中位数比甲的高.【点睛】本题考查统计表,中位数、众数、平均数,理解中位数、众数、平均数的意义和计算方法是正确解答的前提.2、现有一组数据4 、 5 、 5 、 6 、 5 、 7 ,这组数据的众数是 ___ .知识点:数据的集中趋势【答案】5【分析】根据众数的意义求解即可.【详解】这组数据中出现次数最多的是5 ,共出现 3 次,因此众数是 5 ,故答案为: 5 .【点睛】本题考查的是众数:一组数中出现次数最多的数,熟练掌握众数的意义是解决本题的关键.3、一组数据:5,7,10,5,7,5,6. 这组数据的中位数和众数()A . 7 和 10B . 7 和 5C . 7 和 6D . 6 和 5知识点:数据的集中趋势【答案】D【分析】将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.【详解】将这组数据重新排列为5 、 5 、 5 、 6 、 7 、 7 、 10 ,所以这组数据的众数为5 、中位数为 6 ,故选D .【点睛】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.4、在5 月 31 日世界禁烟日到来之际,某校为了提高禁烟意识,在七、八年级举办了“ 关爱健康,远离香烟” 的知识竞赛,两个年级分别有 500 人为了了解本次竞赛成绩情况,现从中各随机抽取了部分同学的测试成绩x(得分均为整数,满分为100 分)进行调查分析,过程如下:第一步:收集数据七年级:68 88 100 100 79 94 89 85 100 88 81 69 98 7977 94 96 75 92 67八年级:69 97 78 89 98 100 99 100 95 99 99 69 75 1 00 99 78 79 87 85 79第二步:整理、描述数据第三步:分析数据第四步:应用数据(1 )直接写出a的值和八年级抽取了多少个同学的成绩进行分析(2 )在此次测试中,七年级甲学生的成绩为 89 分,八年级乙学生成绩为 90 分,甲、乙两人的成绩在各自年级中哪一个更靠前?请说明理由.(3 )若成绩在 90 分至 99 分之间(含 90 分, 99 分)的学生为二等奖,请估计七、八年级一共获得二等奖的学生总人数.知识点:数据的集中趋势【答案】(1 )a=99 ,八年级抽取了 20 个同学的成绩进行分析;(2 )甲的成绩在自己年级中更靠前;(3 )七、八年级一共获得二等奖的学生总人数为 300 人.【分析】(1 )根据众数的定义分别进行解答即可;(2 )把甲、乙两人的成绩与各自年级的中位数比较即可得到结论;(3 )七、八年级的总人数乘以 90 分至 99 分之间(含 90 分, 99 分)的学生数所占的百分比即可的结论.【详解】(1 )a=99 ,八年级抽取了 20 个同学的成绩进行分析;(2 )∵七年级同学的成绩的中位数是 88 ,八年级同学的成绩的中位数是 92 ,∴甲的成绩在自己年级中更靠前;(3 ) 1000×=300 人,答:七、八年级一共获得二等奖的学生总人数为300 人【点睛】本题主要考查了平均数、众数、中位数在实际问题中的正确应用,熟练掌握定义和计算公式是解题的关键.5、北京市6 月某日 10 个区县的最高气温如下表: ( 单位:℃)则这10 个区县该日最高气温的中位数是() .A . 32B . 31C . 30D . 29知识点:数据的集中趋势【答案】A【详解】∵从小到大排列后,排在中间位置的两个数都是 32 ,∴中位数是 32.故选A.6、某小组个人在一次数学小测试中,有个人的平均成绩为,其余个人的平均成绩为,则这个小组的本次测试的平均成绩为 ________.知识点:数据的集中趋势【答案】89【分析】先求出总成绩,再运用求平均数公式即可求出平均成绩.【详解】∵有 3 个人的平均成绩为 96 ,其余 7 个人的平均成绩为 86 ,∴这个小组的本次测试的总成绩为: 3×96+7×86=890 ,∴这个小组的本次测试的平均成绩为: 890÷10=89 .【点睛】本题主要考查的是平均数的求法,属于基础题型.熟记计算公式是解决本题的关键.7、甲、乙、丙、丁四人10 次随堂测验的成绩如图所示,从图中可以看出这 10 次测验平均成绩较高且较稳定的是()A .甲B .乙C .丙D .丁知识点:数据的集中趋势【答案】C【分析】利用平均数和方差的意义进行判断.【详解】解:由折线统计图得:丙、丁的成绩在92 附近波动,甲、乙的成绩在 91 附近波动,∴丙、丁的平均成绩高于甲、乙,由折线统计图得:丙成绩的波动幅度小于丁成绩的波动幅度,∴这四人中丙的平均成绩好又发挥稳定,故选:C .【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,与平均值的离散程度越差,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了折线统计图.8、某校开展了以“爱我家乡”为主题的艺术活动,从九年级 5 个班收集到的艺术作品数量(单位:件)分别为 48 , 50 , 47 , 44 , 50 ,则这组数据的中位数是()A . 44B . 47C . 48D . 50知识点:数据的集中趋势【答案】C【分析】根据中位数的意义,排序后处在中间位置的数即可.【详解】解:将这五个数据从小到大排列后处在第3 位的数是 48 ,因此中位数是 48 ;故选:C.【点睛】本题考查中位数的意义,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.9、在庆祝中国共产党成立100 周年的“红色记忆”校园歌咏比赛中, 15 个参赛班级按照成绩(成绩各不相同)取前 7 名进入决赛,小红知道了自己班级的比赛成绩,如果要判断自己的班级能否进入决赛,还需要知道这 15 个参赛班级成绩的()A .平均数B .中位数C .众数D .方差知识点:数据的集中趋势【答案】B【分析】由于比赛取前7 名参加决赛,共有 15 名选手参加,根据中位数的意义分析即可.【详解】解:15 个不同的成绩按从小到大排序后,中位数之后的共有 7 个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.10、已知一组数据,,的平均数为5 ,方差为 4 ,那么数据,,的平均数和方差分别为__ .知识点:数据的集中趋势【答案】3 , 4【分析】根据平均数,方差定义进行解答即可.【详解】解:数据,,的平均数为5 ,,,数据,,的平均数是3 ;数据,,的方差为4 ,,,,的方差.故答案为:3 , 4 .【点睛】本题考查了平均数和方差,解题的关键是灵活运用平均数和方差.11、为了纪念建党100 周年,学校组织了“建党 100 周年党史知识竞赛”,张同学根据评分为小李的分数制作了如下表格:如果去掉一个最高分和最低分,那么下列哪个数据不会发生变化()A .众数B .平均数C .中位数D .方差知识点:数据的集中趋势【答案】C【分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】解:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数,故选C .【点睛】本题主要考查了中位数,解决本题的关键是掌握中位数定义.12、已知一组数据,,,,的平均数是4 ,方差是 5 ,将这组数据中的每个数据都减去 2 ,得到一组新数据,则这组新数据的方差是 ______ .知识点:数据的集中趋势【答案】5【分析】根据一组数据的平均数与方差的定义和性质即可求解.【详解】解:由题意得:数据,,,,的平均数是4 ,方差是 5 ,新数据是,,,,,所以新数据的平均数是4-2=2 ,方差是:==5 .故答案为:5 .【点睛】本题考查了平均数和方差,解题的关键是掌握平均数和方差的变换特点.13、如图,小强同学根据乐清市某天上午和下午各四个整点时间的气温绘制成的折线统计图.(1 )根据图中信息分别求出上午和下午四个整点时间的平均气温.(2 )请你根据所学统计学知识,从四个整点时间温度猜测,这天上午和下午的气温哪个更稳定,并说明理由.知识点:数据的集中趋势【答案】(1 ) 24 , 24 ;(2 )上午的气温更加稳定,理由见解析.【分析】(1 )根据平均数的定义进行求解即可;(2 )分别求出上午和下午四个整点时间的方差然后进行比较即可.【详解】解:(1 )∴∴上午的气温更加稳定.【点睛】本题主要考查了平均数与方差,解题的关键在于能够熟练掌握相关知识进行求解.14、车间有22 名工人,某一天他们生产的零件个数统计如下:(1 )求这一天 22 名工人生产零件的平均个数.(2 )为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,请你确定这个“定额”,并说明理由.知识点:数据的集中趋势【答案】(1 ) 13 个;(2 )如果我是管理者,会将 13 个作为“定额”,因为平均数、众数、中位数都是 13 ,选 13 为定额,确保了大多数人能完成定额,有 7 人超产有奖,能起到较好的激励作用.(表达合理即可)【分析】(1 )根据平均数的计算方法进行计算即可;(2 )求出中位数、众数、平均数,从大多数员工能够完成任务为标准“定额”.【详解】解:(1 )(个)∴这一天 22 名工人生产零件的平均个数为 13 个.(2 )如果我是管理者,会将 13 个作为“定额”.因为平均数、众数、中位数都是13 ,选 13 为定额,确保了大多数人能完成定额,有 7 人超产有奖,能起到较好的激励作用.(表达合理即可)【点睛】本题考查平均数、中位数、众数,理解中位数、众数、平均数的意义和计算方法是正确解答的关键.15、开学前,根据学校防疫要求,小芸同学连续14 天进行了体温测量,结果统计如下表:这14 天中,小芸体温的众数是 ____________.知识点:数据的集中趋势【答案】36.6【分析】根据众数的定义就可解决问题.【详解】根据表格数据可知众数是36.6℃,故答案为:36.6 .【点睛】本题主要考查了众数的求解,正确理解众数的意义是解决本题的关键.16、东方红学校举行“学党史,听党话,跟党走”讲故事比赛,七位评委对其中一位选手的评分分别为: 85 , 87 , 89 , 91 , 85 , 92 , 90 .则这组数据的中位数为 ______ .知识点:数据的集中趋势【答案】89【分析】根据中位数的定义即可得.解:将这组数据按从小到大进行排序为,则中位数为89 ,故答案为:89 .【点睛】本题考查了中位数,熟记定义是解题关键.17、“最美鄂州,从我做起”.“五四”青年节当天,马桥村青年志愿小组到胡林社区参加美化社区活动. 6 名志愿者参加劳动的时间(单位:小时)分别为: 3 , 2 , 2 , 3 , 1 , 2 ,这组数据的中位数是 ______ .知识点:数据的集中趋势【答案】2【分析】根据中位数的求解方法求解即可.【详解】解:将所给6 个数据从小到大排列: 1 , 2 , 2 , 2 , 3 , 3 ,则中位数为=2 ,故答案为:2 .【点睛】本题考查中位数,熟练掌握中位数的求解方法是解答的关键.18、在2021 年初中毕业生体育测试中,某校随机抽取了 10 名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是()A .中位数是 10.5B .平均数是 10.3C .众数是 10D .方差是 0.81知识点:数据的集中趋势【答案】A【分析】先将数据按照从小到大排列,再依次按照中位数的定义、平均数计算公式、众数定义、方差计算公式依次进行判断即可.【详解】解:将该组数据从小到大排列依次为:9 , 9 , 10 , 10 , 10 , 10 , 11 , 11 , 11 , 12 ;位于最中间的两个数是10 , 10 ,它们的平均数是 10 ,所以该组数据中位数是10 ,故 A 选项符合题意;该组数据平均数为:,故B 选项不符合题意;该组数据10 出现次数最多,因此众数是 10 ,故 C 选项不符合题意;该组数据方差为:,故D 选项不符合题意;故选:A .【点睛】本题考查了中位数和众数的定义以及方差和平均数的计算公式,解决本题的关键是牢记相关概念与公式等,本题的易错点是容易将表格中的数据混淆,同时计算容易出现错误,因此需要学生有一定的计算能力.19、某学校八年级(2 )班有 20 名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是 ___ .知识点:数据的集中趋势【答案】95.5【分析】利用加权平均数的定义计算即可.【详解】解:由题意可得:=95.5 ,故答案为:95.5 .【点睛】本题考查了加权平均数的求法,解题的关键是结合统计图,掌握运算法则.20、如图所示是某校初中数学兴趣小组年龄结构条形统计图,该小组年龄最小为11 岁,最大为 15 岁,根据统计图所提供的数据,该小组组员年龄的中位数为 ________ 岁.知识点:数据的集中趋势【答案】13【分析】直接根据中位数定义求解即可.【详解】解:根据题意排列得:11 , 11 , 12 , 12 , 12 , 13 , 13 ,13 , 13 , 13 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 15 ,个数为偶数,中间的两个数为:13 , 13 ,∴中位数为 13 ,故答案为:13【点睛】本题主要考查中位数的定义,将一组数据按照从小到大( 或从大到小 ) 的顺序排列,如果这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.。
初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案)某学校准备给教职工发放端午节福利,现随机对学校的一些教职工进行了粽子口味喜好的统计,并将统计结果绘制成如下图所示不完整的统计图,已知鲜肉粽15元/包,蛋黄粽12元/包,小枣粽和豆沙粽均为9元/包,调查中发现,每100人中,有40人喜欢蛋黄粽.(1)求出喜欢小枣粽的人数,并补全条形统计图;(2)假设此学校有教职工1000人,估计全校喜欢蛋黄粽的人数;(3)在(2)的基础上,学校预算1000元钱是否够买此次的福利粽;若不够,还差多少钱?【答案】(1)喜欢小枣粽的人数为120人,补全条形统计图如解图所示;见解析;(2)估计喜欢蛋黄粽的人数为400人;(3)学校预算的10000元不够,还需要2000元.【解析】【分析】(1)根据每100人中,有40人喜欢蛋黄粽,可以求出喜欢蛋黄粽的比例为40%,统计图中喜欢蛋黄粽的有240人,用上面所得比例估计总人数中喜欢蛋黄粽的人数比例,求出总人数,用总人数分别减去喜欢那三种粽子的人数即可解答;(2)用1000×蛋黄粽的人数占总比40%即可解答;(3)根据600人中喜欢每种粽子的人数所占比例,一次估算出1000人中,喜欢每种粽子的人数,从而求出每种粽子的数量,分别乘以各自单价,从而求出各自总价,进而解答.【详解】(1)由题知,抽查的总人数为:24040%600÷=(人)∴喜欢小枣粽的人数为60018060240120---=(人).∴补全条形统计图如解图所示;(2)根据题意,喜欢蛋黄粽的人数占总比为40%,估计喜欢蛋黄粽的人数为100040%400⨯=(人);(3)由(2)知,全校有1000名教职工,则喜欢鲜肉粽的人数有:1801000300600⨯=(人),喜欢蛋黄粽的有:100040%400⨯=(人),喜欢小枣粽的有:1201000200600⨯= (人),喜欢豆沙粽的有:601000100600⨯=(人),∴学校购买各类粽子所需要的费用为:30015400121009200912000⨯+⨯+⨯+⨯=元,∴学校预算的10000元不够,还需要12000100002000-=元.【点睛】本题考查条形统计图,突破此类问题的关键是数据统计图(表)的分析.错因分析:对统计图表中的数量关系理解不清,属于中等题..92.水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚.对市场最为关注的产量和产量的稳定性进行了抽样调査,过程如下,请补充完整.收集数据从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:甲26 32 40 51 44 74 44 63 7374 81 54 6241 33 54 43 34 51 63 64 73 6454 33乙27 35 46 55 48 36 47 68 8248 57 66 7527 36 57 57 66 58 61 71 38 4746 71整理数据按如下分组整理、描述这两组样本数据:(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)分析数据组样本数据的平均数、众数和方差如下表所示:得出结论a.估计甲大棚产量良好的秧苗数为________株;b.可以推断出________大棚的小西红柿秧苗品种更适应市场需求,理由为________________.(至少从两个不同的角度说明推断的合理性)【答案】120,乙;乙大棚里的秧苗众数产量比甲大棚里的多;乙大棚的秧苗产量方差比甲大棚的秧苗产量方差小,秧苗产量更稳定(答案不唯一)【解析】【分析】a.先完善两组样本数据表格,然后用样本数据中甲大棚产量良好的小西红柿株数÷25×300即得答案;b.从众数和方差两个方面进行比较即得答案.【详解】解:整理数据按如下分组整理、描述这两组样本数据:得出结论:a .估计甲大棚产量良好的秧苗数为5530012025+⨯=; b . ∵乙大棚里的秧苗众数产量是57,甲大棚里的秧苗众数产量是54,57>54;乙大棚里的秧苗产量方差是:215.04,甲大棚里的秧苗产量方差是:236.24,215.04<236.24;∴可以推断出乙大棚的小西红柿秧苗品种更适应市场需求;理由是:乙大棚里的秧苗众数产量比甲大棚里的多;乙大棚的秧苗产量方差比甲大棚的秧苗产量方差小,秧苗产量更稳定(答案不唯一).故答案为:a .120;b .乙,乙大棚里的秧苗众数产量比甲大棚里的多;乙大棚的秧苗产量方差比甲大棚的秧苗产量方差小,秧苗产量更稳定(答案不唯一).【点睛】错因分析:1.整理数据时记数错误;2.得出结论时没有掌握平均数、众数和方差的意义,没有掌握用样本估计总体.本题考查了平均数、众数、方差和用样本估计总体等知识,属于常考题型,熟练掌握基本知识是解题关键.93.甲、乙两名射击运动员在某次训练中各射击10发子弹,成绩如表:81且x乙=8,S乙2=1.8,S甲2=1.2,根据上述信息完成下列问题:(1)乙运动员射击训练成绩的众数是________,中位数是________.(2)求甲运动员射击成绩的平均数,并判断甲、乙两人在本次射击成绩的稳定性.【答案】(1)7;7.5;(2)甲在本次射击成绩的较稳定.【解析】试题分析:(1)根据出现次数最多的数为众数求出众数,然后从小到大排列这组数,取中间一个(共有奇数个)或两个的平均数(共有偶数个),即可得到中位数;(2)利用平均数的公式求出平均数,然后根据方差越小数据越稳定,可判断.试题解析:(1)乙运动员的成绩按照从小到大顺序排列为6,7,7,7,7,8,9,9,10,10,则乙运动员射击训练成绩的众数是7,中位数是(7+8)÷2=7.5;故答案为7;7.5;(2)甲运动员成绩的平均数为1×(8+9+7+9+8+6+7+8+10+8)=8.210(发);∵S乙2=1.8>S甲2=1.2,∴甲在本次射击成绩的较稳定.94.联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某实验中学课外活动小组对全校师生开展了“爱好环境,从我做起”为主题的问卷调查,并将调查结果分析整理后完成了下面的两个统计图.其中:A.能将垃圾放到规定的地方,而且还会考虑垃圾的分类;B.能将垃圾放到规定的地方,但不会考虑垃圾的分类;C.偶尔将垃圾放在规定的地方;D.随手乱扔垃圾.根据以上信息回答下列问题:(1)该校课外活动小组共调查了多少人?并补全条形统计图;(2)如果该校共有师生3060人,那么随手乱扔垃圾的约有多少人?【答案】(1)30人;详见解析;(2)随手乱扔垃圾的约有306人.【解析】【分析】(1)由条形统计图知,B种情况的有150人,由扇形统计图可知,B种情况的占总人数的50%,从而求出该校课外活动小组共调查的总人数.由统计图可求得D种情况的人数.(2)由(1)可知,D种情况的人数为300-(150+30+90)=30(人),从而求得D种情况的占总人数的百分比.已知该校共有师生3060人,便可求出随手乱扔垃圾的人数.【详解】解:(1)由统计图可知B种情况的有150人,占总人数的50%,所以调查的总人数为150÷50%=300(人)D种情况的人数为300﹣(150+30+90)=30人;(2)因为该校共有师生3060人.所以随手乱扔垃圾的人约为:3060×30÷300=306(人).答:随手乱扔垃圾的约有306人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.95.某单位组织职工观光旅游,旅行社的收费标准是:如果人数不超过25人,人均旅游费用为100元;如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团,结束后,共支付给旅行社2700元.求该单位这次共有多少人参加旅游?【答案】该单位这次参加旅游的共有30人.【解析】【分析】设该单位这次参加旅游的共有x人.因为100×25=2500<2700,所以x >25,根据题意可列方程得,[100-2(x-25)]x=2700,解方程即可求解。
八年级数学数据与统计练习题及答案1. 单项选择题(每题2分,共20分)1) 下列哪个是连续变量?A. 学生的班级B. 学生的姓名C. 学生的年龄D. 学生的性别答案:C2) 如果一个样本的平均数等于它的中位数,那么这个样本的分布形态是什么?A. 正态分布B. 偏态分布C. 均匀分布D. 无法确定答案:C3) 下列哪个统计量对极端值不敏感?A. 众数B. 中位数C. 平均数D. 标准差答案:A4) 下列哪个图可用来展示分类数据的频数?A. 线图B. 折线图C. 散点图D. 条形图答案:D5) 下列哪个关系是错误的?A. 相关系数为-1表示完全负相关B. 相关系数为0表示不存在相关关系C. 相关系数为1表示完全正相关D. 相关系数为2表示很强相关答案:D6) 某次考试一个班级的成绩服从正态分布,平均分为75分,标准差为8分。
如果某个学生的分数为93分,则他的标准分是多少?A. 1.5B. 2C. 2.5D. 3答案:B7) 下列哪个统计图用于展示数据的相对频率?A. 饼图B. 散点图C. 箱线图D. 直方图答案:D8) 某个样本的方差为16,标准差为4。
如果每个数据点都乘以2,那么新样本的方差和标准差分别为多少?方差答案:64标准差答案:89) 某个班级的学生人数为40人,其中男生占60%。
女生人数为多少?答案:16人10) 某批商品的售价平均为80元,标准差为6元。
如果计算Z分数为1.5的售价,应为多少元?答案:89元2. 简答题(每题5分,共20分)1) 什么是样本调查?答:样本调查是通过从总体中选取一部分个体,并对其进行调查和观察,从而了解总体特征和推断总体属性的方法。
2) 什么是中位数?如何计算?答:中位数是将一组数据从小到大排列,位于中间位置的数值。
计算方法为将数据按大小排序,若数据个数为奇数,则中位数为排序后的中间值;若数据个数为偶数,则中位数为排序后中间两个数的平均值。
3) 请解释相关系数的含义和取值范围。
八年级数学下册综合算式专项练习题数据统计的运算数据统计是数学中非常重要的一部分,它可以帮助我们分析和理解大量的数据。
在八年级数学下册的综合算式专项练习题中,数据统计的运算也是一个关键的考点。
本文将从各个方面介绍数据统计的运算方法和技巧。
一、平均数的计算平均数是常见的数据统计运算之一,它可以帮助我们了解一组数据的集中趋势。
计算平均数的方法很简单,只需将所有数据相加,然后除以数据的个数即可。
例如,有一组数据:1,3,5,7,9,求这组数据的平均数。
解答:首先将数据相加:1+3+5+7+9=25,然后除以数据的个数,即25÷5=5。
所以这组数据的平均数为5。
二、中位数的计算中位数也是常见的数据统计运算之一,它可以帮助我们了解一组数据的中间位置。
计算中位数的方法与平均数不同,首先将数据从小到大排列,然后找出中间的数值即可。
如果数据的个数为奇数,中间的数值即为中位数;如果数据的个数为偶数,中间两个数的平均值即为中位数。
例如,有一组数据:2,4,6,8,10,12,求这组数据的中位数。
解答:首先将数据从小到大排列:2,4,6,8,10,12。
可以发现这组数据的个数为偶数,因此需要找出中间两个数的平均值。
中间两个数为6和8,所以这组数据的中位数为(6+8)÷2=7。
三、众数的计算众数是一组数据中出现次数最多的数值,它可以帮助我们了解数据中的主要趋势。
计算众数的方法很简单,只需找出数据中出现次数最多的数值即可。
例如,有一组数据:3,5,5,5,7,7,求这组数据的众数。
解答:观察这组数据可以发现,数值5和7都出现了多次,但5出现的次数最多。
所以这组数据的众数为5。
四、范围的计算范围是一组数据的最大值和最小值之间的差,它可以帮助我们了解数据的变化幅度。
计算范围的方法很简单,只需将最大值减去最小值即可。
例如,有一组数据:4,8,12,16,20,求这组数据的范围。
解答:首先找出这组数据的最大值和最小值,最大值为20,最小值为4。
八年级数学:统计测试题
班级:________姓名:______学号:_______得分:
一、选择题(每小题3分,共30分)
1、x 2
是非负数,用不等式表示正确的是( )
A. x 2
<0; B. x 2
>0; C. x 2
≤0; D. x 2
≥0; 2、下列从左到右是因式分解的是( )
A. x(a -b)=ax -bx
B. x 2 -1+y 2=(x -1)(x+1)+y 2
C. x 2-1=(x+1)(x -1)
D. ax+bx+c=x(a+b)+c 3、使分式1
x 1-有意义的x 的取值范围为( )
A 、x≠0
B 、x≠1
C 、x≠-1
D 、x≠±1 4、下列式子中分式有( )个
(1)a ,(2)x 2+xy +y 2,(3)
,3
)6(,19)5(,1)4(,2m
a a n m --π A.1个 B. 2个 C.3个 D.4个
5、若把分式y
y
x +中的x 和y 都扩大3倍,那么分式的值( )
A 、扩大3倍
B 、不变
C 、缩小3倍
D 、缩小6倍
6从某市2万多名参加中考的学生抽取500名学生的数学成绩进行统计分析。
以下说法正确的是( )
A .500名学生是总体的一个样本 B.2万名学生是总体 C .每个学生的数学成绩是个体 D .样本容量是500名学生 7、下列调查,比较容易用普查方式的是( )
A .了解某市居民年人均收入
B .了解某市初中生体育中考成绩
C .了解某市中小学生的近视率
D .了解某一天离开佛山市的人口流量
8、 在统计中,样本的方差可以近似地反映总体的( )
A.平均状态
B.波动大小
C.分布规律
D.最大值和最小值 9、 对已知数据-4,1,2,-1,2,下面结论错误的是( )
A .中位数为1;
B .方差为26;
C .众数为2;
D .平均数为0
10、人数相同的八年级(6)、(8)两班学生在同一次数学单元测试,班级平均分和方差如
下:80==乙甲x x ,2402=甲s ,1802
=乙s ,则成绩较为稳定的班级是( )
A.甲班
B.乙班
C.两班成绩一样稳定
D.无法确定 二、填空题(每题3分,共15分) 11、化简
4
2
2
-+y y = 12.当_____=x 时,
x
--11
的值为负数; 13.分解因式:294x +- = 14、在方差计算公式])20()20()20[(10
1
21022212-++-+-=
x x x s 中,数字10和20分别表示________和________.
15、在一个样本中,已知一组数据分别落在五个小组内, 第一、二、三、五组数据的个数分别是2,8,15,5,且第五组的频率为0.1,则这个样本中数据的总数是 个,第四组的频数和频率分别是 . 三、解答题(16-21每小题5分,共30分)
16、分解因式3x 3y –12xy 17、分解因式 ()()25102
++-+n m n m
18、解不等式组 ⎪⎪⎩⎪⎪⎨⎧>+<-312
013
x x x
学 班 姓名 学
19、计算:m
m m -+-333 20、解分式方程131
32=-+--x x x
21、求数据98,100,101,102,99的极差,方差,标准差..
22、(8分)为了了解中学生的体能情况,抽取了某中学八年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频率分布直方图,
别是0.1,0.3,0.4,第一小组的频数为5。
(1)第四小组的频率是__________ (2)参加这次测试的学生是_________人
(3)成绩落在哪组数据范围内的人数最多?是多少?
(4)求成绩在100次以上(包括100次)的学生占测试 人数的百分率.
23、(8分)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员运行了8次选拔赛,他们的跳高成绩(单位:cm )如下: 甲: 172 168 175 169 174 167 166 169 乙: 164 175 174 165 162 173 172 175 (1) 甲、乙两名运动员跳高的平均成绩分别是多少?
(2)分别求出甲、乙跳高成绩的方差。
(3)哪个人的成绩更为稳定?为什么?
(4)经预测,跳高165 cm 以上就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?若预测跳高170 cm 方可获得冠军,又应该选哪位运动员参赛?
24、(9分)为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量, 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):
根据以上图表,回答下列问题:
(1)M=_______,m=_______,N=_______,n=__________;
(2)补全频数分布直方图.
(3)若九年级有300名女生,则身高在157.5~161.5范围约有多少人?
cm)。